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1 Linear Systems

Linear algebra is one of the best studied and understood fields in mathematics. The amount of
attention it receives is warranted by the shear extent of its applicability, in both pure mathematics
and applied mathematics, physics, computer science, engineering, etc. In a very broad sense, it
studies linear systems of equations, vector spaces, and linear maps between vector spaces. This
course will introduce you to the fundamentals of linear algebra, with a focus on low-dimensional
spaces such as R,R2,R3, though we will cover Rn towards the end.

I have heard linear algebra earnestly proclaimed as “the single most useful mathematics you
will learn as an undergraduate.” While some people might dissent, it’s hard to overstate the utility
of linear algebra.

1 Linear Systems

You’ve likely seen examples of linear systems before. For example, you might have been asked to
find a solution to

2x− 3y =−7
−x+ 2y = 5.

This is not too difficult with only two equations and two unknowns, but what if we add more
equations and more unknowns? Something along the lines of

x+ y + z = 4
x+ 2y + 3z = 9

2x+ 3y + z = 7

is much more difficult. You can imagine we could make this four equations, five equations, etc. We
will develop a scheme for solving these types of systems.

1.1 Linear Equations and Systems

Generally speaking, the word linear means something that respects additions and multiplication
by real numbers. For example, the function f(x) = 2x is linear, since

f(x+ y) = 2(x+ y) = f(x) + f(y), and f(cx) = 2cx = cf(x).

The word linear is used because the graph of f is precisely a straight line in the plane. Linear things
play so nicely with addition and multiplication. Be careful not to confuse this with the analytical
notion of linear equations, y = mx+ b, which are often referred to instead as affine equations. The
difference between affine and linear equations is precisely the translation component.

A linear equation is any equation of the form

c1x1 + c2x2 + · · ·+ cnxn = b

for c1, c2, . . . , cn, b ∈ R. We refer to the ci as coefficients of the linear equation, and b as the constant
term. When n = 2 this becomes the equation

c1x1 + c2x2 = b,

c©2017- Tyler Holden
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1 Linear Systems 1.1 Linear Equations and Systems

and the collection of x1 and x2 which satisfy this equation again forms a line in the plane. For
example,

2x1 − 3x2 = −7

looks like the line given in Figure 1.

−4 −2 2 4

2

4

x1

x2 2x1 − 3x2 = −7

−4 −2 2 4

2

4

(1, 3)

x1

x2 2x1 − 3x2 = −7
−x1 + 2x2 = 5

Figure 1: Left: The solutions to 2x1 − 3x2 = −7 form a line in the plane. Right: There is a single
solution to the system (1.1), which is the point where the two solution sets intersect.

A linear system of equations is a finite collection of linear equations:

c1,1x1 + c1,2x2 + · · ·+ c1,nxn = b1
c2,1x1 + c2,2x2 + · · ·+ c2,nxn = b2

...
...

...
cm,1x1 + cm,2x2 + · · ·+ cm,nxn = bm

.

This particular system has m equations in n unknowns. A solution to this system is any collection
of n numbers s1, s2, . . . sn such that

c1,1s1 + c1,2s2 + · · ·+ c1,nsn = b1
c2,1s1 + c2,2s2 + · · ·+ c2,nsn = b2

...
...

...
cm,1s1 + cm,2s2 + · · ·+ cm,nsn = bm

;

that is, each equation is satisfied by the s1, . . . , sn simultaneously. For example, consider the system

2x1 − 3x2 =−7
−x1 + 2x2 = 5

. (1.1)

The point (−2, 1) satisfies the first equation, since

2(−2)− 3(1) = −4− 3 = −7,

but this does not satisfy the second equation, as

−(−2) + 2(1) = 4 + 2 = 6 6= 5.

4
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1.2 Parameterizations of Solutions 1 Linear Systems

In fact, the only simultaneous solution to both equations is (x1, x2) = (1, 3).

Geometrically, the solutions to a single equation ax + by = c form a line in the plane – there
are infinitely many such solutions. A point in the plane is simultaneously a solution to two such
equations if it occurs at their intersection, as in Figure 1. This immediately implies there are only
three possible cases:

• There are no solutions: The lines are parallel.

• There is one unique solution: The lines cross at one point.

• There are infinitely many solutions: The lines overlap.

This same idea will extend beyond two dimensions, as we’ll see in Section 1.3.2.

Definition 1.1

A linear system of equations is consistent if it admits at least one solution, and inconsistent
otherwise.

The special case where all the constant terms are zero is afforded a special name.

Definition 1.2

A linear system is homogeneous if all its constant terms are zero.

The following linear system is homogeneous,

−3x1 + 7x2 − 10x3 = 0
x1 − 2x2 + x3 = 0
−x1 + x2 − x3 = 0

.

Notice that (x1, x2, . . . , xn−1, xn) = (0, 0, . . . , 0, 0) is always a solution to a homogeneous system,
called the trivial solution. Hence homogeneous systems are always consistent. While the trivial
solution is important, we’re often more interested in non-trivial solutions.

1.2 Parameterizations of Solutions

Solutions to linear systems come in three flavours: There are either no solutions, a single unique
solution, or infinitely many solutions. We’ll later develop criteria for determining the cardinality of
a solution set without explicitly finding the solutions. For now, let’s analyze how infinitely many
solutions can be conveyed in a finite manner.

The equation 2x1 − 3x2 = −7 has infinitely many solutions. Indeed, by solving for x2 we can
write x2 = (2x1 + 7)/3. By allowing x1 to vary, we get the collection of all possible solutions. For
example, setting x1 = 0 gives x2 = 7/3, while x1 = 1 gives x2 = 3. There is no restriction on the
parameter x1, but to differentiate the equation with the solution set, we introduce a letter in lieu
of x1. Taking t as our parameter, we set x1 = t and the solutions to the linear equation are

(x1, x2) =

(
t,

2t+ 7

3

)
for t ∈ R.

c©2017- Tyler Holden
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1 Linear Systems 1.3 Matrix Representations of Linear Systems

In fact, we can verify this by substituting this back into our original equation:

2x1 − 3x2 = 2t− 3

(
2t+ 7

3

)
= 2t− (2t+ 7) = −7.

Example 1.3

Show that
(x1, x2, x3, x4) = (1− 2s+ 4t, 3s− t, s, t)

is a solution to the linear system

x1 + 2x3 − 4x4 = 1
x2 − 3x3 + x4 = 0

(1.2)

for any s, t ∈ R.

Solution. By substituting (x1, x2, x3, x4) = (1− 2s+ 4t, 3s− t, s, t) into our system, we get

x1 + 2x3 − 4x4 = (1− 2s+ 4t) + 2s− 4t = 1

x2 − 3x3 + x4 = (3s− t)− 3s+ t = 0

which is what we wanted to show. �

Our objective is usually to find the parameterization of an infinite solution set. In the case of
Example 1.3 we solve the first equation in (1.2) for x1, and the second equation for x2, to get

x1 = 1− 2x3 + 4x4

x2 = 3x3 − x4.
We cannot possibly solve for any more variables, so let x3 and x4 be parameters, say s and t
respectively. Expressing x1 and x2 in terms of s and t gives a two-parameter solution set

(x1, x2, x3, x4) = (1− 2s+ 4t, 3s− t, s, t),
which agrees with what we found above. Of course, this is not the only parameterization of the
solution, as we could have solved for other variables as well.

1.3 Matrix Representations of Linear Systems

An m× n matrix is collection of nm numbers, arranged into m rows and n columns. For example,[
1/2 −π 4

0 0
√

2

]
is a 2× 3 matrix of real numbers. Given a linear system

c1,1s1 + c1,2s2 + · · ·+ c1,nsn = b1
c2,1s1 + c2,2s2 + · · ·+ c2,nsn = b2

...
...

...
cm,1s1 + cm,2s2 + · · ·+ cm,nsn = bm

;

6
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1.3 Matrix Representations of Linear Systems 1 Linear Systems

we encode this information in an (augmented) m× (n+ 1) matrix whose entries are the coefficients
and constant terms: 

c1,1 c1,2 · · · c1,n b1
c2,1 c2,2 · · · c2,n b2

...
...

. . .
...

...
cm,1 cm,2 · · · cm,n bm

 .
For example, the linear systems we’ve thus far seen are encoded as follows:

2x− 3y =−7
−x+ 2y = 5

[
2 −3 −7
−1 2 5

]
x+ y + z = 4
x+ 2y + 3z = 9

2x+ 3y + z = 7

1 1 1 4
1 2 3 9
2 3 1 7


x1 + 2x3 − 4x4 = 1
x2 − 3x3 + x4 = 0

[
1 0 2 −4 1
0 1 −3 1 0

]
.

Now let’s think about what operations we can do to our system of equations while preserving
the solutions, and see how those operations translate to the matrix picture.

1. We can interchange any two equations. Certainly it does not matter whether we solve
the system

2x− 3y =−7
−x+ 2y = 5

or
−x+ 2y = 5
2x− 3y =−7

so we can interchange the rows of a matrix,[
2 −3 −7
−1 2 5

]
R1↔R2−−−−−→

[
−1 2 5

2 −3 −7

]
2. We can multiply a row by a non-zero number. For example, if s1, s2 satisfy

2s1 − 3s2 = −7

then multiplying everything by 5 gives

10s1 − 15s2 = −35.

So long as the coefficients and the constant term are both multiplied by the same constant,
(s1, s2) is still a solution.[

2 −3 −7
−1 2 5

]
5R1→R1−−−−−→

[
10 −15 −35
−1 2 5

]
3. We can add a multiple of one row to another. For example, if (s1, s2) is a solution to

2s1 − 3s2 =−7
−s1 + 2s2 = 5

c©2017- Tyler Holden
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1 Linear Systems 1.3 Matrix Representations of Linear Systems

then taking 3 times the first row and adding it to the second gives

3( 2s1 − 3s2 = −7)
+ −s1 + 2s2 = 5

5s1 − 7s2 = −16.

At the matrix level, we get[
2 −3 −7
−1 2 5

]
3R1+R2→R2−−−−−−−−→

[
2 −3 −7
5 −7 −16

]
These are called elementary row operations (EROs).

How does this help us solve linear systems? At the moment, these matrices represent a notation
for convenient bookkeeping, so let’s compare this to how we would normally solve this system. Take
the system

2x1 − 3x2 =−7
−x1 + 2x2 = 5.

We will add 2 times the second row to the first and add them together to get

2x1 − 3x2 = −7
+ 2( −x1 + 2x2 = 5)

x2 = 3.

Hence x2 = 3. We can substitute this back into the equation 2x1 − 3x2 = −7 to get

2x1 − 3(3) = −7 ⇒ 2x1 = 2 ⇒ x1 = 1

and we get the solution (x1, x2) = (1, 3). The objective here is variable elimination; that is, to
use the elementary row operations to remove as many of the variables as possible. At the matrix
level, we will do something similar. We will perform our elementary row operations to transform
our matrix to row-echelon form (REF), in which

1. Any rows consisting of purely zeros occurs at the bottom of the matrix,

2. The first non-zero entry of any row is a 1, called the leading 1,

3. Each leading 1 occurs to the right of any leading 1 above it.

For example, the following matrix is in row-echelon form:
1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗
0 0 0 0 0

 . (1.3)

Why is this useful? Think about the corresponding linear system of an augmented REF matrix. It
might look something like1 2 3 4

0 0 1 −1
0 0 0 0

 , which becomes
x1 + 2x2 + 3x3 = 4

x3 =−1
.

8
c©2017- Tyler Holden



1.3 Matrix Representations of Linear Systems 1 Linear Systems

In row-echelon form, the x1-dependency has been removed from all equations below the first. The
same is true for x3, though trivially so. In this form it is easy to solve for x3 and x1, using x2 as a
free parameter. So for example, the solution to this linear system is

x3 = −1

x2 = free parameter s

x1 = 4− 2x2 − 3x3 = 7− 2x2

⇒ (x1, x2, x3) = (7− 2s, s,−1).

By eliminating as many variables as possible, we refined the system into something which is easier
to interpret and solve.

Example 1.4

Perform elementary row operations on the augmented matrix[
2 −3 −7
−1 2 5

]
to turn it into row-echelon form.

Solution. Using our elementary row operations, we have the following[
2 −3 −7
−1 2 5

]
R1↔R2−−−−−→

[
−1 2 5

2 −3 −7

]
(−1)R1→R1−−−−−−−→

[
1 −2 −5
2 −3 −7

]
(−2)R1+R2→R2−−−−−−−−−−→

[
1 −2 −5
0 1 3

]
.

Were we to convert this back into its corresponding linear system, we would have

x1 − 2x2 =−5
x2 = 3.

Knowing that x2 = 3 we can solve for x1 = −5 + 2x2 = 1, which is the same solution we got
earlier. �

We say that a matrix is in reduced row-echelon form (RREF) if each leading 1 is also the only
non-zero entry in its column, so if every ∗ entry in (1.3) is a zero, that matrix is in RREF:

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 .
The linear system corresponding to an augmented matrix in RREF has been solved as much as
possible: it’s no longer necessary to do any back substitution, you need only read off the variable
solutions.

c©2017- Tyler Holden
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1 Linear Systems 1.3 Matrix Representations of Linear Systems

Example 1.5

Turn the matrix [
2 −3 −7
−1 2 5

]
into reduced row-echelon form.

Solution. The key is to first put our matrix into row-echelon form, then “work our way back
upwards.” From Example 1.4 we know the REF form, so[

2 −3 −7
−1 2 5

]
REF−−−→

[
1 −2 −5
0 1 3

]
2R2+R1→R1−−−−−−−−→

[
1 0 1
0 1 3

]
.

The corresponding linear system is just the solution (x1, x2) = (1, 3). �

1.3.1 Gaussian Elimination

This process of turning a matrix into row-echelon form, and eventually into reduced row-echelon
form, is called Gaussian elimination. The algorithm for converting a matrix to row-echelon form
is as follows:

1. If your matrix consists entirely of zeros, stop.

2. Find the first column with a non-zero entry and move it to the top.

3. Normalize the row to create a leading 1.

4. Add multiples of this row to the rows below it, so that the elements under the leading 1
become 0.

To solve a linear system, take the corresponding augmented matrix and convert it to row-echelon
form. If there is a row of the form

[
0 0 · · · 0 1

]
then your system has no solutions. Otherwise,

you can begin the process of backwards substitution, starting at the bottom, to solve your linear
system.

Another option is to turn your augmented matrix into row-echelon form, and use a similar
procedure to Gaussian elimination to turn elements above the leading 1’s into zero as well. This
will give you the reduced row-echelon form.

Example 1.6

Use Gaussian elimination to turn the matrix1 1 1 4
1 2 3 9
2 3 1 7


into row-echelon form. Use backwards substitution to solve the system. By turning the
matrix into reduced row-echelon form, confirm your answer.

10
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1.3 Matrix Representations of Linear Systems 1 Linear Systems

Solution. Applying Gaussian elimination, we get1 1 1 4
1 2 3 9
2 3 1 7

 (−1)R1+R2→R2−−−−−−−−−−→
(−2)R1+R3→R3

1 1 1 4
0 1 2 5
0 1 −1 −1

 (−1)R2+R3→R3−−−−−−−−−−→

1 1 1 4
0 1 2 5
0 0 −3 −6


(−1/3)R3→R3−−−−−−−−−→

1 1 1 4
0 1 2 5
0 0 1 2


The corresponding linear system is

x1 + x2 + x3 = 4
x2 + 2x3 = 5

x3 = 2.

Setting x3 = 3 and substituting into the second equation gives x2 = 5−2x3 = 1. Substituting both
values into the first equation gives

x1 = 4− x2 − x3 = 4− (1)− (2) = 1

so our solution is (x1, x2, x3) = (1, 1, 2). You can check your answer by substituting this into the
original linear system of equations.

To turn this into reduced row-echelon form, we start with our row-echelon form and work
upwards: 1 1 1 4

0 1 2 5
0 0 1 2

 (−2)R3+R2→R2−−−−−−−−−−→
(−1)R1+R1→R1

1 1 0 2
0 1 0 1
0 0 1 2

 (−1)R2+R1→R1−−−−−−−−−−→

1 0 0 1
0 1 0 1
0 0 1 2


which gives us the same solution above, (x1, x2, x3) = (1, 1, 2). �

Example 1.7

Find the solution(s) to the linear system

x1 + 2x2 − 4x3 = 10
2x1 − x2 + 2x3 = 5
x1 + x2 − 2x3 = 7

Solution. I’m going straight to RREF, but you are free to do backwards substitution if you like.1 2 −4 10
3 −4 1 5
1 1 −2 7

 (−2)R1+R2→R2−−−−−−−−−−→
(−1)R1+R3→R3

1 2 −4 10
0 −5 10 −15
0 −1 2 −3

 (−1/5)R2→R2−−−−−−−−−→

1 2 −4 10
0 1 −2 3
0 −1 2 −3


R2+R3→R3−−−−−−−→

1 2 −4 10
0 1 −2 3
0 0 0 0

 (−2)R2+R1→R1−−−−−−−−−−→

1 0 0 4
0 1 −2 3
0 0 0 0

 .

c©2017- Tyler Holden
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1 Linear Systems 1.3 Matrix Representations of Linear Systems

We cannot quite read off the solutions immediately. Instead, notice that there is no leading one for
the third column. This means that x3 is a free parameter, say s. Rewriting this but solving for x1
and x2 gives

x1 = 4

x2 = 3 + 2s

x3 = s

so our final solution is (x1, x2, x3) = (4, 3 + 2s, s) for any s ∈ R. �

Example 1.8

Convert the following matrix to reduced row-echelon form:
1 −1 1 −2 1
−1 1 1 1 −1
−1 2 3 −1 2

1 −1 2 1 1

 .

Solution. Applying Gaussian elimination we get
1 −1 1 −2 1
−1 1 1 1 −1
−1 2 3 −1 2

1 −1 2 1 1

 R1+R2→R2−−−−−−−−−→
R1+R3→R3
−1R1+R4→R4


1 −1 1 −2 1
0 0 2 −1 0
0 1 4 −3 3
0 0 1 3 0

 R2↔R3−−−−−→
R3↔R4


1 −1 1 −2 1
0 1 4 −3 3
0 0 1 3 0
0 0 2 −1 0


−2R3+R4→R4−−−−−−−−−→
(−1/7)R4→R4


1 −1 1 −2 1
0 1 4 −3 3
0 0 1 3 0
0 0 0 1 0

 −3R4+R3→R3−−−−−−−−−→
3R4+R2→R2
2R4+R1→R1


1 −1 1 0 1
0 1 4 0 3
0 0 1 0 0
0 0 0 1 0


−4R3+R2→R2−−−−−−−−−→
−R3+R1→R1


1 −1 0 0 1
0 1 0 0 3
0 0 1 0 0
0 0 0 1 0

 R2+R1→R1−−−−−−−→


1 0 0 0 4
0 1 0 0 3
0 0 1 0 0
0 0 0 1 0

 . �

Example 1.9

Which of the following matrices are in RREF?

A =

1 3 −2 0 1
0 1 0 0 12
0 0 0 1 0

 , B =

1 −3 0 −1
0 0 1 0
0 0 0 1

 , C =

[
0 0 0
0 0 0

]
.

Solution. The matrix A is not in RREF, since there is a leading one in the (2, 2) position but it is
not the only non-zero element in its column. Both B and C are in RREF however, as they satisfy
all the conditions necessary. �
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1.3.2 The Rank of a Matrix

Definition 1.10

Let A be a matrix. The rank of A is the number of leading 1’s in its row-echelon form.

For example, the rank of the matrix from Example 1.7 is 2, while the rank of the matrix from
Example 1.8 is 4. The number of leading ones is the same in REF and in RREF, so you could
use either. The fact that the rank is independent of how we perform the Gaussian elimination
shouldn’t be clear, so you’ll have to take my word for it.

Example 1.11

Determine the rank of the matrix

A =


1 −2 0 4
3 1 1 0
−1 −5 −1 8

3 8 2 −12

 .

Solution. Putting this matrix into row echelon form gives
1 −2 0 4
3 1 1 0
−1 −5 −1 8

3 8 2 −12

 −→


1 −2 0 4
0 7 1 −12
0 −7 −1 12
0 14 2 −24

 R2+R3→R3−−−−−−−−−−→
(−2)R2+R3→R3


1 −2 0 4
0 7 1 −12
0 0 0 0
0 0 0 0

 .
After scaling the second row, this matrix has leadings ones in the first and second columns only,
and thus has rank 2. �

This is not a good definition of rank, for several reasons which are hard to elaborate upon right
now. Instead, we introduce this concept so that we can talk about the number of solutions a system
can have. Notice that Examples 1.6 and 1.7 both consist of three equations in three unknowns,
but the former has a unique solution while the latter had infinitely many solutions. The difference
arises because of the rank, though not in an obvious way. Effectively, here’s how you can see the
number of solutions you should get. Suppose you have an augmented m × (n + 1) matrix A in
reduced echelon form. Let r be the rank of this matrix if the constant terms are removed.

Number of Solutions

1. If a row of the form
[
0 0 · · · 0 1

]
appears, there are no solutions.

2. If r < n then you have infinitely many solutions, consisting of n− r parameters. The
parameters are those columns which do not contain leading ones.

3. If r = n then you have a unique solution.

Indeed, the matrices in Examples 1.6 and 1.7 are both 3× 4, but Example 1.6 has rank 3 and
a unique solution, while Example 1.7 has rank 2 and infinitely many solutions.

c©2017- Tyler Holden
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Recall that a homogeneous system (Definition 1.2) is one in which all the constants are iden-
tically zero. I mentioned previously that the trivial solution (x1, . . . , xn) = (0, . . . , 0) is always a
solution to a homogeneous system, so homogeneous systems either have one solution (the trivial
one) or infinitely many. According to our criteria above for determining the number of solutions
to a system, a homogeneous system will exhibit non-trivial solutions when its rank r is less than
the number of variables n.

Example 1.12

Find and parameterize the non-trivial solutions to the linear system

x1 + x2 + x3 − x4 = 0
2x1 + 2x2 + x3 − 3x4 = 0
−x1 − x2 + x3 + 3x4 = 0

.

Solution. We begin by putting our system into RREF: 1 1 1 −1 0
2 2 1 −3 0
−1 −1 1 3 0

 −2R1+R2→R2−−−−−−−−−→
R1+R3→R3

1 1 1 −1 0
0 0 −1 −1 0
0 0 2 2 0

 2R1+R3→R3−−−−−−−−→
−1R2→R2

1 1 1 −1 0
0 0 1 1 0
0 0 0 0 0


−R1+R1→R1−−−−−−−−→

1 1 0 −2 0
0 0 1 1 0
0 0 0 0 0

 .
Our system has rank r = 2 and n = 4 variables, so there are non-trivial solutions in n − r = 2
parameters. The parameters are those columns without leading ones, namely x2 = s and x4 = t.
If we rewrite this as a linear system, it becomes

x1 + x2 + − 2x4 = 0
x3 + x4 = 0

⇒ x1 = −x2 + 2x4

x3 = −x4
⇒ x1 = −s+ 2t

x3 = −t .

Thus the solution to this system of equations is (x1, x2, x3, x4) = (−s+ 2t, s,−t, t). Note that this
includes the trivial solution when s = t = 0. �

Example 1.13

Determine if each statement is true or false. Suppose you are given a non-trivial linear
system consisting of m equations and n unknowns.

1. The rank r of the augmented matrix encoding the system can be no larger than
min {m,n}.

2. If n > m ≥ 1, the system admits infinitely many solutions.

3. If m > n, the system admits no solutions and is inconsistent.

Solution. We justify our answers below:

14
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1. This is true. The rank corresponds to the number of leading ones. The number of leading
ones is restricted by whichever is fewer, the number of rows, or the number of columns.

2. This is true. The rank of the linear system will be at most m, meaning there are n−m > 0
parameters, and hence infinitely many solutions.

3. This is false. For example, the system represented by the augmented matrix1 1 1
2 2 2
3 3 3


has rank 1, while n = 2. Thus the system has infinitely many solutions. �

1.4 Matrix Operations

We will generally denote a matrix by a capital letter, for example A. We denote the (i, j)-element
(ith row, jth column) of A as Aij and write [Aij ] to refer to the matrix made up of these entries.
For example, if

A =

 1 2 3 4
5 6 7 8
−2 −4 −6 −8


then A2,3 = 7 and A3,4 = −8.

Two matrices are equal if they are the same size and have identical elements. More precisely, if A
and B are both m×n matrices, then A = B if and only if Aij = Bij for every 1 ≤ i ≤ m, 1 ≤ j ≤ n.
We can add two matrices of the same size as well, by saying that (A + B)ij = Aij + Bij . For
example, if

A =

[
−1 4 2

0 −3 0

]
and B =

[
2 4 6
−2 4 3

]
then

A+B =

[
−1 4 2

0 −3 0

]
+

[
2 4 6
−2 4 3

]
=

[
2 + (−1) 4 + 4 2 + 6
0 + (−2) −3 + 4 0 + 3

]
=

[
1 8 8
−2 1 3

]
.

We can perform what’s called scalar multiplication by taking c ∈ R, and defining cA to be (cA)ij =
cAij . For example, if c = 3 and A is as above, then

3A = 3

[
−1 4 2

0 −3 0

]
=

[
−3 12 6

0 −6 0

]
.

Theorem 1.14

If A,B,C are m× n matrices, with r, s, t ∈ R then

1. A+B = B +A

2. A+ (B + C) = (A+B) + C

3. 0 +A = A (where 0 is the 0-matrix)

4. A+ (−A) = 0 where −A = −1A.

5. r(A+B) = rA+ rB

6. (r + s)A = rA+ sA

7. (rs)A = r(sA)

c©2017- Tyler Holden
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We will see how to multiply matrices in the Section 1.4.4, but I warn you now that it is not as
straightforward as addition.

Example 1.15

Suppose that A and B are matrices

A =

[
−1 0

2 3

]
, B =

[
x+ y 0
−4 x− y

]
,

and that 4A+ 2B = 0. Find x, y.

Solution. By definition:

4A+ 2B =

[
−4 0

8 12

]
+

[
2x+ 2y 0

−8 2x− 2y

]
=

[
2x+ 2y − 4 0

0 2x− 2y + 12

]
=

[
0 0
0 0

]
,

which means we need 2x+2y = 4 and 2x−2y = −12. We can solve this linear system by introducing
a matrix and row reducing:[

2 2 4
2 −2 −12

]
(−1)R1+R2→R2−−−−−−−−−−→

[
2 2 4
0 −4 −16

]
(1/2)R1→R1−−−−−−−−−→
(−1/4)R2→R2

[
1 1 2
0 1 4

]
(−1)R2+R1→R1−−−−−−−−−−→

[
1 0 −2
0 1 4

]

so x = −2 and y = 4. �

1.4.1 The Transpose of a Matrix

Given an m× n matrix A = [Aij ], its transpose is the n×m matrix derived by interchanging the
rows and columns. We denote the transpose by AT . Hence if

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 , then AT =


a1,1 a2,1 · · · am,1
a1,2 a2,2 · · · am,2

...
...

. . .
...

a1,n a2,n · · · am,n

 .
For example, [

1 2 3
4 5 6

]T
=

1 4
2 5
3 6


To avoid large, awkward gaps in these notes, I will sometimes use the transpose to denote column

vectors, such as the 3× 1 column vector v =
[
1 2 3

]T
.
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Theorem 1.16

If A,B are m× n matrices and c ∈ R, then

1. (AT )T = A,

2. (cA)T = cAT ,

3. (A+B)T = AT +BT .

Example 1.17

We say that a square n×n matrix A is anti-symmetric if A+AT = 0, with 0 the zero-matrix.
The trace of a matrix is the sum of its diagonal terms; that is,

Tr(A) = A1,1 +A2,2 + · · ·+An,n.

Show that that the trace of an anti-symmetric matrix is zero.

Solution. Suppose our matrix A has components Ai,j . When we take the transpose, the rows and
columns interchange, so that [AT ]i,j = Aj,i. But notice that the diagonal elements of a square
matrix are fixed under transposition: the diagonal of the original matrix is still the diagonal of the
transpose. Hence

[A+AT ]i,i = Ai,i +Ai,i = 2Ai,i = 0,

showing that Ai,i = 0. Thus the trace is

Tr(A) = A1,1 +A2,2 + · · ·+An,n = 0 + 0 + · · ·+ 0 = 0. �

Definition 1.18

A matrix A is said to be symmetric if A = AT , and anti-symmetric if A = −AT .

From the definition of a symmetric matrix, we can immediately deduce that A must be a square
matrix; that is, it has the same number of rows as columns. For example, the matrix 1 0 −2

0 5 4
−2 4 −7

 is symmetric, while

 0 3 −1
−3 0 5

1 −5 0

 is anti-symmetric.

Example 1.19

Show that the sum of two symmetric matrices is symmetric.

Solution. Suppose that A and B are symmetric, so that A = AT and B = BT . By properties of
the transpose, we know that

(A+B)T = AT +BT = A+B

showing that A+B is symmetric, as required. �
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It shouldn’t be too hard to convince yourself that the proof above generalizes to any combination
of matrices.

1.4.2 Column Vectors

Very special cases occur when one of the dimensions of the matrix is 1. For example, an m × 1
matrix is known as a column vector (aka column, column matrix), and a 1× n matrix is known as
a row vector. Just like a 1× 1 matrix can be though of as a real number,

[
a
]
∈ R, we can think of

column and row vectors as being elements in a higher dimensional space.

Definition 1.20

If n is a positive integer, the set Rn is the collection of all n-tuples of real numbers.

So for example,

(−5, π, 1001) ∈ R3, (0, 0, 1, 0) ∈ R4, (1, 0, 1, 0, · · · , 1, 0)︸ ︷︷ ︸
20-times

∈ R20.

Strictly speaking, the way I’ve defined Rn above carries no orientation of the n-tuple: we do not
care whether it is written as a row or a column. For this reason, I will often conflate the two,
writing row or column vectors as x ∈ R.

Elements in Rn can be thought of as either points, or arrows. For example, (a, b) ∈ R2 is either
the point whose coordinates are (a, b), or the arrow pointing from the origin (0, 0) to (a, b). This is
illustrated in Figure 2. In particular, if we think of them as arrows then we can add them together
or multiply them by scalars: [

1
1

]
+

[
2
−1

]
=

[
3
0

]
, 2

[
1
1

]
=

[
2
2

]
.

These are just the addition and scalar multiplication of matrices, but they can now be interpreted
in a geometric way.

2v1 = (2, 2)

v1 = (1, 1)

v2 = (2,−1)

R2

v1 + v2 = (3, 0)

Figure 2: One may think of a vector as either representing a point in the plane (represented by
the black dots) or as direction with magnitude (represented by the red arrows). The blue arrows
correspond to the sum v1+v2 and the scalar multiple 2v1. Notice that both are computed pointwise.

18
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We haven’t learned what a vector is yet, so I might be getting a bit ahead of myself, but for
the moment take this to just be a matter of nomenclature. We will denote row and column vectors
using bold font, such as x. Since these are just special types of matrices, everything from Theorem
1.14 holds, such as 

2
0
−1

5

+ 3


−1

4
−2

0

 =


−1
12
−7

5

 .
Given column vectors v1,v2, . . . ,vn, and scalars c1, c2, . . . , cn, we call anything of the form

c1v1 + c2v2 + · · ·+ cnvn

a linear combination of these vectors.

Column vectors in particular really come to play when looking at systems of linear equations.
Consider the linear system

x1 + 2x2 − 4x3 = 10
2x1 − x2 + 2x3 = 5
x1 + x2 − 2x3 = 7

.

Define column vectors whose elements are the coefficients of each xi

a1 =

1
2
1

 , a2 =

 2
−1

1

 , a3 =

−4
2
−2

 , b =

10
5
7

 .
Thinking of the xi as scalars, our linear system above is equivalent to

a1x1 + a2x2 + a3x3 = b ⇔

1
2
1

x1 +

 2
−1

1

x2 +

−4
2
−2

x3 =

10
5
7


⇔

x1 + 2x2 − 4x3
2x1 − x2 + 2x3
x1 + x2 − 2x3

 =

10
5
7

 ,
where in the last line, we use the fact that these column vectors are equal if and only if their
components are equal. Hence linear systems are the same thing as linear combinations of column
vectors.

Example 1.21

Determine whether v can be written as a linear combination of x,y, z, where

x =

 2
1
−1

 , y =

1
0
1

 , z =

1
1
2

 , v =

5
3
4

 .

Solution. If such a solution exists, then there are x1, x2, x3 such that v = x1x + x2y + x3z, which

c©2017- Tyler Holden
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is the same as solving the linear system

2x1 + x2 + x3 = 5
x1 + x3 = 3
−x1 + x2 + 2x3 = 4

with matrix

 2 1 1 5
1 0 1 3
−1 1 2 4


Applying Guassian elimination gives 2 1 1 5

1 0 1 3
−1 1 2 4

 R1↔R2−−−−−→

 1 0 1 3
2 1 1 5
−1 1 2 4

 (−2)R1+R2→R2−−−−−−−−−−→
R1+R3→R3

1 0 1 3
0 1 −1 −1
0 1 3 7


(−1)R2+R3→R3−−−−−−−−−−→

1 0 1 3
0 1 −1 −1
0 0 4 8

 (1/4)R3→R3−−−−−−−−→

1 0 1 3
0 1 −1 −1
0 0 1 2


(−1)R3+R1→R1−−−−−−−−−−→

R3+R2→R2

1 0 0 1
0 1 0 1
0 0 1 2

 .
This does indeed have a solution, showing that x + y + 2z = v, so v is a linear combination of x,y,
and z. �

1.4.3 Revisiting Homogeneous Systems

Note that solutions of linear systems are also vectors. An interesting property of homogeneous
systems is that linear combinations of solutions are still solutions. For example, suppose that
s1, . . . , sn and t1, . . . , tn are solutions to

a1x1 + a2x2 + · · ·anxn = 0,

and let c1, c2 ∈ R, then

a1(c1s1 + c2t1) + a2(c1s2 + c2t2) + · · ·+ an(c1sn + c2tn)

= c1(a1s1 + a2s2 + · · ·+ ansn) + c2(a1t1 + a2t2 + · · ·+ antn)

= c10 + c20 = 0.

In addition, as all homogeneous systems have at least the trivial solution, we recast the “Number
of Solutions” theorem (page 13) as follows:

Theorem 1.22

If an unaugmented m × n system A with rank r describes the coefficient matrix of a linear
homogeneous system, then

1. The system has exactly n− r ‘basic’ solutions, one for each parameter;

2. Every solution is a unique linear combination of those basic solutions.
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The basic solutions are fundamental to the homogeneous system, in the sense that all other
solutions are a linear combination of the basic solutions. At a practical level, the basic solutions
are coefficients of the parameters.

Example 1.23

Consider the linear system

x1 + 2x2 − x3 + x4 + x5 = 0
−x1 − 2x2 + 2x3 + x5 = 0
−x1 − 2x2 + 3x3 + x4 + 3x5 = 0

Determine the basic solutions and give a formula for general solutions.

Solution. Writing this as an augmented matrix and row-reducing, we get 1 2 −1 1 1 0
−1 −2 2 0 1 0
−1 −2 3 1 3 0

 R1+R2→R2−−−−−−−→
R1+R3→R3

1 2 −1 1 1 0
0 0 1 1 2 0
0 0 2 2 4 0

 (−2)R2+R3→R3−−−−−−−−−−→

1 2 −1 1 1 0
0 0 1 1 2 0
0 0 0 0 0 0


R3+R1→R1−−−−−−−→

1 2 0 2 3 0
0 0 1 1 2 0
0 0 0 0 0 0


Here we have rank 2 and 5 variables, so we expect there to by 5−2 = 3 basic solutions corresponding
to the three parameters. The variables x1 and x3 have the leading ones, so let x2 = s, x4 = t,
x5 = u and write

x3 = −x4 − 2x5 = −t− 2u

x1 = −2x2 + x3 − x4 − x5
= −2s+ (−t− 2u)− t− u
= −2s− 2t− 3u.

By factoring the s, t, u, we can write this as a linear combination of three vectors:
x1
x2
x3
x4
x5

 =


−2s− 2t− 3u

s
−t− 2u

t
u

 =


−2

1
0
0
0


︸ ︷︷ ︸

b1

s+


−2

0
−1

1
0


︸ ︷︷ ︸

b2

t+


−3

0
−2

0
1


︸ ︷︷ ︸

b3

u.

The three vectors {b1,b2,b3} are each a solution to the homogeneous system, and are the basic
solutions. Every other solution to the system is a linear combination of these three. �

1.4.4 Matrix Multiplication

Before looking at matrix multiplication, we first consider the dot product.
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Definition 1.24

Let x =
[
x1 x2 · · · xn

]
be an 1× n row vector, and y =

[
y1 y2 · · · yn

]T
be an n× 1

column vector. The dot product (inner product) of x and y is

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Remark 1.25

1. Strictly speaking, the dot product is always between two column vectors or two row
vectors, x and y. This operation of combining row and column vectors is really a
very deep thing, and the fact that it is equivalent to the dot product is a theorem.
Naturally, by applying the transpose we can turn these into row or column vectors,
whichever we please.

2. The dot product has a nice geometric interpretation, but we cannot yet describe it
until we know how to visualize column/row vectors.

Example 1.26

Compute the dot products of x · y and y · z, where

x =

1
0
1

 , y =

 2
−5

1

 , z =

−1
0
2

 .

Solution. Applying our formulas, we have

x · y = (1× 2) + (0×−5) + (1× 1) = 3

y · z = (2×−1) + (−5× 0) + (1× 2) = 0. �

Given an n × k matrix A and a k ×m matrix B, the product AB is an n ×m matrix, whose
(i, j) entry is the dot product of the ith row of A and the jth column of B; that is,

(AB)ij =
k∑
r=1

AikBkj .

Alternatively, let ri be the i-th row of A (of which there are n), and let cj be the j-th column of B
(of which there are m). Notice that both ri and cj have k-entries, so we can take their dot product,
and the matrix product AB is

AB =


r1
r2
...

rn

( c1 c2 · · · cm
)

=


r1 · c1 r1 · c2 · · · r1 · cm
r2 · c1 r2 · c2 · · · r2 · cm

...
...

. . .
...

rn · c1 rn · c2 · · · rn · cm

 .
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Explicitly multiplying two 2× 2 matrices A = [Aij ], B = [Bij ], we get the 2× 2 matrix[
a11 a12

a21 a22

][
b11 b12

b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
.

Again, I emphasize that the i-th row and j-th column of the product is the dot product of the
i-th row of A and the j-th column of B. For example, in the 2× 2 case, let us look at the second

row and first column. The second row of A is
[
a21 a22

]
while the first column of B is

[
b11 b21

]T
.

Taking their dot product gives a21b11 + a22b21 which is indeed the (2, 1) entry of the product.

Example 1.27

Determine the matrix product AB where

A =

[
1 0 2
3 −2 0

]
, B =

1 0 3
0 0 −1
2 −3 −1



Solution. The matrix A has dimension 2× 3 while B has dimension 3× 3. Their product AB can
therefore be computed, and will output a 2× 3 matrix. Carrying out the multiplication, we get

AB =

[
1 + 0 + 4 0 + 0 +−6 3 + 0 +−2
3 + 0 + 0 0 + 0 + 0 9 + 2 + 0

]
=

[
5 −6 1
3 0 11

]
. �

A very special type of matrix is the identity matrix. If n is a positive integer, then we define
In to be the n× n matrix with 1’s on the diagonal and zero everywhere else; that is,

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

Theorem 1.28

If A is m× n, B is n× k, and C is k × `, then

1. A(BC) = (AB)C

2. ImA = AIn = A

3. (AB)T = BTAT

Note the interchange of order than occurs in the transpose; (AB)T = BTAT . In fact, this must
happen to ensure that the dimensions like up correctly. Since A is an m×n matrix and B is n× k,
their product AB is an m× k matrix. The transpose is k ×m, which comes from multiplying BT

with dimension k × n against AT with dimension n×m.
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Furthermore, matrix multiplication is distributive:

A(B + C) = AB +AC, (A+B)C = AC +BC

where the dimensions of the matrices are chosen so that this makes sense.

Example 1.29

Show that the matrix

A =

[
1 4
2 −2

]
satisfies the equation A2 −A− 10I2 = 0.

Solution. Computing A2 we get

A2 =

[
1 4
2 −2

] [
1 4
2 −2

]
=

[
1 + 8 4− 8
2− 4 8 + 4

]
=

[
9 −4
−2 12

]
so that

A2 −A− 10I2 =

[
9 −4
−2 12

]
−
[
1 4
2 −2

]
−
[
10 0
0 10

]
=

[
9 + 1− 10 −4 + 4− 0
−2 + 2− 0 12− 2 + 10

]
=

[
0 0
0 0

]
as required. �

Something very nice happens when we multiply a matrix and a column vector. Suppose for
example that

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 , x =


x1
x2

...
xn


and we wish to compute the prod Ax, which yields

Ax =


a1,1x1 + a1,2x2 + · · ·+ a1,nxn
a2,1x1 + a2,2x2 + · · ·+ a2,nxn

...
am,1x1 + am,2x2 + · · ·+ am,nxn

 = x1a1 + x2a2 + · · ·+ xnan

but this is precisely the coefficient set of a linear system, also written as a linear combination of
the columns ai of A. Hence if b is the column vector of constants, any linear system is equivalent
to solving Ax = b.

Example 1.30

Determine the product As where

A =

1 1 1
1 2 3
2 3 1

 , s =

1
1
2

 .
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Solution. Using matrix multiplication we get

As =

1 1 1
1 2 3
2 3 1

1
1
2

 =

1 + 1 + 2
1 + 2 + 6
2 + 3 + 2

 =

4
9
7

 .
If we let b =

[
4 9 7

]T
, then this is precisely the statement that s is the solution to the linear

system given in example 1.6. �

Theorem 1.31

Suppose A is an m× n matrix and b in an n× 1 column vector. The vector x is a solution
to the linear system Ax = b if and only if x = xh + xp, where xh is a solution to the
homogeneous linear system Ax = 0, and xp is a particular solution to Ax = b.

Proof. Let’s begin by supposing that x is a solution to Ax = b, and xp is any other solution. Define
xh = x− xp, in which case

Axh = A(x− xp) = Ax−Axp = b− b = 0

showing that xh is a solution to the homogeneous system. Rearranging, we thus have x = xh + xp
as required.

In the other direction, suppose that xh and xp satisfy Axh = 0 and Axp = b. Now

A(xh + xp) = Axh +Axp = 0 +Axp = b,

which is what we wanted to show.

We’ve already seen that a homogeneous solution admits basic solutions. To employ Theorem
1.31, we employ a similar strategy, by separating out the column vectors which correspond to the
parameters. Everything left over will correspond to the particular solution.

Example 1.32

Solve the homogeneous system

x1 + 2x2 − x4 = 1
−2x1 − 3x2 + 4x3 + 5x4 = 6

2x1 + 4x2 − 2x4 = 2

and write it as a linear combination of the solution to the homogeneous system and a par-
ticular solution.
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Solution. Writing this as a matrix and converting to RREF yields 1 2 0 −1 1
−2 −3 4 5 6

2 4 0 −2 2

 2R1+R2→R2−−−−−−−−−−→
(−2)R1+R3→R3

1 2 0 −1 1
0 1 4 3 8
0 0 0 0 0


(−2)R2+R1→R1−−−−−−−−−−→

1 0 −8 −7 −15
0 1 4 3 8
0 0 0 0 0

 .
The leading ones occur at x1 and x2, so let x3 = s and x4 = t be parameter’s, so that

x4 = t

x3 = s

x2 = 8− 4x3 − 3x4 = 8− 4s− 3t

x1 = −15 + 8x3 + 7x4 = −15 + 8s+ 7t

or written in terms of vectors, by grouping parameters
x1
x2
x3
x4

 =


−15

8
0
0


︸ ︷︷ ︸

xp

+


8
−4

1
0

 s+


7
−3

0
1

 t
︸ ︷︷ ︸

xh

.

As indicated, xp is a particular solution to the linear system, while xh is the general solution to
the corresponding homogeneous system. �

So matrix multiplication does satisfy many familiar properties of multiplication. However, it
also satisfies some very different properties that what we are used to. For example, it is possible
for A to be a non-zero matrix, and v to be a non-zero vector, but still have Av be the zero vector.
For example,

A =

[
0 1
0 2

] [
1
0

]
=

[
0
0

]
.

This is emblematic of a deeper problem: We can have Av = Aw but v 6= w. For example[
1 −1
2 −2

] [
2
1

]
=

[
1
2

]
=

[
1 −1
2 −2

] [
1
0

]
Additionally, matrix multiplication is not commutative; that is, generally AB 6= BA. To see this,
let

A =

[
1 −1
0 1

]
, B =

[
2 −1
1 1

]
for which

AB =

[
1 −1
0 1

] [
2 −1
1 1

]
=

[
1 −2
1 1

]
BA =

[
2 −1
1 1

] [
1 −1
0 1

]
=

[
2 −3
1 0

]
.
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These are not even close to being the same matrix. Finally, powers of non-zero matrices can be
zero. For example, if

A =

[
0 1
0 0

]
then A is certainly not the 0 matrix, but

A2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
so we have A2 = 0.

1.5 Linear Transformations

Definition 1.33

A linear transformation is a function T : Rn → Rm satisfying

1. T (x + y) = T (x) + T (y) for all x,y ∈ Rn,

2. T (cx) = cT (x) for all c ∈ R and x ∈ Rn.

Namely, linear transformations are functions which preserve addition and scalar multiplication,
the two operations we know we can perform on vectors. For example, consider T : R3 → R2 given
by

T

x1x2
x3

 =

[
x1 + x2
x2 + x3

]
.

We can check this is linear as follows: Let x = (x1, x2, x3)
T and y = (y1, y2, y3)

T . Let’s first show
that T (x + y) = T (x) + T (y), for which

T (x + y) = T

x1 + y1
x2 + y2
x3 + y3

 =

[
(x1 + y1) + (x2 + y2)
(x2 + y2) + (x3 + y3)

]

=

[
x1 + x2
x2 + x3

]
+

[
y1 + y2
y2 + y3

]
= T (x) + T (y).

Similarly, if c ∈ R, then

T (cx) = T

cx1cx2
cx3

 =

[
cx1 + cx2
cx2 + cx3

]
= c

[
x1 + x2
x2 + x3

]
= cT (x).

On the other hand, a function like T : R2 → R given by

T

([
x1
x2

])
= x1 + x2 + 1

is not linear. In fact, neither of the two properties required for a linear transformation hold. You
should check this on your own.
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Proposition 1.34

If T : Rn → Rm is a linear map, then T (0) = 0.

Proof. There are a couple of ways to proceed. For example, note that

T (0) = T (0 + 0) = T (0) + T (0) = 2T (0).

The only vector which could satisfy x = 2x is x = 0, showing that T (0) = 0 as required.

Remember way back in Section 1.1 when I defined a linear map? Matrices are the key to linear
maps. For example, suppose that A is an m × n matrix. This means that it eats n × 1 column
vectors, and produces m × 1 column vectors. This is precisely what a function does, and we can
define TA : Rn → Rm by TA(x) = Ax. This map is linear, since for x,y ∈ Rn and c ∈ R we have

TA(x + y) = A(x + y) = Ax +Ay

= TA(x) + TA(y)

TA(cx) = A(cx) = cAx

= cTA(x).

For example, if A is the matrix

A =

[
2 1 −1
1 0 1

]
and x = (x1, x2, x3)

T then

TA(x) = Ax =

[
2 1 −1
1 0 1

]x1x2
x3

 =

[
2x1 + x2 − x3

x1 + x3

]
.

We call maps like TA linear transformations, precisely because you can think of them as trans-
forming a vector x ∈ Rn into a vector in y ∈ Rn. When TA : Rn → Rn – so A is a square matrix
– then TA can be though of as a transformation of Rn itself. Simple geometric transformations
R2 → R2 include

Scaling: If a, b ∈ R then the linear transformation TA given by

A =

[
a 0
0 b

]
scales the x-direction by a and the y-direction by b. If a < 0 then TA also reflects about
the y-axis, and when b < 0 the transformation reflects about the x-axis.

Rotation: Given an angle θ, we can rotate a vector x ∈ R2 counterclockwise using the TA where

A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.
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Reflection: We can reflect about the line y = mx using the transformation TA given by

A =
1

1 +m2

[
1−m2 2m

2m m2 − 1

]
.

Proposition 1.35

If A is an m× n matrix and TA : Rn → Rm is TA(x) = Ax then for any x1,x2, . . . ,xk ∈ Rn
and c1, c2, . . . , ck ∈ R we have

TA(c1x1 + c2x2 + · · ·+ ckxk) = c1TA(x1) + c2TA(x2) + · · ·+ ckTA(xk).

So we know that every matrix A defines a linear map TA(x) = Ax. Importantly, the converse
is also true; that is, every linear map T : Rn → Rm is TA for an m× n matrix A. To see that this
is the case, and to learn how to find the matrix A, we need the following:

Definition 1.36

If n is a positive integer, we define the standard basis for Rn as the collection {e1, e2, . . . , en}
where

ei = (0, 0, . . . , 0, 1︸ ︷︷ ︸
i-times

, 0, . . . 0).

Remark 1.37 The word basis here refers to a more general notion of a basis for a vector
space, something we will see much later in the course. This is just one of infinitely bases
for Rn. I would be remiss if I did not add that what we are about to do is considered
by some as an “act of violence.” Namely, I am about to tell you how to write down a
linear transformation as a matrix using the standard basis, but linear transformations can
be written in any basis.

We can write any vector x ∈ Rn as a linear combination of the elements of the standard basis.

For example, if x =
[
x1 x2 . . . xn

]T
then

x = x1e1 + x2e2 + · · ·+ xnen.

This is the smallest number of vectors we can use to write down any other vector, and every vector
can be written as such, so this makes the collection {e1, . . . , en} special.

Now let T : Rn → Rm be a linear transformation, and let ei be the standard basis for Rn. To

write T as a matrix, it suffices to see what T does to the standard basis, for if x =
[
x1 . . . xn

]T
then

T (x) = T (x1e1 + · · ·+ xnen)

= x1T (e1) + · · ·+ xnT (en)

=
[
T (e1) . . . T (en)

] x1...
xn

 .
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Hence by setting A =
[
T (e1) . . . T (en)

]
we get that T (x) = Ax as required.

Example 1.38

Let T be the transformation T : R3 → R3 given by

T (x1, x2, x3) = (3x1 + x2, x1 + x3, x1 − 4x3).

Show that T is a linear transformation, and find the matrix representation of T .

Solution. Let a = (a1, a2, a3) and b = (b1, b2, b3), with c ∈ R. Checking scalar multiplication is
easiest, so we start with that:

T (ca) = T (ca1, ca2, ca3)

= (3ca1 + ca2, ca1 + ca3, ca1 − 4ca3)

= c(3a1 + a2, a2 + a3, a1 − 4a3)

= cT (a).

Additivity requires a bit more work:

T (a + b) = T (a1 + b1, a2 + b2, a3 + b3)

=
(
3(a1 + b1) + (a2 + b2), (a1 + b1) + (a3 + b3), (a1 + b1)− 4(a3 + b3)

)
= (3a1 + a2, a1 + a3, a1 − 4a3) + (3b1 + b2, b1 + b3, b1 − 4b3)

= T (a) + T (b).

So T is linear, which means we can write it as T (x) = Ax for some 3× 3 matrix A. Let’s see what
it does to the standard basis vectors:

T (e1) =

3
1
1

 , T (e2) =

1
0
0

 , T (e3) =

 0
1
−4

 .
Since A is the matrix formed by concatenating these columns, we get

A =

3 1 0
1 0 1
1 0 −4

 ,
and we conclude that T (x) = Ax. �

Remark 1.39 Note that the identity matrix In yields the identity function TIn(x) = x,
and vice-versa. Hence the name.

Matrix multiplication is defined in such a funny way to ensure that compositions of linear
transformations make sense. More precisely, let A be an m× n matrix, and B be an n× k matrix.
Define TA : Rn → Rm by TA(x) = Ax and TB : Rk → Rn by TB(x) = Bx. The composition
function is

TA ◦ TB : Rk → Rn → Rm, (TA ◦ TB)(x) = TA(TB(x)) = TA(Bx) = ABx.
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Suppose we did not know how to multiply matrices, but wanted to define it so that this makes
sense. We need to see what TA ◦ TB does to the standard basis vectors ei. Let bi be the columns
of B, so that

(TA ◦ TB)(ei) = ABei = Abi,

so the matrix AB is
AB =

[
Ab1 Ab2 . . . Abk

]
.

If you think about it, you’ll see that this is exactly the definition of matrix multiplication we had
above.

1.6 Matrix Inversion

We use inversion to reverse an operation. For example, given the equation ax = b for a 6= 0, to
solve for x we multiply both sides by a−1 to get

a−1ax = a−1b ⇒ x = a−1b.

We would like to do something similar for matrices.

Definition 1.40

Let A be a n× n matrix. We say that A is invertible with inverse B if

AB = In, BA = In.

From the linear transformation point of view, the inverse matrix corresponds to the inverse
function. For example, suppose T : Rn → Rn is given by the matrix A, and is invertible with
inverse T−1 : Rn → Rn represented by the matrix B. Together, these must satisfy

(T ◦ T−1)(x) = id(x) = x, (T−1 ◦ T )(x) = id(x) = x.

Remark 1.39 told us id(x) = Inx, so the above two equations amount to

AB = In, BA = In

which is precisely the definition of the inverse matrix.

We often denote the inverse of A by A−1. This does precisely what we want in terms of solving
linear systems: Given an linear system Ax = b such that A is invertible, we can apply its inverse
A−1 to both sides to get

A−1Ax = A−1b ⇒ x = A−1b.

However, unlike real numbers, not all non-zero matrices have inverses. For example, you can show
that the matrix

A =

[
0 1
0 0

]
does not have an inverse by explicitly trying to compute one. In the special case of 2× 2 matrices,
the inverse is given by

A =

[
a b
c d

]
⇒ A−1 =

1

ad− bc

[
d −b
−c a

]
. (1.4)
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We can check my multiplying:

AA−1 =
1

ad− bc

[
a b
c d

] [
d −b
−c a

]
=

1

ad− bc

[
ad− bc −ab+ ab
cd− cd −bc+ ad

]
=

[
1 0
0 1

]
,

with A−1A similar.

Notice we cannot apply (1.4) to the matrix

A =

[
0 1
0 0

]
earlier, which I told you was not invertible. We cannot apply the formula precisely because ad−bc =
0. It turns out that a 2 × 2 matrix is invertible if and only if ad − bc 6= 0. This generalizes to
something known as the determinant, which we will discuss later.

Example 1.41

Solve the linear system Ax = b if

A =

[
2 −3
−1 2

]
, b =

[
−7

5

]
.

Solution. This is the same linear system as Example 1.4, and there we found the solution (x1, x2) =
(1, 3). By (1.4) the inverse of A is given by

A−1 =

[
2 3
1 2

]
.

Applying this to Ax = b to solve for x, we get

x = A−1b =

[
2 3
1 2

] [
−7

5

]
=

[
−14 + 15
−7 + 10

]
=

[
1
3

]
. �

Proposition 1.42

If A is an n × n matrix and B,C are both inverses of A, then B = C; that is, inverses are
unique.

Proof. By definition, we know both AB = In = BA and AC = In = CA, so

B = InB = (CA)B = C(AB) = CIn = C

as required.

There are formulas for inverting 3 × 3 and higher matrices, but in general they are too messy
to be worth remembering. Instead, let ei be the standard basis for Rn, and write the columns of
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A−1 as fi. The equation AA−1 = In is equivalent to

In =
[
e1 . . . en

]
= AA−1

= A
[
f1 · · · fn

]
=
[
Af1 · · · Afn

]
.

By equating, we want to solve the linear system Afi = ei to find the fi. We know we can do
this with the augmented matrix

[
A fi

]
, but rather than have to do this for every fi, we can do

them all simultaneously by using the augmented matrix[
A f1 f2 · · · fn

]
.

If the left portion of the augmented matrix cannot be reduces to the identity matrix, then the
matrix is not invertible.

Example 1.43

Find A−1 and use it to solve the linear system Ax = b where

A =

1 1 1
1 2 3
2 3 1

 , b =

4
9
7

 .

Solution. This is the same linear system given in Example 1.6, where we found a solution of
(x1, x2, x3) = (1, 1, 2). Setting up our augmented system and row reducing, we get 1 1 1 1 0 0

1 2 3 0 1 0
2 3 1 0 0 1

 (−1)R1+R2→R2−−−−−−−−−−→
(−2)R1+R3→R3

 1 1 1 1 0 0
0 1 2 −1 1 0
0 1 −1 −2 0 1


(−1)R2+R3→R3−−−−−−−−−−→

 1 1 1 1 0 0
0 1 2 −1 1 0
0 0 −3 −1 −1 1

 (−1/3)R3→R3−−−−−−−−−→

 1 1 1 1 0 0
0 1 2 −1 1 0
0 0 1 1/3 1/3 −1/3


(−2)R3+R2→R2−−−−−−−−−−→
(−1)R3+R1→R1

 1 1 0 2/3 1/3 1/3
0 1 0 −5/3 1/3 2/3
0 0 1 1/3 1/3 −1/3

 (−1)R2+R1→R1−−−−−−−−−−→

 1 0 0 7/3 −2/3 −1/3
0 1 0 −5/3 1/3 2/3
0 0 1 1/3 1/3 −1/3


For simplicity, we factor out the 1/3 term and write

A−1 =
1

3

 7 −2 −1
−5 1 2

1 1 −1

 .
We can then solve the linear system as

x = A−1b =
1

3

 7 −2 −1
−5 1 2

1 1 −1

4
9
7

 =
1

3

 28− 18− 7
−20 + 9 + 14

4 + 9− 7

 =

1
1
2

 ,
which agrees with what we found earlier. �
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Example 1.43 was significantly more difficult than Example 1.6 where we just used row reduc-
tion. Why then would we ever want to compute the inverse? The problem with row redact is that,
were to to change the constants in b, we would have to do the entire row reduction over again. On
the other hand, computing the inverse is a one-time thing. Once you have it, you can very quickly
solve Ax = b for any b. So it depends on whether you need to solve Ax = b for many different b.

Theorem 1.44

Suppose that each Ai is an invertible n× n matrix.

1. (A−1)−1 = A

2. (A1A2 · · ·Ak)−1 = A−1k · · ·A−12 A−11

3. (Ak)−1 = (A−1)k for all k

4. (cA)−1 = (1/c)A−1 for c 6= 0

5. A invertible if and only if AT invertible.

6. (A−1)T = (AT )−1.

There are a few ways to tell whether a matrix is invertible (and this list will grow with time):

Theorem 1.45

Let A be an n× n matrix. The following are equivalent:

1. A is invertible,

2. There is a matrix B such that AB =
BA = In,

3. The system Ax = 0 has only the trivial
solution,

4. The system Ax = b has a unique solu-
tion,

5. The rank of A is n,

6. The reduced row echelon form of A is
In.

Remark 1.46

1. Computing inverses using Gaussian elimination is actually a very bad way of com-
puting inverses. Modern computers use more sophisticated techniques to compute
inverse.

2. Almost every n×n matrix is invertible. What I mean by this is that if you created an
n×n matrix by randomly choosing the entries, it would be mathematically impossible
for you to create a non-invertible matrix. The word ‘random’ here is important though.
Certainly we can construct non-invertible matrices if we are allowed to choose the
entries within the matrix.
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2 Complex Numbers

Example 1.47

Suppose that

A =

1 1 1
1 2 3
2 3 1

 , A−1 =
1

3

 7 −2 −1
−5 1 2

1 1 −1

 , D =

1 0 0
0 2 0
0 0 3

 .
If B = ADA−1, compute B−1 and B2 +B.

Solution. Using brute force, you could explicitly compute B, then apply our algorithm above for
computing the inverse, but this is a lot of work. Using our properties of inversion, we can simplify
the process. For example,

B−1 = (ADA−1)−1 = (A−1)−1D−1A−1 = AD−1A−1.

Since D is a diagonal matrix, its inverse is just the reciprocal of the diagonal entries, so

B−1 = AD−1A−1 =
1

3

1 1 1
1 2 3
2 3 1

1 0 0
0 1/2 0
0 0 1/3

 7 −2 −1
−5 1 2

1 1 −1


=

1

3

1 1/2 1/3
1 1 1
2 3/2 1/3

 7 −2 −1
−5 1 2

1 1 −1

 =
1

18

 6 3 2
6 6 6

12 9 2

 7 −2 −1
−5 1 2

1 1 −1


=

1

18

29 −7 −2
18 0 0
41 −13 4

 .
Similarly, note that

B2 = (ADA−1)2 = (ADA−1)(ADA−1) = AD2A−1

with D2 computed easily as the square of the elements on the diagonal. Thus

B2 +B = AD2A−1 +ADA−1 = A(D2 +D)A−1,

which can be computed as

B2 +B =
1

3

1 1 1
1 2 3
2 3 1

2 0 0
0 6 0
0 0 12

 7 −2 −1
−5 1 2

1 1 −1

 =
1

3

 −4 14 −2
−10 44 −14
−50 22 20

 . �

2 Complex Numbers

For various reasons which I will enumerate below, it is useful to introduce a new number which
squares to negative one. We define the imaginary number i formally as the number which satisfies
i2 = −1. This is called imaginary because no real number satisfies this property. It is worth noting
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2 Complex Numbers 2.1 Properties of the Complex Numbers

that this number shows up very often in real life applications, and should not be construed as
something make believe construct of mathematicians. Note that this allows us to take the square
root of any negative number, since if c ∈ R then (ci)2 = c2i2 = −c2.

The complex numbers, denoted C, are the collection of all numbers of the form z = a + bi for
a, b ∈ R. Here we say that a is the real part of z, denoted <(z), while b is the imaginary part,
denoted =(z). These can be visualized in the complex plane, by identifying a+ bi with (a, b).

R

iR

1

1

2

2

3

3

4

4 z = 3 + 4i

|z|

Figure 3: Visualizing C as a plane. Every element a+ bi is identified with (a, b), so that the x-axis
is known as the real axis, and the y-axis is known as the imaginary axis.

2.1 Properties of the Complex Numbers

The addition of two complex numbers is done by combining the real and imaginary components
separately. For example, if z = a+ bi and w = c+ di then

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

It’s not too hard to see that z + w = w + z and z + 0 = z.

We define the product of two complex numbers by demanding that multiplication be distributive
across addition, just like in the real numbers. For example, if z = a+ bi and w = c+ di then

zw = (a+ bi)(c+ di)

= ac+ adi+ bci+ bdi2

= (ac− bd) + (ad+ bc)i,

which is again of the form (real) + (real)i. In fact, since i2 = −1, any complex number can be
reduced to the above form. You can check that multiplication is commutative; that is, zw = wz.
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2.1 Properties of the Complex Numbers 2 Complex Numbers

Example 2.1

Let u = 3− 2i and v = −7 + 3i. Compute

1. u− iv,

2. uv,

3. u2 − v2.

Solution. In every case, we write everything as a+ bi to take advantage

1. Note that iv = i(−7 + 3i) = −7i+ 3i2 = −3− 7i, so

u− iv = (3− 2i)− (−3− 7i) = 6 + 5i.

2. Applying our formula from above

uv = (3− 2i)(−7 + 3i) = [(3)(−7)− (−2)(3)] + [(−2)(−7) + (3)(3)] i = −15− 5i.

3. We begin by computing each of u2 and v2 separately:

u2 = (3− 2i)(3− 2i) = 5− 12i

v2 = (−7 + 3i)(−7 + 3i) = 40− 42i.

Now these can be added to yield

u2 − v2 = (5− 12i)− (40− 42i) = −35 + 30i. �

If z = a + bi we define the complex conjugate z̄ = a − bi. The conjugate plays together nicely
with z, since

zz̄ = (a+ bi)(a− bi) = a2 + b2,

which is always a real number. From this we define the modulus of z, as |z| =
√
zz̄. The geometric

interpretation of the modulus is the length of the vector (a, b). This can be seen in Figure 3.

Example 2.2

If z = 3 + 4i, determine |z|.

Solution. Multiplying by the conjugate z̄ = 3− 4i or applying the formula for zz̄, we get

zz̄ = 32 + 42 = 25.

The modulus is the square root of this, so |z| = 5. �
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2 Complex Numbers 2.1 Properties of the Complex Numbers

Remark 2.3 You must be very careful when applying familiar operations on complex
numbers. For example, we defined the modulus of z to be |z| =

√
zz̄; however, this is not

the same thing as
√
z
√
z̄. The fact that

√
ab =

√
a
√
b only holds if a, b ∈ R. If we assumed

that this identity did hold, then

(−1)(−1) = 1 ⇒
√

(−1)(−1) = 1
Wrong⇒

√
−1
√
−1 = 1 ⇒ i2 = 1

But i2 = −1, so this cannot be true.

The fact that i2 = −1 means that 1/i = −i. More generally, we can use the conjugate to help
us determine 1/(a+ bi). If z = a+ bi then

1

z
=

1

z

z̄

z̄
=

z̄

|z|2 ⇒ 1

a+ bi
=

a− bi
a2 + b2

=
a

a2 + b2
− b

a2 + b2
i,

which is in standard form.

Example 2.4

If z = 1− 2i and w = 3 + i, determine w/z and write it in standard form.

Solution. To compute 1/z we apply the above formula or recompute from scratch:

1

z
=

1

1− 2i
=

1 + 2i

5
=

1

5
+

2

5
i.

Multiplying by w gives

w

z
=

1

5
(3 + i)(1 + 2i) =

1

5
[(3− 2) + (6 + 1)i] =

1

5
+

7

5
i. �

Proposition 2.5

If z, w ∈ C, then

1. z ± w = z ± w,

2. zw = z w,

3. z−1 = z−1,

4. z̄ = z

5. |zw| = |z||w|

6. |z−1| = |z|−1.

7. |z + w| ≤ |z|+ |w|

Proof. I’ll give the proof for (2), and leave the rest as an exercise for you to check. Let z = a+ bi
and w = c+ di. The left hand side of zw = zw gives

zw = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i = (ac− bd)− (ad+ bc)i.

The right hand side gives

z w = (a+ bi)(c+ di) = (a− bi)(c− di) = (ac− bd)− (ad+ bc)i.

Both sides are equal, so zw = zw as required.
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As a bonus, there is a way of identifying the complex numbers with matrices in such a way that
matrix multiplication is the same as complex multiplication. If z = a+ bi then let Z be the matrix

Z =

[
a −b
b a

]
.

Addition of matrices is done component wise, so certainly agrees with complex addition. For
example, if w = c+ di then

Z +W =

[
a −b
b a

]
+

[
c −d
d c

]
=

[
a+ c −(b+ d)
b+ d a+ c

]
which agrees with the matrix for z + w = (a+ c) + (b+ d)i. The more interesting fact is that this
also preserves complex multiplication:

ZW =

[
a −b
b a

] [
c −d
d c

]
=

[
ac− bd −(ad+ bc)
ad+ bc ac− bd

]
which corresponds to the matrix for zw = (ac− bd) + (ad+ bc)i. This is one of the ways in which
computers do computations with complex numbers.

2.2 Some Motivation

Why are complex numbers useful? As mentioned above, they appear naturally in many fields of
study, but let’s motivative them using polynomials. We know that some polynomials do not have
roots. For example, x2 + 1 6= 0 for any x ∈ R. More generally, the polynomial

ax2 + bx+ c

has a real root if and only if b2−4ac ≥ 0, which follows from the quadratic formula. Viewed another
way, every polynomial with real coefficients can be factored into at worst linear and quadratic
factors. We have to allow quadratics precisely because of terms like x2 + 1 which cannot be
factored into linear terms.

However, when we allow ourselves to work over C instead of R, every quadratic polynomial
has a root, and every polynomial can be factored into a product of linear terms. Indeed, by the
quadratic formula, the roots of ax2 + bx+ c are given by

−b±
√
b2 − 4ac

2a
.

When b2 − 4ac ≥ 0 we get our normal roots, but when b2 − 4ac < 0 we are taking the square root
of a negative number, which is resolved using complex numbers:

ax2 + bx+ c =

(
x− −b+ i

√
4ac− b2

2a︸ ︷︷ ︸
∈C

)(
x− −b− i

√
4ac− b2

2a︸ ︷︷ ︸
∈C

)
.
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Theorem 2.6: The Fundamental Theorem of Algebra

If p is any polynomial with coefficients in C, then p has a root. Inductively, p can thus be
written as a product of linear factors.

When our polynomial has real coefficients, something else can be said.

Theorem 2.7

Suppose that p is a polynomial with real coefficients. If z is a root of p, then z̄ is a root of p.

Proof. Suppose that p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0. By assumption, p(z) = 0; that is,

0 = p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0.

Taking complex conjugates gives

0 = p(z) = anzn + an−1zn−1 + · · ·+ a1z + a0

= anz̄
n + an−1z̄

n−1 + · · ·+ a1z̄ + a0

= anz
n + an−1z

n−1 + · · ·+ a1z + a0 since ai ∈ R
= p(z̄).

Since p(z̄) = 0, this shows that z̄ is also a root of p.

The fact that every polynomial over C can be factor into linear terms has a special property. We
say that C is an algebraically closed field. Algebraically closed fields are exceptionally important in
mathematics.

2.3 The Polar Form

There is a second way of parameterizing complex numbers which is often far more useful than the
standard form above. We saw that z = a + bi could be identified with the point (a, b) ∈ R2 by
thinking of (a, b) in Cartesian coordinates. However, there is another coordinate system on R2,
called polar coordinates, which assigns to a point the value (r, θ), where r is the distance from the
origin to the point, and θ is the angle subtended by the line through the origin and the positive x
axis. This is shown in Figure 4.

The conversion between Cartesian and polar coordinates is as follows. If (x, y) is a point in
Cartesian coordinates, then

r =
√
x2 + y2, θ = arctan(y/x).

If (r, θ) is a point in polar coordinates, then

x = r cos(θ), y = r sin(θ).
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2.3 The Polar Form 2 Complex Numbers

R

iR

z = (x, y)
= (r, θ)
= reiθ

y

x

r

θ

x = cos(θ)

y
=

sin
(θ)

Figure 4: A point the complex plane can be thought of in polar coordinates rather than Cartesian
coordinates. In that case, the relation eiθ = cos(θ) + i sin(θ) can be used to express the coordinate
(r, θ) as reiθ.

There is a nice relationship between the two. If you have not yet seen the topic of Taylor series,
ignore this next part and just read Equation (2.1). The Taylor series of the exponential function
ex about 0 is given by

ex =
∞∑
k=0

xk

k!

with interval of convergence R. There is some hand waving as why we can plug in complex numbers,
but suppose we substitute x = iθ. Notice that

i0 = 1, i1 = i, i2 = −1, i3 = −i,

after which the cycle repeats. This means that even powers of i are real and odd powers are
complex, so

eiθ =
∞∑
k=0

(iθ)k

k!
=
∞∑
m=0

(iθ)2m

(2m)!︸ ︷︷ ︸
even powers

+
∞∑
n=0

(iθ)2n+1

(2n+ 1)!︸ ︷︷ ︸
odd powers

=

[ ∞∑
m=0

(−1)mθ2m

(2m)!

]
+ i

[ ∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!

]
= cos(θ) + i sin(θ).

Hence for any θ ∈ R, we have
eiθ = cos(θ) + i sin(θ). (2.1)

This is an extraordinary identity: Who would ever suspect that the exponential and trigonometric
functions would be related? For our purposes though, suppose z ∈ C with Cartesian coordinates
z = x+ iy and polar coordinates (r, θ), so that

z = x+ iy = r cos(θ) + ir sin(θ) = r(cos(θ) + i sin(θ)) = reiθ.
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2 Complex Numbers 2.3 The Polar Form

Writing z = reiθ is the polar representation of a complex number.

Example 2.8

Write z = 2 + 2i in polar form.

Solution. Here the distance from the origin 0 to z is the modulus of z, which we compute to be

|z| =
√
zz̄ =

√
22 + 22 =

√
8 = 2

√
2.

The angle subtended by this line with the positive real axis is

θ = arctan(2/2) = arctan(1) =
π

4
.

Hence the polar representation of z is z = 2
√

2eiπ/4. �

The great thing about polar form is that the rules for the exponent still hold.

Theorem 2.9

If z = reiθ and w = seiψ are complex numbers, then zw = rsei(θ+ψ).

Corollary 2.10: De Moivre’s Theorem

If n ∈ Z and z = reiθ then zn = rneinθ.

Example 2.11

Suppose that z = 2 + 2
√

3i. Determine z12.

Solution. This would be terrible using the Cartesian representation of z, so we first convert this to
polar coordinates. Note that

r = |z| =
√

4 + 12 =
√

16 = 4,

while

θ = arctan

(
2
√

3

2

)
= arctan(

√
3) =

π

3
.

Thus we can write z as z = 4eiπ/3. Taking the 12th power thus gives

z12 = r12e12iθ = 412e12π/3 = 412e4π = 412 (cos(4π) + i sin(4π)) = 412. �

We can reverse De Moivre’s Theorem to find nth roots as well.

Example 2.12

Find all solutions to z5 = 1 over C.
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Solution. Over the real numbers, there is only one solution, z = 1. Over the complex numbers
however, there are five solutions. If w = reiθ is a solution to z5 = 1 then

1 = 1e0 = w5 = r5e5iθ.

Immediately, we must have that r5 = 1 so r = 1. On the other hand, we want to say that 5θ = 2π,
so that θ = π/5, but this would only give us a single solution, and we know there should be 5. The
key lies in the fact that if 5θ = 4π we get the same result, or similarly if 5θ = 6π. If we’re trying
to solve kθ = 2nπ, then we’ll get unique values for θ until k = n, in which case we’ll start the cycle
over again. In this case, we get

θ = 0,
2π

5
,

4π

5
,

6π

5
,

8π

5
.

Note that the next value, 10π/5 = 2π, is the same answer as θ = 0. After this point, all answers
begin to repeat themselves and so are rejected. Thus our solutions are

w0 = 1, w1 = e2πi/5, w2 = e4πi/5, w3 = e6πi/5, w4 = e8π8/5

shown in Figure 5. �

R

iR

w0

w1

w2

w3

w4

Figure 5: The 5th roots of unity. Notice how they form a regular pentagon.

In general, the solutions to zn = 1 are called the nth roots of unity, and are of the form

ζk,n = e2πik/n, k = 0, 1, . . . , n.

When plotted in the complex plane, they will always form a regular n-gon. We can use the nth
roots of unity to find the solutions to zn = a for any positive real number a. In that case, the
solutions will all be of the form n

√
aζk,n for k = 0, 1, . . . , n.

Example 2.13

Find all complex roots to the equation z6 = −64.
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3 Determinants

Solution. Suppose z = reiθ for r and θ yet to be determined. We can write −64 = 64eiπ, so that
using de Moivre’s theorem we get r6e6iθ = 64eiπ. We immediately know that r6 = 64 implies that
r = 2, leaving only the values of θ. As with Example 2.12, we know that 6θ = π+2nπ = (2n+1)π,
which gives use the values

θ =
π

6
,

3π

6
,

5π

6
,

7π

6
,

9π

6
,

11π

6
.

The next value 13π/6 gives the same answer as π/6, so we reject it and all further answers. Thus
our solutions are

z = 2ei(2k+1)π/6, for k = 0, 1, 2, 3, 4, 5. �

3 Determinants

In this section we analyze the determinant of a matrix. Very loosely, the determinant is map which
assigns to each matrix a real-number. The value of this real number has several interpretations.
Sometimes we care about the magnitude of this number, sometimes the sign, and sometimes we are
only interested in whether the number is non-zero. For example, the determinant will give us a way
of determining whether a matrix is invertible, without having to explicitly compute the inverse.

Unfortunately, most of the ways of writing down the determinant are quite complicated. The
definitions which are theoretically useful are poor for computation, and the definitions which are
useful for computation are poor theoretically. Even those which are computationally valuable turn
out to be egregiously intensive.

3.1 Definition

As mentioned above, the determinant map which assigns to each matrix a real number. The
definition we will use for the determinant will be by cofactor expansion, alternatively known as the
Laplace extension. To begin with, if A = [a] is a 1× 1 matrix then its determinant is det(A) = a.
If A is a 2× 2 matrix, its determinant is defined to be

det(A) = det

[
a11 a12
a21 a22

]
= a11a22 − a12a21,

the product of the diagonal minus the product of the anti-diagonal. The 3× 3 case is far trickier.
I will write it down, then comment on precisely how it is calculated. Let

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,
for which

det(A) = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31. (3.1)

This looks esoteric and arbitrary, but there is a method to the madness.
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3.1 Definition 3 Determinants

Definition 3.1

Let A be an n × n matrix. For any 1 ≤ i, j ≤ n, the (i, j)-submatrix of A, denoted Mij , is
the (n− 1)× (n− 1) matrix formed by deleting the i-th row and j-th column from A. The
(i, j)-cofactor of A, denoted Cij , is Cij = (−1)i+j det(Mij).

Example 3.2

Determine the (1, 3)- and (2, 3)-cofactor of A =

1 4 −2
3 −1 0
0 1 1

 .

Solution. The (1, 3)-cofactor is C13 = (−1)1+3 det(M13) = det(M13) where M13 is the submatrix
formed by deleting the first row and third column of A, hence

C13 = det

[
3 −1
0 1

]
= (3× 1)− (−1× 0) = 3.

Similarly, the (2, 3)-cofactor is C23 = (−1)2+3 det(M23) = −det(M23), so

C23 = −det

[
1 4
0 1

]
= − [(1× 1)− (4× 0)] = −1. �

Notice that we can write (3.1) as

det(A) = a11 (a22a33 − a23a32)− a12 (a21a33 − a23a32) + a13(a21a32 − a22a31)

= a11 det

[
a22 a23
a32 a33

]
+ a21(−1) det

[
a12 a13
a32 a33

]
+ a13 det

[
a21 a22
a31 a32

]
= a11C11 + a12C12 + a13C13.

That is, the determinant of the 3 × 3-matrix was a weighted sum of the cofactors along the first
row of the matrix! We certainly do not expect the student to have guessed that this was the case.
Instead, this is what we will actually use for the definition. An important point however, is that
there is nothing special about the first row. We could use any other row or column. For example,
the student can check that

det(A) = a12C12 + a22C22 + a23C23

yields exactly the same formula as (3.1), where now we have done a weighted sum of cofactors along
the first column.

Definition 3.3

If A is an n×n matrix, then the determinant of A is the weighted sum of the cofactors along
any row or column. For example, along the i-th row or j-th column:

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin = a1jC1j + a2jC2j + · · ·+ anjCnj .

There is absolutely no reason that the student should believe that this quantity is invariant
regardless of the choice of row or column. The proof of this fact is horrific using the definition that
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we have given, but the nice proof requires a more abstract and technical definition – an example
of what I call ‘conservation of mathematical work.’

Example 3.4

Compute det

1 4 −2
3 −1 0
0 1 1

 .

Solution. Since we have already computed the cofactors C13 and C23, it makes most sense to
perform our cofactor expansion along the third column. To do this we need to determine C33,
which computation yields

C33 = (−1)3+3 det(M33) = det

[
1 4
3 −1

]
= −1− 12 = −13.

Putting this all together, we get

det(A) = a13C13 + a23C23 + a33C33 = (−2 · 3) + (0 · −1) + (1×−13) = −19. �

Notice how the presence of a zero in the (2, 3)-position made our lives easier? As a general rule,
if computing the derivative via cofactor expansion, it makes the most sense to expand along the
row/column which contains the most zeroes. In fact, if a matrix has a row or column consisting
entirely of zeroes, cofactor expansion along that row/column will always yield a determinant of 0.

Example 3.5

Compute the determinant of A =

1 2 3
0 −1 −2
2 2 2

.

Solution. Expanding over the first column (since it has the most zeroes), we get

det(A) = (−1)1+1(1) det

[
−1 −1

2 2

]
+ (−1)1+2(0) det

[
2 3
2 2

]
+ (−1)1+3(2) det

[
2 3
−1 −2

]
= [(−2)− (−2)] + 2 [(−4)− (−3)]

= −2.

Let’s see that this answer is actually the same as if we expanded across the second row instead.
Here we would get

det(A) = (−1)2+1(0) det

[
2 3
2 2

]
+ (−1)2+2 det

[
1 3
2 2

]
+ (−1)2+3 det

[
1 2
2 2

]
= [(2)− (6)]− [(2)− (4)]

= −2. �
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Exercise: Compute the determinant of the matrix given in Example 3.5 by expanding along
any other row or column, and check to make sure that you got the same answer as computed
above.

The presence of many zeroes can make computing the determinant exceptionally simple:

Definition 3.6

A matrix A = (aij) is said to be upper triangular if aij = 0 whenever i > j.

Stare at this definition for a second to make sense of what it means. A matrix is upper triangular
when all of its non-zero entries occur on or above the diagonal. For example, the matrix

1 −1 4 5
0 3 0 2
0 0 −5 9
0 0 0 1


is upper triangular.

Theorem 3.7

If A = (aij) is upper triangular, then det(A) = a11a22 · · · a33; the product of the diagonal
elements.

Proof. Let’s proceed by induction on the dimension of the matrix. In the 2× 2 case we have

det

[
a11 a12

0 a22

]
= a11a22

as required. Now assume that for an (n− 1)× (n− 1) upper triangular matrix, the determinant is
the product of the diagonal entries. If A is an n× n upper triangular matrix, it looks like

A =

[
a11 ∗

0 M11

]
where M11 is the (1, 1)-submatrix of A, which has dimension (n − 1) × (n − 1). Take the de-
terminant along the first column, we see that the only non-zero term will come from a11, so
det(A) = a11 det(M11). By the induction hypothesis, det(M11) is the product of its diagonal
components, so

det(A) = a11a22 · · · ann
as required.

So for the example given above, the determinant can be read off as

det


1 −1 4 5
0 3 0 2
0 0 −5 9
0 0 0 1

 = (1)(3)(−5)(1) = −15.
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Corollary 3.8

If In is the n× n identity matrix, then det(In) = 1.

3.2 Properties of the Determinant

Dealing with determinants can be a big pain, so we would like to develop some tools to make our
lives a little bit easier. The most useful tool will be the following:

Theorem 3.9

If A,B are two n× n matrices, then det(AB) = det(A) det(B).

Notice the curious fact that the determinant does not care about the order of multiplication,
since the product on the right-hand side det(A) det(B) = det(B) det(A) is an operation in R. We
omit the proof of this theorem, but let us compute a few examples to check its veracity.

Example 3.10

Let A =

[
1 5
2 3

]
and B =

[
−1 1

5 −2

]
. Determine det(A), det(B), det(AB), and det(BA).

Solution. Straightforward computation yields

det(A) = −7, det(B) = −3.

The product matrices are

AB =

[
1 5
2 3

] [
−1 1

5 −2

]
=

[
24 −9
13 −4

]
, det(AB) = (−96 + 117) = 21 = det(A) det(B),

BA =

[
−1 1

5 −2

] [
1 5
2 3

]
=

[
1 −2
1 19

]
, det(BA) = 19 + 2 = 21 = det(A) det(B). �

Note however that the determinant is not additive; that is, det(A + B) 6= det(A) + det(B).
Indeed, almost any pair of matrices will break this. A simple example is to takeA = I2 andB = −I2.
Then A+B is the zero matrix, so det(A+B) = 0. On the other hand, det(A)+det(B) = 1+1 = 2.

Exercise: Show that det(AB) = det(A) det(B) explicitly in the 2× 2 case.

Corollary 3.11

If A is an invertible n× n matrix, then det(A−1) = 1/det(A).
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Proof. We know thatAA−1 = In, so applying the determinant we have det(AA−1) = det(A) det(A−1) =
det(In) = 1. Isolating for det(A−1) we get

det(A−1) =
1

det(A)

as required.

Example 3.12

Let A be an invertible matrix such that A3 = A. Show that det(A)2 = det(A).

Solution. Knowing that A3 = A we can apply the determinant to find det(A) = det(A3) = det(A)3.
Subtracting det(A) from both sides we get

0 = det(A)3 − det(A) = det(A) [det(A) + 1)] [det(A)− 1] .

This can only be true if det(A) = ±1 or det(A) = 0, and in either case det(A)2 = det(A). �

Proposition 3.13

If A is an n× n matrix, then det(A) = det(AT )

The proof of this follows by induction, but we have already done an induction proof today, and
that is more than enough!

3.2.1 Quick Aside: Elementary Row Matrices

Recall that there are three operations that we can perform on rows, without changing the row
space:

1. We can multiply a row by a non-zero constant,

2. We can interchange two rows,

3. We can add a multiple of one row to another row.

Each of these operations can be represented by left-multiplication with a matrix. To illustrate

what these matrices are, consider the 2× 2 case. Let A =

[
a b
c d

]
. Multiplying the second row by

the number r corresponds to left-multiplication by the matrix

[
1 0
0 r

]
, since

[
1 0
0 r

] [
a b
c d

]
=

[
a b
rc rd

]
.
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Interchanging two rows corresponds to multiplying by the matrix

[
0 1
1 0

]
, since

[
0 1
1 0

] [
a b
c d

]
=

[
c d
a b

]
.

Finally, adding r times the first row to the second row is given by

[
1 0
r 1

]
since

[
1 0
r 1

] [
a b
c d

]
=

[
a b

ra+ c rb+ d

]
.

We can use these to determine how a matrix transforms under elementary row operations:

Theorem 3.14

If A is an n× n matrix, then

1. If we scale a row by r 6= 0, the corresponding matrix has determinant r det(A),

2. If we interchange any two rows, the corresponding matrix has determinant −det(A),

3. If we add a multiple of one row to another, the corresponding matrix has determinant
det(A).

Proof. In the 2× 2 case, we have

det

[
1 0
0 r

]
= r, det

[
0 1
1 0

]
= −1, det

[
1 0
r 1

]
= 1.

Using the fact that det(AB) = det(A) det(B), the result follows. For higher dimensions, these
determinant relations are still the same, concluding the proof.

One may have noticed how laborious it is to compute the determinants of general matrices.
Theorem 3.14 tells us that we can reduce the amount of work by using elementary row opera-
tions to first reduce the matrix into row echelon form (which is upper triangular), then apply the
determinant to the resulting upper triangular matrix. This makes for much less work!

Example 3.15

Compute det


1 3 3 −4
0 1 2 −5
2 5 4 −3
−3 −7 −5 2

.
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Solution. Reducing to row echelon form, we have
1 3 3 −4
0 1 2 −5
2 5 4 −3
−3 −7 −5 2

 −2R1+R2→R2
3R1+R3→R3−−−−−−−−−→


1 3 3 −4
0 1 2 −5
0 −1 −2 5
0 −2 −4 −10


R2+R3→R3−−−−−−−→


1 3 3 −4
0 1 2 −5
0 0 0 0
0 −2 −4 −10


Since we have a row of zeros, we can immediately conclude that the determinant is 0. �

This hints at something: We know that if a matrix is not invertible, we will eventually get
a row/column with all zeroes in it. This would suggest that we can use the determinant to say
something about invertibility.

Corollary 3.16

A square matrix A is invertible if and only if det(A) 6= 0.

Proof. A matrix A is invertible if and only if, using only row operations, A can be manipulated
to reduced row echelon form, say Ã with 1’s on the main diagonal. We know det(Ã) = 1, and in
the process of changing Ã back to A we can only change signs and multiply by non-zero constants,
showing that det(A) cannot be zero.

3.3 Determinants and Volume

Determinants have a plethora of applications, the majority of which are beyond the scope of this
course. The next section (eigenvalues) presents an important application and we will dedicate a
great deal of time to its study. For now, we take a look at an important property of determinants
that will manifest in the study of multivariate calculus.

The idea is as follows: A linear transformation T : Rn → Rn effectively acts by scaling and
rotating vectors. If this is the case, how do volumes transform under T?

For example, let 0 ≤ θ < 2π be an angle, and consider the linear transformation T : R2 → R2

given by

Tx =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x1
x2

]
.

This rotates a vector by an angle of θ with respect to the x-axis. We do not expect rotation to
affect volume. Notice that detT = cos2(θ) + sin2(θ) = 1.

For example, let a, b 6= 0, and consider the transformation T : R2 → R2 given by

Tx =

[
a 0
0 b

] [
x1
x2

]
.
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x

y

x

Tx

θ

Figure 6: The transformation for a rotation of an angle θ.

x

y

(1, 0)

(0, 1)

T

x

y

(a, 0)

(0, b)

Figure 7: How the unit square transforms under a scaling transformation.
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This does not rotate, but instead scales vectors. For example, look at the unit square formed from
the vectors (1, 0) and (0, 1), which has area 1. Under this transformation, those vectors become
(a, 0) and (0, b), and the resulting square has area ab. Notice that detT = ab.

Similarly, if T : R2 → R2 is given by

Tx =

[
1 0
0 0

] [
x1
x2

]
then one of the vectors ’collapses.’ For example, squares get mapped to lines. Generally, any two
dimensional object with area will be mapped to a one dimensional object without area. Notice that
detT = 0.

In each of the examples above, the determinant was precisely the amount by which the area of
each object scaled. In fact, the following theorem is true:

Theorem 3.17

If C ⊆ Rn has finite volume and T : Rn → Rn is a linear transformation, then the volume of
the transformed shape T (C) satisfies

Vol(T (C)) = |detT |Vol(C).

The proof of this theorem is rather technical and not very enlightening, even in the most simple
of cases, hence it is omitted.

Example 3.18

Find the volume of the ellipsoid, centered at the origin, whose x-intercept occurs at ±a,
y-intercept occurs at ±b, and z-intercept occurs at ±c.

Solution. The trick here is recognizing how to form the ellipse as the image of a linear transforma-
tion. In essence, an ellipse is just a slightly deformed sphere. Since the sphere intercepts each of
the x-,y-, and z-axes at ±1, the transformation that maps the sphere to the ellipsoid is just

T =

a 0 0
0 b 0
0 0 c

 .
We have detT = abc, and the volume of the sphere is 4

3π, so the volume of the ellipsoid 4
3π| detT | =

4
3π|abc|. �

Aside: The relation to calculus comes through ‘substitution.’ If y = f(x) then when we make
substitutions we write dy = f ′(x)dx. In a sense, the dx and dy components represent vectors, and
the f ′(x) is telling us how the length of the vectors change. When dealing with multiple variables,
we are often interested in looking at things like dudv, where dudv is now the area of a small
square. If (u, v) = F (x, y), then the relationship between the squares dudv and dxdy is given by
dudv = |det dF |dxdy.
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3.4 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are one of the most important applications of linear algebra, since
there is a sense in which a matrix is effectively determined by these values. The word ‘eigen’ comes
from the German word ’own,’ as in, belong to. The majority of the world uses the word eigenvalues,
but it is worth noting that the French write ’values propre,’ with propre again being the French
word for ’belong to.’

Definition 3.19

Let A be an n × n matrix. A (real) eigenvalue of A is a λ ∈ R such that there exists a
non-zero vector vλ satisfying

Avλ = λvλ.

In such an instance, we say that vλ is an eigenvector of A corresponding to the eigenvalue
λ.

For example, one can check that [
2 −4
−1 −1

] [
1
1

]
= −2

[
1
1

]
,

so λ = −2 is an eigenvalue of this matrix, with associated eigenvector
[
1 1

]T
. Notice if we

substitute
[
2 2

]T
we would get[

2 −4
−1 −1

] [
2
2

]
=

[
−4
−4

]
= −2

[
2
2

]
,

so that (2, 2) is also an eigenvector, with the same eigenvalue. Interesting! We will see why this is
the case in Proposition 3.23 below.

So how do we find eigenvalues and eigenvectors? Recognize that we can re-write Avλ = λvλ as
(A − λI)vλ = 0. In particular, we are asking that the matrix (A − λI) send a non-zero vector vλ
to the zero vector. This can only happen if (A− λI) is not invertible; that is, if det(A− λI) = 0.
Computing cA(λ) = det(A − λI) will result in a polynomial in the variable λ, known as the
characteristic polynomial. If we can find the roots of this polynomial, we will have the eigenvalues.
Moreover, once we know λ, we know that vλ is a non-trivial solution to (A− λI)vλ = 0. In effect,
we’ve proven the following:

Theorem 3.20

Suppose A is an n× n matrix.

1. The eigenvalues of λ are precisely the roots of the characteristic polynomial cA(λ) =
det(A− λI)

2. Given a value of λ, its corresponding eigenvectors are the non-trivial basic solutions to
the homogeneous system (A− λI)x = 0.

So let’s compute the determinant of A − λI and see what we get. If A =

[
2 −4
−1 −1

]
as above
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then

0 = det(A− λI) = det

[
2− λ −4
−1 −1− λ

]
= (2− λ)(−1− λ)− 4 = λ2 − λ− 6

= (λ− 3)(λ+ 2).

which is zero when λ = 3 and λ = −2. We already knew that λ = −2 via the example above, but
now we see that there is another eigenvalue at λ = 3. Let’s compute the eigenvector associated to
λ = 3. We know that (A− 3I)v3 = 0, so if v3 = (v1, v2)

T we get

(A− 3I)v3 =

[
−1 −4
−1 −4

] [
v1
v2

]
=

[
−v1 − 4v2
−v1 − 4v2

]
=

[
0
0

]
.

Both equations give the same information, so just looking at one of them we have v1 = −4v2. This
means that any vector which looks like [

−4v2
v2

]
=

[
−4
−1

]
v2

will be an eigenvector for λ = 3. A simple choice might be to set v2 = 1, so that v3 =

[
−4

1

]
. The

keen student can check that [
2 −4
−1 −1

] [
−4

1

]
= 3

[
−4

1

]
.

Note that sometimes eigenvalues might not exist, for example, if we try to compute that eigen-

values of the matrix A =

[
0 1
−1 0

]
we get

det(A− λI) = det

[
−λ 1
−1 −λ

]
= λ2 + 1

which has no roots.

Proposition 3.21

A matrix A is invertible if and only if zero is not one of its eigenvalues.

Proof. If 0 is an eigenvalue, then det(A − λI) = det(A) = 0, showing that A is not invertible.
Similarly, if A is not invertible, det(A) = det(A− 0 · I) = 0 showing that 0 is an eigenvalue.

Example 3.22

Compute the eigenvalues and eigenvectors for the 3× 3 matrix

A =

 1 −1 0
−1 2 −1

0 −1 1

 .
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Solution. We have

det(A− λI) = det

1− λ −1 0
−1 2− λ −1

0 −1 1− λ


= (1− λ) [(2− λ)(1− λ)− 1]− (1− λ)

= (1− λ) [(2− λ)(1− λ)− 2]

= (1− λ)
[
λ2 − 3λ+ 2− 2

]
= λ(1− λ)(λ− 3).

Hence our eigenvalues are 0, 1, 3. When λ = 0 we row reduce to find 1 −1 0
−1 2 −1

0 −1 1

 R1+R2→R2−−−−−−−→

1 −1 0
0 1 −1
0 −1 1

 R2+R3→R3−−−−−−−→

1 −1 0
0 1 −1
0 0 0

 .
Hence if v = (v1, v2, v3) then v1 = v2 = v3. A nice choice is (1, 1, 1). When λ = 1 we have 0 −1 0

−1 1 −1
0 −1 0

 −R1+R3→R3
R1↔R2−−−−−−−−−→

−1 1 −1
0 −1 0
0 0 0

 .
Hence our eigenvector is (1, 0,−1). Finally, if λ = 3 then−2 −1 0

−1 −1 −1
0 −1 −2

 −2R2+R1→R1
R2↔R1−−−−−−−−−→

−1 −1 −1
0 1 2
0 −1 −2

 R2+R2→R2−−−−−−−→

−1 −1 −1
0 1 2
0 0 0


yielding an eigenvector (1,−2, 1). �

We could have chosen different eigenvectors by choosing different free parameters, but this just
corresponds to a difference by a scalar multiple. We can verify this as follows:

Proposition 3.23

If vλ is an eigenvalue for A with corresponding eigenvalue λ, then for any non-zero c ∈ R,
cvλ is also an eigenvalue for A, with the same eigenvalue.

Proof. Let c be a non-zero real number. To check if cvλ is an eigenvalue, we act on it by A to get

A(cvλ) = cAvλ

= cλvλ since Avλ = λvλ

= λ(cvλ)

exactly as required.
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This is interesting, since it effectively means that all scalar multiples of an eigenvector are
eigenvectors. This motivates us to define the following:

Definition 3.24

Let A be an n× n matrix with eigenvalue λ. We define the eigenspace of λ to be the set

Eλ = {v ∈ Rn : Av = λv} .

That is, the eigenspace of λ is the set of all eigenvalues of λ (plus the zero vector).

3.5 Diagonalization

Multiplying matrices is a lot of work, and occurs often in applications. For example, Markov
processes used in machine learning and statistics requires one to compute Akv0 for a matrix A
and a vector v0, to determine how a system evolves statistically over time. In solving differential
equations, one often has to take the matrix exponential eA, which is defined as

eA = I +A+
1

2
A2 +

1

3!
A3 + · · ·+ 1

n!
An + · · · . (3.2)

And countless more examples exist.

It is simple to exponentiate diagonal matrices, since
a1

a2
. . .

an


k

=


ak1

ak2
. . .

akn


so if we could somehow write our matrix A in terms of a diagonal, it would be easier to do these
types of computations.

Definition 3.25

We say that an n × n matrix A is diagonalizable if there exists an n × n matrix P and a
diagonal matrix D such that

A = PDP−1.

If A is diagonalizable with A = PDP−1 then

Ak = (PDP−1)k = (PDP−1)(PDP−1) · · · (PDP−1)︸ ︷︷ ︸
k-times

= PD (P−1P )︸ ︷︷ ︸
In

D (P−1P )︸ ︷︷ ︸
In

· · · (P−1P )︸ ︷︷ ︸
In

DP−1

= PDkP−1.

How do we find D and P? The condition A = PDP−1 is equivalent to AP = PD. Let x1 be
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the columns of P and D = diag(λ1, λ2, . . . , λn) so that AP = PD is equivalent to

A
[
x1 x2 · · · xn

]
=
[
x1 x2 · · · xn

]

λ1

λ2
. . .

λn


[
Ax1 Ax2 · · · Axn

]
=
[
λ1x1 λ2x2 · · · λnxn

]
.

That is, the columns of P are the eigenvectors of A, and the diagonal matrix consists of the
eigenvalues of A. Using our previous examples, we showed that

A =

[
2 −4
−1 −1

]
had eigenvalues λ = 3 and λ = −2 with eigenvectors

[
−4 1

]T
and

[
1 1

]T
respectively. We set

D = diag(3,−2) and

P =

[
−4 1

1 1

]
, P−1 =

1

5

[
−1 1

1 4

]
.

We can check that this gives us the correct diagonalization by multiplying, to get

PDP−1 =
1

5

[
−4 1

1 1

] [
3 0
0 −2

] [
−1 1

1 4

]
=

1

5

[
−4 1

1 1

] [
−3 3
−2 −8

]
=

1

5

[
10 −20
−5 −5

]
=

[
2 −4
−1 −1

]
= A

exactly as we suspected.

Theorem 3.26

A square n× n-matrix A is diagonalizable if and only if it admits n-eigenvectors v1, . . . ,vn
such that

P =
[
v1 v2 · · · vn

]
is invertible.

Example 3.27

Diagonalize the matrix

A =

 3 0 0
−3 4 9

0 0 3

 .

Solution. We first compute the eigenvalues:

det(A− λI) = det

3− λ 0 0
−3 4− λ 9

0 0 3− λ

 = (3− λ)(4− λ)(3− λ),
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using the cofactor expansion on the first row. This determinant is zero precisely when λ = 3 (with
multiplicity 2) and λ = 4. When λ = 3 our matrix becomes

0 = (A− 3I)v =

 0 0 0
−3 1 9

0 0 0

v1v2
v3

 =

 0
−3v1 + v2 + 9v3

0

 .
Let v2 = 3s and v3 = t so that v1 = s+ 3t giving solutionv1v2

v3

 =

1
3
0

 s+

3
0
1

 t.
Our eigenvectors are thus v1 =

[
1 3 0

]T
and v2 =

[
3 0 1

]T
. For λ = 4 we get

0 = (A− 4I)v =

−1 0 0
−3 0 9

0 0 −1

v1v2
v3

 =

 −v1
−3v1 + 9v3
−v3


showing that v1 = v3 = 0 and allowing v3 to be free. Hence v3 =

[
0 1 0

]T
. Our matrix P is

P =

1 3 0
3 0 1
0 1 0

 , whose inverse is P−1 =

 1 0 −3
0 0 1
−3 1 9

 ,
so  3 0 0

−3 4 9
0 0 3

 =

1 3 0
3 0 1
0 1 0

3 0 0
0 3 0
0 0 4

 1 0 −3
0 0 1
−3 1 9

 .
You can double check the result by multiplying these matrices. �

Note that diagonalizability and invertibility are not related. For example, the matrix

A =

[
1 1
0 1

]
is certainly invertible – it has non-zero determinant – but I claim it is not diagonalizable. To see
that this is the case, the lone eigenvalue of A is 1, but solving the system Av = v yields[

v1
v2

]
=

[
1 1
0 1

] [
v1
v2

]
=

[
v1 + v2
v2

]
.

Hence v2 = 0 and v1 is free, so the solutions to this are of the form[
v1
v2

]
=

[
1
0

]
s, for s ∈ R.

Since this matrix has only a single eigenvalue, we cannot form the P matrix, and so conclude that
the matrix is not diagonalizable. By the same token, the matrix

B =

[
0 1
1 0

]
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has no (real) eigenvalues, and hence cannot be diagonalized.

Example 3.28

If A is the matrix from Example 3.27, compute Ak for any k ∈ N, and eA where the
exponential is as defined in (3.2).

Solution. We know the diagonalization of A from Example 3.27 is

 3 0 0
−3 4 9

0 0 3

 =

1 3 0
3 0 1
0 1 0

3 0 0
0 3 0
0 0 4

 1 0 −3
0 0 1
−3 1 9

 .

If k ∈ N then

 3 0 0
−3 4 9

0 0 3

k =

1 3 0
3 0 1
0 1 0

3 0 0
0 3 0
0 0 4

k  1 0 −3
0 0 1
−3 1 9


=

1 3 0
3 0 1
0 1 0

3k 0 0
0 3k 0
0 0 4k

 1 0 −3
0 0 1
−3 1 9


=

 3k 3k+1 0
3k+1 0 4k

0 3k 0

 1 0 −3
0 0 1
−3 1 9


=

 3k 0 0
3k+1 − 3(4k) 4k −3k+2 + 9(4k)

0 0 3k

 .

If D = diag(3, 3, 4) then it’s easy to check that eD = diag(e3, e3, e4), and

eA = ePDP
−1

= I + PDP−1 +
(PDP−1)2

2!
+

(PDP−1)3

3!
+ · · ·+ (PDP−1)n

n!
+ · · ·+

= I + PDP−1 +
PD2P−1

2!
+
PD3P−1

3!
+ · · ·+ PDnP−1

n!
+ · · ·+

= P

(
I +D +

D2

2!
+
D3

3!
+ · · ·+ Dn

n!
+ · · ·

)
P−1

= PeDP−1.
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Hence

eA =

1 3 0
3 0 1
0 1 0

e3 0 0
0 e3 0
0 0 e4

 1 0 −3
0 0 1
−3 1 9


=

 e3 e3 0
3e3 0 e4

0 e3 0

 1 0 −3
0 0 1
−3 1 9


=

 e3 0 −2e3

3(e3 − e4) e4 9(e4 − e3)
0 0 e3

 .
This computation would have been near impossible without diagonalization. �

3.6 Applications

Eigenvalues and eigenvectors are inherent to a matrix and therefore appear often whenever a matrix
is used in applications. The example we introduce below is that of linear dynamical systems. These
are worth studying on their own as one often studies non-linear dynamical systems by looking at
their linear approximations.

Consider the following scenario. You have a population of rabbits and foxes, where the rabbits
have unlimited resources to grow, and are predated upon only by foxes. Similarly, foxes feed only
upon rabbits, and die of natural causes. The populations are dependent upon one another in the
following way:

• There are initially 1000 rabbits and 50 foxes,

• The number of rabbits will double each year,

• The foxes eat on average 12 rabbits per year,

• The fox population increases with more rabbits, proportional to 10% the number of rabbits,

• 20% of the foxes die each year.

If rk and fk are the number of rabbits and foxes at the end of year k respectively, then

rk+1 = 2rk − 12fk

fk+1 = 0.1rk − 0.2fk.

Let pk =
[
rk fk

]T
and set

A =

[
2 −12

0.1 −0.2

]
so that pk+1 = Apk, with p0 =

[
1000 50

]T
. Equivalently, pk+1 = Ak+1p0. This system is plotted

in Figure 8. Notice that both populations initially increase before finding an equilibrium.
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foxes

Figure 8: The population of foxes and rabbits according to the dynamics above.

How can we analyze this system absent a computer? Well, if we diagonalize A as A = PDP−1,
with D = diag(λ1, . . . , λn) the eigenvalues of A, then

pk = Akp0 = PDkP−1p0 = PDkb

where b = P−1p0. Let xk be the columns of P . Expanding out the right hand side, using the fact
that Dk is still diagonal, we get

pk =
[
x1 · · · xn

]

λk1

λk2
. . .

λkn



b1
b2

...
bn

 = b1λ
k
1x1 + b2λ

k
2x2 + · · ·+ bnλ

k
nxn. (3.3)

Definition 3.29

Let A be an n×n square matrix with eigenvalues λ1, . . . , λk. The dominant eigenvalue λdom
is the eigenvalue of greatest magnitude; that is, |λdom| ≥ |λj | for all j = 1, . . . , k.

Suppose that λ1 is the dominant eigenvalue of A. By factoring the right hand side of (3.3) by
λk1, we get

pk = λk1

(
b1x1 + b2

(
λ2
λ1

)k
x2 + · · ·+ bn

(
λn
λ1

)k
xn

)
.

Since λ1 is dominant, we know |λj/λk| < 1, which tend to zero as k → ∞, hence as k becomes
large, we get

pk ≈ b1λk1x1.

This is indeed the case for our example above. It is a bit of work, but one can show that the
diagonalization of A is (with rounding)[

2 −12
0.1 −0.2

]
=

[
0.99654 0.995037

0.083045 0.099504

] [
1 0
0 0.8

] [
6.0208 −60.2080
−5.0249 60.2993

]
62

c©2017- Tyler Holden



4 Vector Spaces

The dominant eigenvalue is λdom = 1, and

x1 =

[
0.99654

0.083045

]
, b1 = 3010.4,

so that

pk ≈ 3010.4

[
0.99654

0.083045

]
=

[
3000
250

]
which is what we see in Figure 8. In my mind, what is more interesting is that we can use
this to predict how the initial population rations will affect long term evolution. Note that b1 =
6.0208r0 − 60.2080f0, so if r0/f0 = 10 then b1 = 0 and both populations will go extinct.

4 Vector Spaces

We now being a somewhat more abstract study of linear algebra. The general idea is that it’s
possible to describe matrices and linear transformations in more than just the standard Cartesian
coordinates.

4.1 Vectors

The physicists define a vector as something with direction and magnitude. Strictly speaking, this
is wrong. I am therefore torn as to how to define a vector for you, since I do not want to give you
the wrong definition, yet the curriculum does not call for me to give you the correct definition.

For now, let’s define define three dimensional real vectors. Any element v ∈ R3 is a three
dimensional real vector, say v = (x0, y0, z0)

T . As I mentioned in Section 1.4.2, you can think of
such a point as an arrow in three dimensional space, spanning from the origin O = (0, 0, 0) to v.

One of the most important ideas in linear algebra is that the same vector/matrix can be written
in many different ways, depending on what coordinate system you use. For this reason, there
should be a coordinate independent way of thinking about vectors, vector addition, and scalar
multiplication. We saw this already in Figure 2, but the idea is that to add two vector, we add
them “tip-to-tail,” while scalar multiplication is done by scaling the vector.

Definition 4.1

If v = (x0, y0, z0) ∈ R3, we define the norm of v as

‖v‖ =
√
x20 + y20 + z20 .

The norm of v is precisely the length of the arrow from O to v. This can be seen in Figure 10.
Additionally, recall that

v · v = x20 + y20 + z20

so that ‖v‖ =
√

v · v. This will be discussed in greater detail when we reexamine the dot product.
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2u

u

v

u+ v

Figure 9: We add two vectors by adding them “tip-to-tail,” and scalar multiplication is done by
scaling.

x

y

z

v = (x0, y0, z0)

‖v
‖

x0

z0

y0

L

(x0, 0, z0)

Figure 10: The length of the line L is
√
x20 + z20 , so that the triangle formed by the origin, (x0, 0, z0)

and v has length ‖v‖ =
√
L2 + y20 =

√
x20 + y20 + z20 .
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Example 4.2

A point on the sphere of radius 1 is given by

v = (cos(θ) sin(φ), cos(θ) cos(φ), sin(θ))

for 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. What should ‖v‖ be? Show that this is correct.

Solution. Since v lives on the unit sphere centred at the origin, it should have length 1. We compute
the norm to check this. Note that carrying around the square root sign is messy, so we’ll show that
‖v‖2 = 1 which is equivalent to ‖v‖ = 1.

‖v‖2 = cos2(θ) sin2(φ) + cos2(θ) cos2(φ) + sin2(θ)

= cos2(θ)
[
sin2(φ) + cos2(φ)

]
+ sin2(θ)

= cos2(θ) + sin2(θ) by Pythagoras

= 1 also by Pythagoras,

which is what we wanted to show. �

Proposition 4.3

Let u,v ∈ R3 and α ∈ R.

1. ‖u‖ = 0 if and only if u = 0 (Non-degeneracy),

2. ‖αu‖ = |α|‖u‖ (Homogeneity),

3. ‖u + v‖ ≤ ‖u‖+ ‖v‖ (Triangle Inequality).

We say that u ∈ R3 is a unit vector if ‖u‖ = 1. For example, the standard basis vectors

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

are all unit vectors. A non-trivial example is u = (2/3, 1/3, 2/3), which is also a unit vector as

‖u‖ =

√
4

9
+

1

9
+

4

9
=
√

1 = 1.

We often use unit vector to describe the direction of a vector. If v ∈ R3, let v̂ = v/‖v‖. This is a
unit vector, since ∥∥∥∥ v

‖v‖

∥∥∥∥ =
‖v‖
‖v‖ = 1,

but since it is just a scalar multiple of v, it points in the same direction.

Our text introduces something called geometric vectors. These are vectors whose tails need
not start at the origin. This is a non-standard name, and one often does not make the distinction
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between vectors and geometric vectors. However, if P = (p1, p2, p3) and Q = (q1, q2, q3) we can

define the vector
−−→
PQ as the vector whose tail is P and whose head is Q. We can translate the

base of this vector to the origin by recognizing that
−−→
PQ = Q − P, so we associate

−−→
PQ with

(q1 − p1, q2 − p2, q3 − p3), from which it’s easy to see that∥∥∥−−→PQ∥∥∥ =
√

(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2.

This tells us that given two vectors u and v, the distance between u and v is precisely ‖u− v‖.
In general, we will identify (think of as being equal) any two vectors with the same length length

and direction. In this sense,
−−→
PQ is the same as (q1 − p1, q2 − p2, q3 − p3).

Definition 4.4

Two vectors u and v in R3 are said to be parallel if they point in the same direction.

We cannot yet show it, but two vectors are parallel if and only if one is a scalar multiple of the
other; that is, there exists a non-zero α ∈ R such that u = αv. We can use this idea to construct
lines. For example, given a direction d, the line through the origin in the direction of d is the
collection of all vectors parallel to d. Hence we can parameterize that line as L(t) = td for t ∈ R.
On the other hand, to get a line passing through the point p0, we simply translate everything by
adding p0, giving

L(t) = p0 + td.

x
O = (0, 0)

p0 d

p0
+ td

Figure 11: The line parameterized by p0 + td can be seen as all scalar multiples of d translated by
p0.

Example 4.5

Parameterize the line passing through the points P = (1, 0, 1) and Q = (−2, 1, 0).

Solution. We know that our line passes through either of the points P or Q, so we can take either
of these for p0. Let’s choose p0 = P . Now we need direction vector of this line, which is given by−−→
PQ, with coordinates

d =
−−→
PQ = (−3, 1,−1).
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Hence the line is parameterized by

p0 + td =

1
0
1

+ t

−3
1
−1

 =

1− 3t
t

1− t

 . �

Example 4.6

Let L1 be the line we found in Example 4.5, and L2 be the line parameterized by (1 + 6s, 1−
4s, 1 + 2s). Determine where, if ever, L1 intersects L2.

Solution. We want to find t and s such that1− 3t
t

1− t

 =

1 + 6s
1− 4s
1 + 2s

 or equivalently

 6s+ 3t
−4s− t

2s+ t

 =

0
1
0

 .
We can write this is the linear system Ax = b: 6 3

−4 −1
2 1

[s
t

]
=

 0
−1

0

 .
Row reducing the augmented A gives 6 3 0

−4 −1 −1
2 1 0

 (1/3)R1→R1−−−−−−−−→

 2 1 0
−4 −1 −1

2 1 0

 2R1+R2→R2−−−−−−−−−−→
(−1)R1+R3→R3

2 1 0
0 1 −1
0 0 0


So that t = −1 and 2s + t = 0, which can be solve to yield (s, t) = (1/2,−1). Indeed, if we plug
this into our lines, we get

L1 :

1− 3t
t

1− t

 =

 4
−1

2

 , L2 :

1 + 6s
1− 4s
1 + 2s

 =

 4
−1

2

 ,
so the lines intersect at (4,−1, 2). �

4.2 Dot Product and Projections

4.2.1 Dot Product Revisited

Let u = (u1, u2, u3),v = (v1, v2, v3) be vector in R3. We’ve seen that their dot product can be
computed as

u · v = u1v1 + u2v2 + u3v3.

It’s important to keep in mind that this ‘product’ between two vectors returns a real number, not
another vector. The dot product satisfies the following properties:
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Proposition 4.7

Suppose u,v,w ∈ R3 and α ∈ R.

1. u · v = v · u,

2. u · 0 = 0,

3. u · u = ‖u‖2,

4. u · (v + w) = u · v + u ·w,

5. (αu) · v = α(u · v) = u · (αv).

The geometric insight behind the dot product can be gleaned with the following:

Proposition 4.8

If u,v ∈ R3 then u · v = ‖u‖‖v‖ cos(θ), where θ is the angle subtended by u and v in the
plane spanned by u and v.

uv

θ

θ

u− vu− v

Figure 12: The triangle formed by the origin, v and u − v. We can use the law of cosines to
determine the length of u− v.

Proof. Consider the triangle in Figure 12, so that by the cosine law we have

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos(θ).

On the other hand, we have

‖u− v‖2 = (u− v) · (u− v)

= u · u− v · u− u · v + v · v
= ‖u‖2 + ‖v‖2 − 2u · v.

Equating both equations gives u · v = ‖u‖‖v‖ cos(θ) as required.

Proposition 4.8 tells us many things. The first is that u and v are orthogonal – that is, they
form an angle of θ = π/2 – precisely when u · v = 0. For example, the vectors u = (1, 0, 2) and
v = (−2, 1, 1) are orthogonal, since

u · v = (1×−2) + (0× 1) + (2× 1) = −2 + 2 = 0.

It also tells us that the angle between two vectors can be determined as

θ = arccos

(
u · v
‖u‖‖v‖

)
. (4.1)
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For example, the angle between u = (1, 0, 1) and v = (1, 1, 0) is

θ = arccos

(
u · v
‖u‖‖v‖

)
= arccos

(
1

2

)
=
π

3
.

Since (4.1) holds for all u,v, and the domain of arccosine is [−1, 1], this suggests that

|u · v| ≤ ‖u‖‖v‖,

which is called the Cauchy-Schwarz inequality.

Another application is the geometric interpretation of the dot product. Suppose that u is a
unit vector, so ‖u‖ = 1. If v is any other vector, then

v · u = ‖v‖‖u‖ cos(θ) = ‖v‖ cos(θ).

Look at Figure 13. The value ‖v‖ cos(θ) is precisely the length of the projection of v onto u.

u

v

θ

u · v = ‖v‖ cos(θ)

Figure 13: If u is a unit vector (‖u‖ = 1) then u · v is the length of the v when projected onto u.

4.2.2 Projections onto Lines

The idea of a projection is to extend the idea shown in Figure 13. Namely, suppose that you are
given two vectors, u and v. We should be able to write v as the sum v = up + uo, where up is
parallel to u, and uo is orthogonal to u – see Figure 14. We define the projection of v onto u as
up; that is

u

v

uo

up

Figure 14: The projection of v onto u.
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Definition 4.9

If u,v ∈ R3, we define the projection of v onto u, denoted proju(v), as

proju(v) =
u · v
‖u‖2

u. (4.2)

In this case, the orthogonal component uo is uo = v − proju(v).

Note that when u is a unit vector, the projection is proju(v) = (u ·v)u, which is precisely what
we found above. To see why the extra ‖u‖2 term comes to play, rewrite the projection as

proju(v) =

(
u

‖u‖ · v
)

u

‖u‖ = (û · v) û, where û =
u

‖u‖ .

Thus when u is not a unit vector, the ‖u‖2 term can be redistributed to give û = u/‖u‖ which is
a unit vector.

Example 4.10

Let u = (2, 1,−4) and v = (1,−1, 1). Determine proju(v).

Solution. Let’s compute the dot products and norms separately:

u · v = (2, 1, 4) · (1,−1, 1) = 2− 1 + 4 = 5,

‖u‖2 = 4 + 1 + 16 = 21,

Putting this all together and substituting into (4.2) yields

proju(v) =
5

21
u =

(
10

21
,

5

21
,−20

21

)
. �

Example 4.11

Consider the line between the points P = (1, 2,−1) and Q = (2, 0, 3). Find the shortest
distance from this line to the point R = (1, 1, 1).

Solution. We begin by finding the parametric equation for the line through P and Q, which is given
by

L(t) = P + (Q− P )t =

 1
2
−1

+

 2
−2

4

 t =

 1 + 2t
2− 2t
−1 + 4t

 .
Now the shortest distance from this line to R = (1, 1, 1) will be the orthogonal component of the

projection of
−→
PR onto the slope of the line. From this we get

−→
PR = (0,−1, 2),
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and the projection of this onto the slope m = (2,−2, 4) is

projm
−→
PR =

m · −→PR
‖m‖2

m =
6

24
m =

1

4
(2,−2, 4).

The orthogonal component is then

mo =
−→
PR− projm

−→
PR = (0,−1, 2)− 1

4
(2,−2, 4) =

(
−1

2
,−1

2
, 1

)
,

which has length

‖mo‖ =

√
1

4
+

1

4
+ 1 =

√
3

2
. �

4.3 Cross Product and Planes

A line in R3 is specified by two points. A plane in R3 on the other hand can be specified by three
points, though this is not practical for writing down the plane. On the other hand, we can also use a
point and a line: the line is orthogonal to the plane, and the point describes where the plane passes
through that line. Hence given a vector n, thought of as the line, and a point x0, the equation of
a plane in R3 is given by

n · (x− x0) = 0.

We call n the normal vector to the plane. If n = (a, b, c), x = (x, y, z) and x0 = (x0, y0, z0) then
this becomes

a(x− x0) + b(y − y0) + c(z − z0) = 0

or

ax+ by + cz = d, where d = ax0 + by0 + cz0.

Example 4.12

Find the equation of the plane through P0 = (1, 1, 1) with normal vector n = (−1, 0, 1).

Solution. Using our equation above, the equation of the plane is n(x− P0) = 0, which gives

−1(x− 1) + 0(y − 1) + 1(z − 1) = 0 or − x+ z = 0. �

Two planes in R3 can either not intersect at all, intersect at a single point, or intersect in a
plane. We in fact already know how to find the intersection of two planes.

Example 4.13

Consider two planes, the first with normal vector n̂1 = (1, 3, 5) passing through P1 =
(8, 0,−2), and and the second with normal vector n̂2 = (2, 5, 9) passing through the point
P2 = (6,−3, 0). Find the intersection of these two planes.
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Solution. The planes themselves can be written as

(1, 3, 5) · (x− 8, y, z + 2) = 0 ⇒ x+ 3y + 5z = −2

(2, 5, 9) · (x− 6, y + 3, z) = 0 ⇒ 2x+ 5y + 9z = −3.

The intersection of these two planes is the collection of (x, y, z) which lie in both planes simulta-
neously; namely, is a solution to the linear system given by both plane equations. By now we’re
experts at solving this sort of problem, giving[

1 3 5 −2
−2 −5 −9 3

]
RREF−−−−→

[
1 0 2 1
0 1 1 −1

]
.

This gives the solution xy
z

 =

 1
−1

0

+

−2
−1

1

 s,
which we recognize as the equation of a line in R3. �

Example 4.14

Find the shortest distance from the point P = (2, 3, 0) and the plane 5x + y + z = 1, and
the point on the plane where this distance is realized.

Solution. The plane has a normal vector of n = (5, 1, 1), and the point P0 = (0, 0, 1) is certainly in

the plane, as it satisfies the equation. The vector from P0 to P is u =
−−→
P0P = (2, 3,−1), and the

shortest distance from P to the plane will be the length of the projection of u onto n, which gives

projn(u) =
u · n
‖n‖2

n =
10 + 3− 1

25 + 1 + 1
n =

12

27
n.

The length of this is ∥∥∥∥12

27
n

∥∥∥∥ =
12

27

√
27 =

12√
27
.

The point on the plane which realizes this distance will be

P − (12/27)n =

2
3
0

− 12

27

5
1
1

 =
1

9

−2
23
−4


which you can check does indeed satisfy 5x+ y + z = 1. �

Given that you are forced to use three points to determine the plane, one strategy is to find
a vector which is normal to two of those vectors, and reduce it to the equation of a plane above.
This is done using cross-products.
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Definition 4.15

If x = (x1, x2, x3) and y = (y1, y2, y3) then their cross-product is

x× y = (x2y3 − x3y2, x2y1 − x1y3, x1y2 − x2y1).

A useful technique for remembering the cross-product is to abuse the determinant. Suppose
that ı̂ = e1, ̂ = e2, k̂ = e3, then

x× y = det

 ı̂ ̂ k̂
x1 x2 x3
y1 y2 y3

 .
Example 4.16

Determine e1 × e2.

Solution. Intuitively, we know that any scalar multiple of e3 is orthogonal to both e1 and e2, so
we expect something of this form out. Computing the cross product gives

e1 × e2 =

 ı̂ ̂ k̂
1 0 0
0 1 0

 = (0, 0, 1)

which is what we expected. �

Proposition 4.17

Suppose that u and v are vectors in R3.

1. If u,v 6= 0, then v × w = 0 if and only if u and v are parallel; that is, there exists
some λ 6= 0 such that u = λv.

2. The vector u× v is orthogonal to both u and v.

Example 4.18

Find the equation of the plane through the points P = (4, 0, 5), Q = (2, 0, 1) and R =
(1,−1, 2).

Solution. The vectors u =
−−→
QP = (2, 0, 4) and v =

−−→
QR = (−1,−1, 1) both lie in the plane, so we

can compute the normal to these vectors as

n = det

 ı̂ ̂ k̂
2 0 4
−1 −1 1

 = (4,−6,−2).
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We can use any of P,Q,R for the point through which the plane must pass, say Q, so the equation
of the plane is

n · (x−Q) = 0 ⇒ 4(x− 2)− 6y − 2(z − 1) = 0

or equivalently 4x− 6y − 2z = 6. A quick check shows that P,Q,R all satisfy this equation. �

Theorem 4.19

If u,v,w ∈ R3 and α ∈ R, then

1. u× v = −v × u,

2. u× 0 = 0 = 0× u,

3. (αu)× v = α(u× v) = u× (αv),

4. u× (v + w) = (u× v) + (u×w),

5. u · (v ×w) = det[uvw].

Example 4.20

Let u,v,w be vectors in R3. Show that v −w is orthogonal to

z = (u× v) + (v ×w) + (w × u).

Solution. We need to show that (v −w) · z = 0. Note that

(v −w) · (u× v) = det[(v −w)uv] = det[vuv]− det[wuv] = −det[wuv]

(v −w) · (v ×w) = det[(v −w)vw] = det[vvw]− det[wvw] = 0

(v −w) · (w × u) = det[(v −w)wu] = det[vwu]− det[wwu] = det[vwu].

Moreover, det[vwu] = −det[wvu] = det[wuv], so adding all three terms gives zero, as required. �

Theorem 4.21: Lagrange’s Identity

If u,v ∈ R3 then
‖u× v‖2 = ‖u‖2‖v‖2 − (u · v)2.

Using the fact that u · v = ‖u‖‖v‖ cos(θ) this means that

‖u× v‖2 = ‖u‖2‖v‖2 − (u · v)2.

= ‖u‖2‖v‖2 − ‖u‖2‖v‖2 cos2(θ)

= ‖u‖2‖v‖2
(
1− cos2(θ)

)
= ‖u‖2‖v‖2 sin2(θ)

so that ‖u× v‖ = ‖u‖‖v‖ sin(θ). This is the area of the parallelogram spanned by u and v.

Example 4.22

Find the area of the triangle whose vertices lie at P = (5, 2, 2), Q = (1, 0,−1), and R =
(−3, 1, 2).
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Solution. Note that a triangle is half a parallelogram, so by finding the area of the corresponding
parallelogram we will be done. Choose one of the points to serve as the origin, say Q, in which case

u =
−−→
QP =

4
2
3

 , v =
−−→
QR =

−4
1
3

 .
The parallelogram spanned by these has area ‖u× v‖, which we can compute as

u× v = det

 ı̂ ̂ k̂
4 2 3
−4 1 3

 = (3,−24, 12),

so ‖u× v‖ =
√

729 = 27, and the area of the triangle is 27/2. �

So the cross product gives the area of a parallelogram. The scalar triple product gives the area
of the parallelepiped, as follows:

Theorem 4.23

If u,v,w ∈ R3 then
|w · (u× v)| = | det[uvw]|

and is the area of the parallelepiped spanned by u,v,w.

Example 4.24

Find the area of the parallelepiped spanned by the vector

u =

1
1
1

 , v =

 2
0
−1

 , w =

0
1
2

 .

Solution. We first compute v ×w, which yields

v ×w = det

 ı̂ ̂ k̂
2 0 −1
0 1 2

 = (1,−4, 2).

Dotting against u gives

u · (v ×w) = 1− 4 + 2 = −1,

so the area of the parallelepiped is 1. �

4.4 Subspaces

When you think of a line p + td in R3, there is a sense in which this is just a copy of R sitting
inside R3. Similarly, a plane n · (x− x0) = 0 is a copy of R2 sitting inside R3. However, if we want
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these copies of R and R2 to behave well with vector addition and scalar multiplication, we must
impose additional restrictions.

For example, consider the plane P =
{

(x, y, z) ∈ R3 : z = 1
}

sitting in R3. The vectors u =
(0, 0, 1) and v = (1, 1, 1) are both in this plane, but u+v = (1, 1, 2) is not in P , nor is λu = (0, 0, λ)
for any λ 6= 1. This leads us the definition of a subspace.

Definition 4.25

A set S ⊆ R3 is a subspace of R3 if

1. 0 ∈ S (zero vector),

2. For every u,v ∈ S we have u + v ∈ S (closed under addition),

3. For every u ∈ S and λ ∈ R, λu ∈ S (closed under scalar multiplication).

The sets {0} and R3 are both subspaces of R3. Any subspace which is not one of these is called
a proper subspace.

Example 4.26

Consider the set
S =

{
(x, y, z) ∈ R3 : x = y

}
.

Determine whether S is a subspace of R3.

Solution. The zero vector 0 = (0, 0, 0) satisfies x = y, so 0 ∈ S. Now suppose u,v ∈ S, say with

u =

u1u1
u2

 , v =

v1v1
v2

 ,
and λ ∈ R. The sum u + v and λu are given by

u + v =

u1 + v1
u1 + v1
u2 + v2

 , λu =

λu1λu1
λu2

 .
In each case the x- and y- coordinates are identical, so both are in S. Hence S is a subspace of
R3. �

Example 4.27

Let A be a 3 × 3 matrix with non-zero eigenvalue λ. In Definition 3.24 we defined the
eigenspace

Eλ =
{
v ∈ R3 : Av = λv

}
.

Show that the eigenspace is a subspace of R3.
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Solution. We start with the 0-vector. Since A0 = λ0 = 0, we know 0 ∈ Eλ. Suppose then that
u,v ∈ Eλ, so that

Av = λv, Au = λu.

Note that
A(u + v) = Au + v = λu + λv = λ(u + v)

so that u + v is also in Eλ. Finally, let α ∈ R be any real number. We have

A(αu) = αAu = αλu = λ(αu),

so αu ∈ Eλ, showing that Eλ is closed under scalar multiplication. With all three conditions
satisfied, we conclude Eλ is a subspace. �

Example 4.28

Determine whether the set S =
{

(x, y, z) ∈ R3 : x2 + z2 = 1
}

is a subspace of R3.

Solution. This set satisfies none of the three properties, but perhaps the simplest to see is that it
does not contain the 0-vector. Indeed, 0 = (0, 0, 0) so here x2 + y2 = 0 6= 1. �

Definition 4.29

Let A be an m× n matrix. The null space is the set

null(A) = {x ∈ Rn : Ax = 0}

while the image space is

image(A) = {y ∈ Rm : y = Ax for some x ∈ Rn} .

Remark 4.30 I disagree with these naming conventions. The null space is sometimes
called the kernel, and the image space is sometimes called the column space. Good practice
is to either call these the null space and column space, or the kernel and image, but not
to mix them. The different names comes from whether you are thinking of the matrix A
by itself (null space/column space), or the corresponding linear transformation TA(x) = Ax
(kernel/image).

Proposition 4.31

The null space and image space of a matrix are both subspaces.

Proof. Let A be an m× n matrix, and let’s start with the null space.

Certainly A0 = 0, so that 0 ∈ null(A). Suppose that x,y ∈ null(A), so that Ax = 0 and
Ay = 0. But then

A(x + y) = Ax +Ay = 0 + 0 = 0
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so 0 ∈ null(A). Similarly,

A(αx) = αAx = α0 = 0

so αx ∈ null(A). We conclude null(A) is a subspace.

On the other hand, let’s look at the image space. The zero vector is in here, since A0 = 0. Now
let y1,y2 ∈ image(A), so that there exist x1,x2 ∈ Rn such that Axi = yi for i = 1, 2. Now

A(x1 + x2) = Ax1 +Ax2 = y1 + y2

showing that y1 +y2 is hit by the element x1 +x2 ∈ Rn, so y1 +y2 ∈ image(A). Similarly, if α ∈ R
then

A(αx1) = αAx1 = αy1

showing that αy1 ∈ image(A) as well. We conclude that image(A) is a susbspace.

4.4.1 Span

Since subspaces are built from adding and scalar multiplying vectors, you can build them by starting
with a collection of vectors {x1, . . . ,xn}, and taking all linear combinations of these. This is called
the span.

Definition 4.32

If x1,x2, . . . ,xk ∈ Rn then we define their span as

span {x1,x2, . . . ,xk} = {c1x1 + c2x2 + · · ·+ ckxk : ci ∈ R, i = 1, . . . , k} .

Proposition 4.33

For any collection of vectors S = {x1, . . . ,xk}, span(S) is a subspace of Rn.

Proof. The zero vector is the trivial span, taken by setting all the ci = 0:

0 = 0x1 + 0x2 + · · ·+ 0xk.

Suppose that u,v ∈ span(S) and write these as

u = u1x1 + u2x2 + · · ·+ ukxk, v = v1x1 + v2x2 + · · ·+ vkxk.

The sum satisfies

u + v = (u1 + v1)x1 + (u2 + v2)x2 + · · ·+ (uk + vk)xk

and if α ∈ R then

αu = (αu1)x1 + (αu2)x2 + · · ·+ (αuk)xk,

so u + v ∈ span(S) and αu ∈ span(S).
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Spanning sets also provide a convenient way of writing down subspace. For example, the
subspace from Example 4.26 can be written as

V =
{

(x, y, z) ∈ R3 : x = y
}

= span


1

1
0

 ,
0

0
1

 ,

or
Rn = span {e1, e2, . . . , en}

where ei are the standard coordinate vectors. In general, if u,v 6= 0 then span {u} is a line through
the origin, and span {u,v} is a plane through the origin.

Example 4.34

Suppose that V = span {u,v}. Show that V = span {2u,u− v}.

Solution. We can write

u =
1

2
(2u), v =

1

2
(2u)− (u− v).

Thus let x ∈ span {u,v}, so that we can write x = c1u + c2v. This in turn can be written with the
other vectors as

x = c1u + c2v = c1

[
1

2
(2u)

]
+ c2

[
1

2
(2u)− (u− v)

]
=

[
1

2
c1 +

1

2
c2

]
(2u)− c2(u− v)

showing that x ∈ span {2u,u− v}. Hence V ⊆ span {2u,u− v}. Conversely, suppose that y ∈
span 2u,u− v so that y = c1(2u) + c2(u− v). Expanding this out we get

y = [2c1 + c2] u− c2v

so that y ∈ span {u,v}. This shown that span {2u,u− v} ⊆ V . Both inclusions give the equality,
as required. �

We can use spanning sets to describe the null space and image space of an m × n matrix A.
Let {c1, . . . cn} be the columns of A, and {h1, . . . ,hk} be the basic solutions to the homogeneous
equation Ax = 0. The image and null spaces are then

null(A) = span {h1, . . . ,hk} , image(A) = span {c1, · · · , cn} .

Example 4.35

Let

u =

 1
0
−1

 , v =

2
1
0

 , w =

 1
−2
−5

 .
Determine whether u ∈ span {v,w}.
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Solution. We’re asking whether there exist constants c1, c2 such that c1u + c2v = w, which is
analogous to solving the linear system given by the augmented matrix 1 2 1

0 1 −2
−1 0 −5

 .
Reducing this matrix to REF, we get 1 2 1

0 1 −2
−1 0 −5

 R3+R1→R1−−−−−−−→

1 2 1
0 1 −2
0 2 −4

 −2R3+R2→R2−−−−−−−−−→

1 2 1
0 1 −2
0 0 0


−2R1+R2→R2−−−−−−−−−→

1 0 5
0 1 −2
0 0 0


Hence the answer is yes, and in fact 5u − 2v = w, which is easily checked by computing these
vectors. �

4.5 Linear Independence

Spanning sets can have redundancies built in. For example, suppose u ∈ Rn is a non-zero vector.
The following sets are equal

span {u, 2u, 3u, 4u, 5u} = span u :

the vectors 2u, . . . , 5u do not add anything new to the span. A less trivial example might be
something like span u,v,w, where

u =

[
1
0

]
, v =

[
0
1

]
, w =

[
1
−1

]
.

Since we can write [
1
−1

]
=

[
1
0

]
−
[
0
1

]
this third vector is already in the span of the first two, and again does not add anything new.
Effectively, we want to discuss when a set of vectors {x1, . . . ,xn} contain no redundancies. This is
called linear independence.

Definition 4.36

Let S = {x1, . . . ,xk} be a collection of vectors in Rn. We say that S is a linearly independent
set if whenever

c1x1 + c2x2 + · · ·+ ckxk = 0

then c1 = c2 = · · · = ck = 0. We say that S is linearly dependent otherwise.

The three vectors u,v,w are not linearly independent, since u + (−1)v + (−1)w = 0. The
advantage of being linearly independent is the following:
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Theorem 4.37

If {x1, . . . ,xk} is linearly independent, then every vector v in span {x1, . . . ,xk} has a unique
representation as

v = c1x1 + c2x2 + · · ·+ ckxk.

How do you check that a collection of vectors is linearly independent? Notice, that c1x1 + · · ·+
cnxn = 0 is a homogeneous system of linear equations. Hence we can construct the matrix A whose
columns are the xi, and ask if the only solution to this system is the trivial solution 0.

Example 4.38

Let

u =

 1
1
−1

 , v =

2
1
4

 , w =

0
1
2

 .
Determine whether these vectors are linearly independent.

Solution. We set up the matrix corresponding to the system c1u + c2v + c3w = 0, which gives us 1 2 0
2 1 1
−1 4 2

 .
This system will have a unique solution if it has rank 3, so we reduce this to REF to get 1 2 0

2 1 1
−1 4 2

 −2R2+R1→R1−−−−−−−−−→
R3+R1→R1

1 2 0
0 −3 1
0 6 2

 2R3+R2→R2−−−−−−−−→

1 2 0
0 −3 1
0 0 4

 .
After normalizing rows 2 and 3 we see that the matrix has rank 3, and thus the only solution to
the homogeneous system is 0. We conclude that {u,v,w} are linearly independent. �

In the special case of only two vectors, the set {u,v} is linearly dependent if and only if
u = cv for some non-zero c; namely, u and v are parallel. If u,v ∈ R3 then you can check linear
independence by computing the cross product u× v.

Recall that the matrix A is invertible if and only if the only solution to Ax = 0 is the trivial
solution. This is the same condition for the columns of A to be linearly independent. This means
that we can add the following to our invertibility conditions:

Theorem 4.39

If A is a square n× n matrix, the following are equivalent:

1. A is invertible,

2. The columns of A are linearly indepen-
dent,

3. The columns of A span Rn,

4. The rows of A are linearly independent,

5. The rows of A span Rn.

c©2017- Tyler Holden

81



4 Vector Spaces 4.5 Linear Independence

Now we want to find the Goldilocks zone between being linearly independent and being a
spanning set for a subspace U . The first fact is following, which says that a subspace spanned by
m vectors cannot admit a set with more than m linearly independent vectors.

Theorem 4.40

If U = span {x1, . . . ,xm} and S = {v1, . . . ,vk} is a linearly independent subset of U , then
k ≤ `.

The goal then is to write U as the span of a linearly independent set. This would be the “best”
way of writing U as span, in the sense that no fewer vectors would work, and more vectors would
fail to be linearly independent.

Definition 4.41

Let U ⊆ Rn be a subspace. We say that a set B = {x1, . . . ,xk} is a basis for U if B is
linearly independent, and U = span(B).

For example, the subspace S from Example 4.26 has a basis

S =
{

(x, y, z) ∈ R3 : x = y
}

= span


1

1
0

 ,
0

0
1

 . (4.3)

If A is a matrix, then null(A) has a basis given by the basic solutions to the homogeneous linear
system Ax = 0.

It’s important to note that bases are not unique. For example, a basis for R3 is given by
{e1, e2, e3}, since they span R3 are are linearly independent. However, the set

 1
1
−1

 ,
2

1
4

 ,
0

1
2


from Example 4.38 also spans R3. Our only recourse is that, no matter what basis we choose, it
must always have the exact same number of vectors.

Theorem 4.42

If U ⊆ Rn is a subspace with bases B1 and B2, then |B1| = |B2|.

This allows us to define the dimension of a subspace.

Definition 4.43

We define the dimension of a subspace U ⊆ Rn as the number of elements in a basis for U .
We write this as dim(U).

Hence the dimension of Rn is n, while the dimension of the subspace S in (4.3) is 2. In general,
lines are one dimensional, planes are two dimensional.
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Example 4.44

Suppose that A is an n×n invertible matrix, and {x1, . . . ,xk} are a basis for a k-dimensional
subspace U . Show that {Ax1, . . . , Axk} is linearly independent and hence spans a k-
dimensional subspace as well.

Solution. We begin by assuming that

c1Ax1 + c2Ax2 + · · ·+ ckAxk = 0,

for which our goal is to show that c1 = c2 = · · · = ck = 0. We can rewrite this equation as

A(c1x1 + c2x2 + · · ·+ ckxk) = 0,

showing that c1x1 + · · ·+ ckxk is a solution to this homogeneous system, or equivalently is in (A).
Since A is invertible, the homogeneous system only has the trivial solution, showing that

c1x1 + · · ·+ ckxk = 0.

Since {x1, . . . ,xk} is a linearly independent set, it must be the case that c1 = c2 = · · · = ck = 0,
which is what we wanted to show. �

Theorem 4.45

If U is a subspace of Rn then

1. U has a basis and dim(U) ≤ n,

2. Any linearly independent set in U can be enlarged to a basis for U ,

3. Any spanning set for U can be reduced to a basis of U .

This theorem has several useful corollaries:

Corollary 4.46

If U ⊆ Rn is a subspace with dim(U) = m, then B = {x1, . . . ,xm} is linearly independent if
and only if span(B) = U .

Corollary 4.47

If U, V are subspaces of R with U ⊆ V , then

1. dim(U) ≤ dim(V ),

2. If dim(U) = dim(V ) then U = V .
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4.6 Rank of a Matrix

When we first defined rank, I mentioned that I was unhappy with how it was defined. For example,
it is not clear that rank is intrinsic to a matrix, that it does not depend on how the row reduction
was performed. In this section, we will see a better definition of rank.

Definition 4.48

Let A be an m × n matrix, with columns ci, i = 1, . . . , n and rows ri, i = 1, . . . ,m.
We define the column space as col(A) = span {c1, . . . , cn}, and the row space row(A) =
span {r1, . . . , rm}.

If you go back and look at the definition of the image space, you’ll see that it coincides with
the column space. Hence the row space and image space of a matrix are identical. We can use row
reduction to determine bases for the column and row spaces.

Theorem 4.49

If A is an m × n matrix, and REF(A) is A in row-echelon form, then the rows of REF(A)
with leading ones form a basis for row(A). The columns of A such that REF(A) has leading
ones form a basis for col(A).

Example 4.50

Find a basis for the row and columns spaces of

A =


1 −1 5 −2 2
2 −2 −2 5 1
0 0 −12 9 −3
−1 1 7 −7 1

 .

Solution. We put this into row-echelon form, via the following steps:

A =


1 −1 5 −2 2
2 −2 −2 5 1
0 0 −12 9 −3
−1 1 7 −7 1

 (−2)R1+R2→R2−−−−−−−−−−→
R1+R4→R4


1 −1 5 −2 2
0 0 −12 9 3
0 0 −12 9 3
0 0 12 −9 −3


R2+R4→R4−−−−−−−−−−→

(−1)R2+R3→R3


1 −1 5 −2 2
0 0 −12 9 3
0 0 0 0 0
0 0 0 0 0

 .
We know the second row should have a leading one, but we’ll leave it be to avoid fractions. Now
the row space is spanned by the first a second rows of the REF of A, so

row(A) = span {(1,−1, 5,−2, 2), (0, 0,−12, 9, 3)} .

The leading ones occur in columns 1 and 3, so we revisit those columns of the original matrix to
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get

col(A) = span




1
2
0
−1

 ,


5
−2
−12

7


 . �

The lends itself to two potentially different questions: Given the span of a set of vectors U =
span {v0, . . . ,vk}, you could be asked to find a subset of the {v0, . . . ,vk} which form a basis for
U , or you could just be asked for a basis of U . This makes a difference as to how you set up the
question.

Example 4.51

Suppose

v0 =


1
1
1
3

 , v1 =


3
0
1
−1

 , v2 =


5
−1

1
−5

 ,
and U = span {v0,v1,v2}.

1. Find a basis for U .

2. Find a subset of {v0,v1,v2} which forms a basis for U ,

Solution. Obviously part (2) is more restrictive than part (1).

1. Let’s set up the matrix

A =

1 1 1 3
3 0 1 −1
5 −1 1 5


so that U = row(A). Row reducing gives

A
RREF−−−−→

1 0 1/3 −1/3
0 1 2/3 10/3
0 0 0 0

 ,
and hence

[
1 0 1/3 −1/3

]T
and

[
0 1 2/3 10/3

]T
form a basis for U .

2. On the other hand, none of the vectors we found above were elements of the original set
{v0,v1,v2}. To do this, let’s set up the matrix

A =


1 3 5
1 0 −1
1 1 1
3 −1 5

 .
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Putting this into RREF gives

A
RREF−−−−→


1 0 −1
0 1 2
0 0 0
0 0 0



from which we infer that {v0,v1} forms a basis for U . �

Since the rows and columns of the REF of A have the same number of leadings ones, we know
that dim(row(A)) = dim(col(A)), which leads us to the more intrinsic definition of rank.

Definition 4.52

If A is a matrix, its rank is

rank(A) = dim(row(A)) = dim(col(A)).

In addition, since row(A) = col(AT ), we know that rank(A) = rank(AT ). The rank of the
matrix A from Example 4.50 is 2.

Theorem 4.53

If A is an m× n matrix, the following are equivalent:

1. rank(A) = n,

2. The rows of A span Rn,

3. The columns of A are linearly independent in Rm,

4. The n× n matrix ATA is invertible,

5. CA = In for some n×m matrix C (A has a left-inverse),

6. If Ax = 0 for x ∈ Rn, then x = 0.

There are several interesting points to be made. If T : Rn → Rm is the linear transformation
given by T (x) = Ax, then part (5) says that T has a left-inverse. The existence of a left-inverse
is equivalent to injectivity of T , which in itself is equivalent to part (6) (Prove it!). Moreover, the
matrix C in part (5) is C = (ATA)−1AT , which is called the Moore-Penrose inverse.

Dual to Theorem 4.53 we have the following:
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Theorem 4.54

If A is an m× n matrix, the following are equivalent:

1. rank(A) = m,

2. The columns of A span Rm,

3. The rows of A are linearly independent in Rn,

4. The m×m matrix AAT is invertible,

5. AC = Im for some n×m matrix C (A has a right-inverse),

6. The system Ax = b has a solution for every b ∈ Rm.

Once again, this condition is equivalent to surjectivity of the linear transformation T (x) = Ax.

4.7 Orthonormal Bases

If U ⊆ Rn is a subspace, a basis B = {x1, . . . ,xk} for U is said to be an orthogonal basis if

xi · xj = 0 for all i 6= j;

that is, each of the vectors in the basis are pairwise orthogonal. It is said to be an orthonormal
basis if it is an orthogonal basis, and in addition ‖xi‖ = 1 for every i = 1, . . . k. For example, the
standard basis {e1, . . . , en} is an orthonormal basis of Rn. Our goal in this section is to construct
orthonormal bases.

To do this, we recall some facts about the dot product. If v ∈ Rn, then ‖v‖ =
√

v · v, and in
general ‖v + w‖ ≤ ‖v‖+ ‖w‖.

A benefit of an orthogonal basis is that the triangle inequality becomes an equality:

Theorem 4.55: Pythagorean Theorem

If {x1, . . . ,xk} is an orthogonal set, then

‖x1 + · · ·+ xk‖2 = ‖x1‖2 + · · ·+ ‖xk‖2.

The norm can be used to define the distance between two vectors, via d(v,w) = ‖v −w‖. The
distance satisfies the following properties: For any u,v,w in Rn

1. d(v,w) ≥ 0,

2. d(v,w) = 0 if and only if v = w,

3. d(v,w) = d(w,v),

4. d(u,w) ≤ d(u,v) + d(v,w).
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We will not use the distance function much, but it is an exceptionally important tool.

Theorem 4.56: Cauchy-Schwarz Inequality

For any v,w ∈ Rn,
|v ·w| ≤ ‖v‖‖w‖,

with equality precisely when v and w are parallel.

Since scaling does not affect direction, note that we can always normalize each of the vectors
in an orthogonal basis to get an orthonormal basis. For example, the vectors

u =

1
0
1

 , v =

 1
0
−1

 , w =

0
1
0


are orthogonal (check), but are not orthonormal since ‖u‖ = ‖v‖ =

√
2. Instead, the vectors

û =
1√
2

1
0
1

 , v̂ =
1√
2

 1
0
−1

 , w =

0
1
0


form an orthonormal basis.

Theorem 4.57

If {x1, . . . ,xk} is an orthogonal set of non-zero vectors, they are linearly independent.

Proof. Suppose that c1x1 + · · ·+ ckxk = 0. Choose an arbitrary xi, and dot this against the linear
combination above, to get

0 = xi · (c1x1 + · · ·+ ckxk)

= c1xi · x1 + · · ·+ cixi · xi + · · ·+ ckxi · xk
= c1‖xi‖2.

Since xi 6= 0, we know ‖xi‖ 6= 0 which in turn shows that ci = 0. Since this can be done for any ci,
they must all be 0, showing that {x1, . . . ,xk} are linearly independent as required.

Imitating the above proof yields the following important fact:

Theorem 4.58

If {f1, . . . , fk} is an orthogonal basis for a subspace U of Rn and x ∈ U , then we can write
x = c1f1 + · · · ckfk where

ci =
x · fi
‖fi‖2

.

In particular, if this is an orthonormal basis, then ci = x · fi.
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Your book calls these “Fourier coefficients,” and there’s a tenuous sense in which this is true.
Strictly speaking, the term Fourier coefficients are usually reserved for when we apply this process
to the vector space of functions, decomposed into its harmonics.

Note that each component of the decomposition

cifi =
x · fi
‖fi‖2

fi

is precisely the projection of x onto the line spanned by fi, according to Definition 4.9. This agrees
with our intuition regarding the standard basis {ei : i = 1, . . . , n}.

Example 4.59

Consider the vectors given by

v1 =


1
1
1
1

 ,v2 =


1
1
−1
−1

 ,v3 =


1
−1

0
0

 ,v4 =


0
0
1
−1

 .
Confirm that this is an orthogonal basis for R4 and write x = (1, 2, 3, 4)T in this basis.

Solution. It’s not too hard to verify that vi ·vj = 0 for all i 6= j, so I leave it to you as an exercise.
Since they are mutually orthogonal, they are linearly independent, and so must be a basis for R4.

Now we can compute the coefficients for x as follows:

c1 =
x · v1

‖v1‖2
=

10

4
=

5

2

c2 =
x · v2

‖v2‖2
=
−4

4
= −1

c3 =
x · v3

‖v3‖2
=
−1

2
= −1

2

c4 =
x · v3

‖v4‖2
=
−1

2
= −1

2
.

Hence 
1
2
3
4

 =
5

2


1
1
1
1

− 1


1
1
−1
−1

− 1

2


1
−1

0
0

− 1

2


0
0
1
−1


which does indeed work out. �
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4.7.1 Projections Onto Subspaces

Definition 4.60

If U ⊆ Rn is a subspace of Rn, the orthogonal complement of U is

U⊥ = {v ∈ Rn : v · x = 0, ∀x ∈ U} .

It’s not too hard to check that {0}⊥ = Rn and (Rn)⊥ = {0}. In fact, we’ve used the notion of
orthogonal complements to define planes in R3. Namely, given a normal vector/line n, we defined
the plane through the origin as the collection of all x such that n · x = 0; that is, the orthogonal
complement of span {n}.

Proposition 4.61

The orthogonal complement of a subspace is a subspace.

Proof. Let U ⊆ Rn be a subspace. Certainly 0 · x = 0 for all x ∈ U , so 0 ∈ U⊥. Now suppose
u,v ∈ U⊥ and r ∈ R. By definition, we know that

u · x = 0, v · x = 0, ∀x ∈ U
hence

(u + v) · x = u · x + v · x = 0 + 0 = 0, ∀x ∈ U
and

(ru) · x = r(u · x) = r0 = 0, ∀x ∈ U
so U⊥ is closed under scalar multiplication and addition, making it a subspace, as required.

To compute orthogonal subspaces, we can use the following lemma:

Lemma 4.62

If S = {x1, . . . ,xk} ⊆ Rn and U = span(S), then U⊥ = {x : x · xi = 0, 1 ≤ i ≤ n}; that is,
U⊥ is the set of all vectors which are orthogonal to each of the xi.

Proof. We need to show a double subset inclusion. Suppose that b ∈ U⊥, so that b · x = 0 for all
x ∈ U . Notably, each xi ∈ U , so b · xi = 0. This shows that U⊥ ⊆ {x : x · xi = 0}. Conversely,
fix a vector b ∈ {x : x · xi = 0}, so that b · xi = 0 for each i ∈ {1, . . . , n}. Let y ∈ U , and write
y = c1x1 + c2x2 + · · ·+ ckxk. Dotting against b gives

b · y = c1(b · x1) + c2(b · x2) + · · ·+ ck(b · xk) = 0,

showing that b ∈ U⊥. Both inclusions give equality.

Example 4.63

Define U = span {v1,v2}, where v1 =
[
1 −2 3

]T
and v2 =

[
−1 1 1

]
. Find U⊥.

90
c©2017- Tyler Holden



4.7 Orthonormal Bases 4 Vector Spaces

Solution. By Lemma 4.62, it suffices to find the collection of all vectors which are orthogonal to

both v1 and v2. Let x =
[
x1 x2 x3

]T
be such a vector, so that

x · v1 = x1 − 2x2 + 3x3 = 0 and x · v2 = −x1 + x2 + x3 = 0.

Both equations must be true simultaneously, resulting in a homogeneous system of equations. Row
reducing the coefficient matrix gives[

1 −2 3
−1 1 1

]
RREF−−−−→

[
1 0 −5
0 1 −4

]
with solutions

x1x2
x3

 =

5
4
1

 t.
Thus U⊥ is the line spanned by this vector. �

Theorem 4.64

If U ⊆ Rn is a subspace with orthogonal basis {f1, . . . , fk}, and x ∈ Rn, then the projection
of x onto U is

projU (x) =
x · f1
‖f1‖2

f1 +
x · f2
‖f2‖2

f3 + · · ·+ x · fk
‖fk‖2

fk.

If U ⊆ Rn is a subspace, then just as in the one dimensional case we can write x as the sum
of the its projection and an orthogonal component, given by x0 = x − projU (x). This has several
consequences:

1. Every vector x ∈ Rn can be written as x = xU + xU⊥ , with xU ∈ U and xU⊥ ∈ U⊥. This
is written as Rn = U ⊕ U⊥, though you’ll have to wait until the following course to have a
good understanding as to what this means.

2. dim(U⊥) = n − dim(U). This is known as the codimension of U ; namely, codim(U) =
dim(U⊥).

3. If p ∈ Rn, the point on U which minimizes the distance to p is projU (p).

Example 4.65

Find the projection of b onto the space U spanned by the orthogonal set {f1, f2, f3}, where

f1 =


1
0
1
1

 , f2 =


0
1
−1

1

 , f3 =


−2

0
1
1

 , and b =


2
5
0
−3

 .

Solution. We’ll compute the projection onto each fi separately, then add them together:

b · f1
‖f1‖2

f1 +
b · f2
‖f2‖2

f2 +
b · f3
‖f3‖2

f3 = −1

3


1
0
1
1

+
2

3


0
1
−1

1

+−7

6


−2

0
1
1

 =
1

6


12
4
1
−5

 . �
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Theorem 4.66

Let U ⊆ Rn be a subspace, and define T : Rn → Rn by T (x) = projU (x). Then

1. T is a linear map,

2. image(T ) = U

3. null(T ) = U⊥,

4. T ◦ T = T .

The fact that TU (x) = projU (x) is a linear operator means it can actually be written as a matrix
P . Property (4) additionally says that P 2 = P .

4.7.2 Gram-Schmidt Orthogonalization

Given an arbitrary basis, an algorithm for turning that basis into an orthogonal basis is given by
the Gram-Schmidt algorithm. The idea is as follows: Suppose that u and v are vectors. We can
write v and as a linear combination v = up + uo where up is parallel to u and uo is orthogonal to
u. The orthogonal component is thus uo = v − up where

up =
v · u
‖u‖2

u.

Taking {v,uo}, we have an orthogonal set. Given a third vector w, we can find the orthogonal
component of the projection of w onto the plane spanned by {v,uo}, which will give us an larger
orthogonal set. We will iterate this process, and in doing so generate an orthogonal basis.

Gram-Schmidt:
Let {x1, . . . ,xn} be a basis for the subspace U , and define

f1 = x1

f2 = x2 −
x2 · f1
‖f1‖2

f1

f3 = x3 −
x3 · f1
‖f1‖2

f1 −
x3 · f2
‖f2‖2

f2

...

fn = xn −
xn · f1
‖f1‖2

f1 −
xn · f2
‖f2‖2

f2 − · · · −
xn · fn−1
‖fn−1‖2

fn−1.

The set {f1, . . . , fn} is an orthogonal basis for U .
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Example 4.67

Consider the basis

x1 =

 1
0
−1

 ,x2 =

1
1
2

 ,x3 =

 0
−1

2


of R3. Use Gram-Schmidt to turn this into an orthogonal basis.

Solution. We set f1 = x1, in which case

f2 = x2 −
x2 · f1
‖f1‖2

=

1
1
2

− −1

2

 1
0
−1

 =

3/2
1

3/2


f3 = x3 −

x3 · f1
‖f1‖2

− x3 · f2
‖f2‖2

=

 0
−1

2

− −2

2

 1
0
−1

− 2

11/2

3/2
1

3/2


=

 0
−1

2

+

 1
0
−1

− 2

11

3
2
3

 =

 5/11
−15/11

5/11

 .
By multiplying to get rid of the fractions, our orthogonal set is

f1 =

 1
0
−1

 , f2 =

3
2
3

 , f3 =

 5
−15

5


and you could normalize to turn this into an orthonormal basis, if desired. �

Example 4.68

Using the orthogonal set {f1, f2} you found in Example 4.67, let U = span f1, f2. Determine
the matrix form of the projection operator projU (x), and use this to find projU (b), where

b =
[
1 1 1

]T
.

Solution. To find the matrix form for the projection operator, we input the standard basis vectors
ei for i = 1, 2, 3. Doing this, we get

projU (e1) =
1

2
f1 +

3

22
f2 =

1

11

[
10 3 −1

]T
projU (e2) = 0f1 +

1

11
f2 =

1

11

[
3 2 3

]T
projU (e3) = −1

2
f1 +

3

11
f2 =

1

11

[
−1 3 10

]T
,

thus

A =
1

11

 10 3 −1
3 2 3
−1 3 10

 .
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The projection is now determined by straightforward multiplication:

projU (b) =

 10 3 −1
3 2 3
−1 3 10

1
1
1

 =

12
8

12

 . �

4.8 Approximating Solutions

In the wild, data is often imprecise and subject to small error bounds, making it impossible to solve
the system Ax = b with the data at hand. Nonetheless, if you know that a theoretical answer
should exist, you would strive to find the “closest possible” solution, attributing the lack of an
exact answer to instrument precision.

If A is an m × n matrix, recall that Ax = b has a solution if and only if b ∈ image(A). Since
image(A) is a subspace of Rm, we can define a linear projection operator Timage(A) : Rm → Rm.
The point in image(A) which is closest to b is then Timage(A)(b), and we are guaranteed that
Ax = Timage(A)(b) has a solution.

Determining Timage(A)(b) is quite a chore: We would first find a basis for image(A) by putting
A into row-echelon form. We would then apply Gram-Schmidt to orthogonalize that basis. Finally,
we could project b onto the basis using the Fourier coefficients. Instead, let’s use some algebraic
trickery to arrive at the solution. Suppose that z is a solution to Az = Timage(A)(b), so that b−Az
is orthogonal to image(A) (Az ∈ image(A) and is the projection of b). Hence for any xinRn:

0 = (Ax) · (b−Az) = (Ax)T (b−Az)

= xTATb− xTATAz

= x · (ATb−ATAz).

Since this holds for all x ∈ Rn, it must be the case that ATAz = ATb. This is the normal equation
for z.

Note that if A is invertible, then

z = (ATA)−1ATb = A−1b,

which is a regular solution. If A is not even square though, the matrix (ATA)−1AT plays the role of
the inverse, and is called the Penrose inverse. Additionally, the matrix ATA is symmetric, meaning
that (ATA)T = ATA, which means that you can save some time computing the elements of ATA.

Example 4.69

Set up the best approximate solution to the linear system Ax = b where

A =


1 1 −1
2 −1 6
3 2 −1
−1 4 1

 , b =


5
1
6
0

 .
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Solution. We must first compute the normal equation. Since A is 4× 3, ATA will be 3× 3, and we
get

ATA =

 1 2 3 −1
1 −1 2 4
−1 6 −1 1




1 1 −1
2 −1 6
3 2 −1
−1 4 1

 =

15 1 7
1 22 −5
7 −5 39



ATb =


1 1 −1
2 −1 6
3 2 −1
−1 4 1


1 2 3 −1

1 −1 2 4
1 6 −1 1




5
1
6
0

 =

 25
16
−5


The augmented matrix for ATAz = ATb is15 1 7 25

1 22 −5 16
7 −5 39 −5

 .
This is messy to solve, but can be done using a computer to get

z ≈

 1.87
0.56
−0.38

 . �

Another technique is curve fitting, used often in statistical analysis. The idea is that, give a
bunch of data points, you want to find the line which best represents the data. So suppose your data
consists of n-data points (xi, yi) for i = 1, . . . , n, and you have a straight line y = f(x) = mx+b. Let
di be the distance from your observed data (xi, yi) and the line (xi, f(xi)); namely, di = |yi−f(xi)|.
We want to minimize the overall distances between the data points. However, since we often use
calculus to assist us, and the absolute value function is not differentiable, we often minimize the
sum of the distances squared d21 + d22 + · · ·+ d2n. Since the square function is monotonic for positive
inputs, and is differentiable, this achieves the same affect but behaves nicer with derivatives. Hence
we want to minimize

‖y − f‖2

where y = (y1, . . . , yn)T and f = (f(x1), . . . , f(xn))T = (mx1 + b, . . . ,mxn + b)T . If we set

M =


x1 1
x2 1

...
...

xn 1

 , x =

[
m
b

]
, y =


y1
y2

...
yn

 ,
then we’re trying to find the best approximation to the system Mx = y.

Least Square Approximation: Given data points (xi, yi), i = 1, . . . , n, let M,x,y be as
above. The Least Square Approximation is the line given by y = mx+ b, where x = (m, b)T

satisfies the normal equations MTMz = MTy.

c©2017- Tyler Holden
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4 Vector Spaces 4.8 Approximating Solutions

If instead of using lines you wish to use higher order polynomials, you can change the matrix
M and x to include higher order terms

M =


xn1 · · · x21 x1 1
xn2 · · · x22 x2 1

...
. . .

...
...

...
xnk · · · x2k xk 1


known as a Vandermonde matrix.

Example 4.70

Find the least squares approximation to the data (0, 1), (1, 3), (2, 2).

x

y

0
0

1

3

2

2

1

Figure 15: The least squares solution to Example 4.70

Solution. Our matrices are

M =

0 1
1 1
2 1

 , z =

[
m
b

]
, y =

1
3
2

 .
with the normal equation components

MTM =

[
5 3
3 3

]
, MTy =

[
7
6

]
.

Our usual techniques show that MTMz = MTy has solution z = (1/2, 3/2)T , so the least squares
approximation is the line y = (x+ 3)/2. �
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