CSC 488: Building a Compiler

For Beginners

Michael Liut
liutm@mecmaster.ca
michael. liut@utoronto.ca

January 24, 2017



Michael Liut CSC 488 Building a Compiler

Contents
(1__Introduction| 3
I1.1  Software Design|. . . . . . . . . . . e 3
1.2 Biting Off More Than You Can Chew| . . . . . . .. ... ... .. ... .... 3
1.3 What Does a Compiler Do? What Dol Need To Know?| . . . . . ... ... . ... ..... 3
2 The DOs and DON’T's of Compiler Construction| 4
DT DOl. . . e 4
2.2 DONTT . . e 5
B Using LEX/FLEX and CUP/YACC| 5
BI LEX/FLEX M) - . o o o oo 5
B.1.1  Example|. . . . . . e 6
B2 SoIUBOnl - « « « o v v e e e e 6
3.2 CUP [LLBIf. . . . o o o 8
[3.2.1  Recursive Patterns and Context Free Grammars [1]|. . . . . . . . . .. . ... ... .. 8
[3.2.27 Ambiguous Grammars [1J| . . . . . oo o e 8
[3.2.3  The Problem with Ambiguous Grammars [1l| . . . . .. ... ... ... ... ... .. 9
[3:24 Grammar Example [3]] . -« « oo 9
B25  Grammar Solutionl . . . . . . . . .. 10
[3.2.6 CUP/YACC [2LBI| . . . . . o o 11
[B.2.7  Grammar Solution in YACC] . . . . .. ... ... ... ... 12
8.2.8  Grammar Solution in CH+-4 . . . . . . . . oL L e 13
4_Conclusion| 24

Page 2 of



Michael Liut CSC 488 Building a Compiler

1 Introduction

This document has been composed as supplemental material to assist the students of CSC488H: Compilers
and Interpreters from The University of Toronto with their compiler construction project.

1.1 Software Design

If you recall any of your previous software design and specification courses, you will remember that
above all else your primary goal is to ensure that your software works. Once you have a functioning
program, you must strive for elegance, beauty and finesse. Remember, perfection is in the details!
Finally, your concern must be efficiency. Optimize you program, but ensure that you never compromise
the primary goal; your software must work!

1.2 Biting Off More Than You Can Chew

Over the years I have seen many students take on more than they can handle. Remember, many of
you are taking 4-6 courses (some even 7 or 8) and building a compiler is a huge task that is not to be
taken lightly.
One example I refer to often is the inverted trapezoid model. The layers (from top to bottom) are as
follows:

1. Software Requirements Specification.

2. High-Level Architecture Design
3. Detailed Design
4. Final Product

The idea behind this model is that at each layer you will shave something off from your initial software
requirements specification. As you move into a more detailed design you soon realize the importance
of simplicity and will scale down your overall construction. Once you reach your final product (i.e.
the compiler) you want to remember what is said in 1.1! If have already forgotten, go back and read
it again!

Remember: you must ensure that your input language meets the minimum requires as per the
assignment! You cannot “shave” these off.

1.3 What Does a Compiler Do? What Do I Need To Know?

In general, a compiler transforms an input language into a target language. For the purpose of this
document I will not be discussing the three major components of a compiler in detail (the Front
End, the Optimizer, and the Back End). Instead, I will be providing a toned down overview to
allow you to hone in on key subsections for you to directly apply to your project. I will also imply
some suggestions below; I strongly recommend you follow these suggestions for your first construction.

Firstly, a compiler is responsible for recognizing the syntax of a language. This means that the
sentence(s) of the source program must be checked for validity. What you need to know is that pars-
ing is where the source code, in essence, is converted into an Abstract Syntax Tree (hereinafter known
as “AST”) and semantically validated with your grammar.

A grammar is a set of rules that explicitly states how to properly form strings in a language’s alphabet
and ensure they are valid with respect to the language’s syntax. What you need to know is that you
will be better off conducting a top-down parsing approach and creating a predictive grammar (thereby
being LL(1)). Alternatively, you may opt for LALR(1), a superset of LL(*), but I think a predictive

Page 3 of



Michael Liut CSC 488 Building a Compiler

grammar will reduce your work in later sections (a.k.a. sprints). Also, use of a predictive grammar
will remove the risk of memory leaks.

At this point you may be wondering how to transform your code from a high-level (source) lan-
guage into your desired lower-level (target) language. You may also be wondering how to implement
some high-level optimization. What you need to know is that your AST has to be transformed to

represent a more efficient computation utilizing the same semantics. Eliminating superfluous local
assignments, early calculations of constant expressions and common subexpressions are just a few
examples of trivially redundant high-level code that can be optimized at an early stage. This is an
extremely important part of a compiler and this brief synopsis only scratches the surface!

Now you may be asking yourselves, how do I generate the low-level (target) language? The gen-
eral idea is to utilize the parse tree by transforming it into a low-level language; commonly x86,
MIPS, or ARM. This concept is widely used but completely dependent on the source language and
intended target language. With respect to optimization at a low-level stage (also commonly referred
to as peephole optimization), what you need to know is that, the low-level code is scanned for ineffi-
ciencies which are then modified and corrected.

Note: both code generation and low-level optimization can be repeated several times.

Let’s look at an example:
If we look at the GNU Compiler Collection (hereinafter known as “GCC”), GCC repeats the code
generation and low-level optimization stages many times. It transforms the high-level C code
into an intermediary (lower-level) language (which is platform independent). It further optimizes
the intermediary code and then transforms this intermediary language into its target (and true
low-level) language (e.g. x86, MIPS, ARM, etc... ). Optimization occurs several more times, and
finally, linking occurs (i.e. the resolution of references to other modules).

2 The DOs and DON’Ts of Compiler Construction

This section will provide you with a brief list of common tips to ease your compiler construction experience.

2.1 DO

1. Define your language well!
Ensure that your language is defined well syntactically and semantically. If it is not, it can turn
out to be more work on your part.

2. Choose a good syntax analyzer!
There are many that you can choose from, we will show you how to use FLEX. It is fast, easy
to use and open-source.

3. Choose a good parser!
There are many that you can choose from, we will show you how to use CUP; a LALR parser
generator. You can use CUP with your predictive grammar. Alternative options to CUP that I
have worked with are: ANTLR3/4 (LL(*)), Bison (LALR(1)), and YACC (LALR(1)).

4. Test your code!
Establish a set of test cases and be sure to run them regularly. Remember, you may use regular
expressions for validity checking too.

Page 4 of



Michael Liut CSC 488 Building a Compiler

2.2

Correct errors before moving forward!
Running those test cases is one thing, but if they fail you need to fix what is broken prior to
moving on. This can be slow, long and tedious; but it is essential!

DON’T

Code before having your language and design specifications!
Skipping to the coding phase without verifying your language and design specifications can turn
out to be detrimental.

. Get overwhelmed by thinking of the project as a whole from the beginning!

This project is broken up into sprints for a reason.

. Shoot down others ideas!

Give them a chance! Their ideas can prove to be useful!

. Make a syntax analyzer!

There are many that you can choose from, it is difficult to make one from scratch and quite
frankly not the easiest thing to do!

. Make a parser!

There are many that you can choose from, it is difficult to make one from scratch and quite
frankly not the easiest thing to do!

3 Using LEX/FLEX and CUP/YACC

This section will be used to briefly explain a scanner and parser that you may use for your project.

3.1 LEX/FLEX [4]

The scanner performs lexical analysis of your program by reading in the input language as a sequence
of characters and recognizing them as tokens. FLEX (Fast LEXical analyzer generator) is used to
generate scanners. This is done by identifying the pattern in the text of a certain language. For
example, a digit would represent [0 — 9].

What you need to know: is that LEX and FLEX for the most part are the same. The difference

is that LEX affords you the capability to use your own input code and modify the character stream,

whereas FLEX does not allow you to do so. You can use either or.

In general, FLEX is utilized in the following manner:

Specification of

a Scanner
B FLEX lex.yy.c

- *,flex

lex.yy.c C compiler a.out
Input Stream a.out Seq_ruoeknec:S of

Page 5 of



Michael Liut CSC 488 Building a Compiler

FLEX begins by reading a specification of a scanner (either an input file *.lex or from standard input)
which it uses to generate a C target file as output lex.yy.c. This outputted C file is then compiled and
linked using the “-11” library, which produces an executable file a.out. This executable file analyzes
its input stream and transforms it into a sequence of tokens.

What you need to know:

e *lex uses regular expressions and C code.
e lex.yy.c defines a routine yylex() that uses the specification to recognize tokens.

e a.out is the scanner.

3.1.1 Example

Give a lex/flex input file to generate a scanner that recognizes the following tokens:

1. Java identifier
2. C unsigned integer
3. C literal string
and that ‘eats’ multi-line comments, where the comment starts with “[|[” and ends with “]|]”.

The nested multi-line comments are not allowed (similarly as in C/C++/Java). The scanner
must treat the comment as white space.

3.1.2 Solution

Given the requirements in 3.1.1., you should have a solution that looks like this:

Example Solution

o
—~—

/* Michael Liut =/
/* UofT - CSC488 «/
/* COMMANDS TO EXECUTE:

* lex example.lex
* gcc —-11 lex.yy.cC
* ./a.out < test
*/

o

}

%$option noyywrap
%x checkComments

o

{
/* REGEX Variable Initialization =/

s}

WS [ \nl|[\n]|[\r\n][[\t]|[\r]
begComment "L

endComment "I

integers [0-91+

cLiteral NN L") A"

jIdentifiers (([a—zA-Z_S]) ([a—zA-20-9_S]) *)

Page 6 of



Michael Liut CSC 488 Building a Compiler

o
o

o°
—_—

/* Begin Function =/
%}

{begComment} {BEGIN (checkComments);}

/* Checks for comment end without a start —-- Returns -1 =/

{endComment} {fprintf (stderr, "Error: Found comment end without a beginning!\n"); return -1;}

/* Error Checking —- Check for opening comment inside of a comment =/

<checkComment s>{endComment} {BEGIN (INITIAL);}
<checkComments>{begComment} {fprintf (stderr, "Error: Found [|[ inside another
[|[ comment!\n"); return -1;}

/* Removes the comments & comment content =/

<checkComments> (. |\n)
<checkComment s><<EOF>> {fprintf (stderr, "Error: Found [|[ without closing ]|]!\n"); return -1;}

{integers} {printf ("An integer (%s): %d \n", yytext, atoi(yytext));}
{jIdentifiers} {printf("Java identifier: %s \n", yytext);}
{cLiteral} {printf("C Literal: %s \n", yytext);}
{ws} {}

{printf ("ERROR DETECTED %s \n", yytext);}

o
o

int main(int argc, charx argv([]) {
yylex();

Some details with respect to the segment of code above:
1. “noyywrap” is used when there is only one input file, you likely will not turn on this
feature. However, as Flex declares the function yywrap we must define it.

2. “%2” indicates that only prefixed rules with the state’s name will be active when the
scanner is in that state. This is an exclusive property.

So you may be looking at this solution and trying to understand what is being accomplished?
This file is your flex file, you are using it to direct your scanner into what it needs to check and/or
remove from the source file (i.e. your input file). The flex file is used to construct your scanner
a.out. This flex file is eliminating multi-line comments as they do not need to be parsed.

What you need to know is that the a.out file generated from this process is your scanner.

Page 7 of



Michael Liut

CSC 488 Building a Compiler

3.2

CUP [1, 3]
3.2.1 Recursive Patterns and Context Free Grammars [I]

“A context-free grammar is a set of recursive rewriting rules (or productions) used to
generate patterns of strings. Context-free grammars are often used to define the syntax
of programming languages.

A parse tree displays the structure used by a grammar to generate an input string. Parse
trees are typically used within a compiler to describe the structure of an input program
in terms of the syntactic rules used to define valid programs.

A parser is an algorithm that determines whether a given input string is in a language
(and, as a side-effect, usually produces a parse tree for the input). There is a mechanical
procedure for generating a parser from a given context-free grammar.”

A Context Free Grammar consists of the following components:
1. a set of terminal symbols, which are the characters of the alphabet that appear in

the strings generated by the grammar.

. a set of non-terminal symbols, which are placeholders for patterns of terminal sym-

bols that can be generated by the non-terminal symbols.

. a set of productions, which are rules for replacing (or rewriting) non-terminal sym-

bols (on the left side of the production) in a string with other non-terminal or
terminal symbols (on the right side of the production).

. a start symbol, which is a special non-terminal symbol that appears in the initial

string generated by the grammar. By convention the start symbol is usually the
left-hand side of the first production.

To generate a string of terminal symbols from a Context Free Grammar, we:
1. begin with a string consisting of the start symbol,;

2. apply one of the productions with the start symbol on the left-hand side, replacing

the start symbol with the right-hand side of the production;

. repeat the process of selecting non-terminal symbols in the string, and replacing

them with the right-hand side of some corresponding production, until all non-
terminals have been replaced by terminal symbols. The resulting sequence of strings
is called a derivation.

More details and examples on the information extracted from Dr. C. Brown’s document can
be found here.

3.2.2 Ambiguous Grammars [I]

An Ambiguous Grammar is one which there are two different parse trees for the same
terminal string. For example, let’s say a grammar for balanced parentheses looks like this:

P — (P)|PP|e

Page 8 of


https://www.cs.rochester.edu/~brown/173/readings/05_grammars.txt

Michael Liut

CSC 488 Building a Compiler

where “|” is the notational shorthand for “or” and “€” denotes an empty string (i.e. an

empty right-hand side).

What you need to know is that you can prove any grammar is ambiguous by demon-
strating two parse trees for the same terminal string.

In this particular example, we can also prove that the grammar is ambiguous, let’s look

[
€.

for the empty string

Casel. P — ¢

Case2. P - PP — ce¢

Now say you are still not convinced that this grammar is ambiguous, maybe you believe
that you will fair better with “( )”. Lets try.

Case . P - PP — (P)e — (¢€)e¢

Case2. P - PP — €(P) — e(¢€)

What would the unambiguous grammar look like?

P — (P)P|e

3.2.3 The Problem with Ambiguous Grammars [I]

“A parse tree is supposed to display the structure used by a grammar to generate an input
string. This structure is not unique if the grammar is ambiguous. A problem arises if we
attempt to impart meaning to an input string using a parse tree; if the parse tree is not
unique, then the string has multiple meanings.

We typically use a grammar to define the syntax of a programming language. The struc-
ture of the parse tree produced by the grammar imparts some meaning on the strings of
the language.”

What you need to know is that “if the grammar is ambiguous, the compiler has no way
to determine which of two meanings to use. Thus, the code produced by the compiler is
not fully determined by the program input to the compiler.”

More details and examples on the information extracted from Dr. C. Brown’s document can
be found here.

3.2.4 Grammar Example [3]

Let’s say that we are trying to define string expressions for a new programming language.
The terminals are as follows:

1. STRLIT is a token string literal.

2. SID is a token string identifier representing a name of a string variable or a name
of a method returning a string value.

Page 9 of


https://www.cs.rochester.edu/~brown/173/readings/05_grammars.txt

Michael Liut

CSC 488 Building a Compiler

‘[’ is a token.
‘I’ is a token.
‘7 is a token.
‘(" is a token.

‘)’ is a token.

‘¢’ is a token.

© ® N e W

‘+7 is a token.

For simplicity’s sake, we will treat the non-terminal ‘expr as a terminal (i.e. we will not
provide a definition for expr — which is representing an integer expression).

Given the following notation of string expressions below, give a Context-Free Unambiguous
Grammar in Backus-Naur Form.

. STRLIT is a string expression (meaning a string literal).
. SID is a string expression (meaning a name of a string variable).

. SID() is a string expression (meaning a call to a method returning a string value).

_ W N =

if X, X1, ..., X, are string expressions, then so are the following sentential forms:

(a) SID( X; ) represents a call to a method with one string argument returning a
string value.

(b) SID( X3, X5 ) represents a call to a method with two string arguments re-
turning a string value.

(¢) SID( X;, X2, X3 ) represents a call to a method with three string arguments
returning a string value.

(d) SID( Xy, ..., X,, ) represents a call to a method with n string arguments
returning a string value.

(e) X[iexpr] represents the symbol of the value of X at position iexpr.

(f) X[iexpri:iexprs] represents the symbol of the value of X at position iexpr;
to position iexprs.

(g) X[:iexpr] represents the prefix of the value of X from position 0 to position
iexpr.

(h) Xiexpr:] represents the suffix of the value of X from position iexpr to the
end position.

(i) X1 + Xo represents the concatenation of the value of X; with the value of X5.

3.2.5 Grammar Solution

Context-Free Grammar in Backus-Naur Form:

(strfun) ::= SID (sid_tail)

(sid_tail) = €
| *C (args)

Page 10 of



Michael Liut

CSC 488 Building a Compiler

(args) == *)’
| (strezp) (args_tail)
(args_tail) == )’

| (S

,’ (strexp) (arg_tail)

(strexp) ::= STRLIT (strlit_tasil)
| SID (sid_tail_one)

(strlit_tail) = €
| 0" (rng) (strlit_tail)
| 4+’ (strezp)

(sid_tail_one) ::= €
| < (sid_tail_two)

(sid_tail_two) = ‘)’ (sid_tail_three)
| (strezp) (sid_tail_four)

(sid_tail_three) ::= €
| ‘0 (rng) 1’ (strlit_tail three)

(sid_tail_four) = *)’ (sid_tail_three)
| ¢, (sid_tail_four)

(rng) == ‘" IEXPR ‘]’
| IEXPR ‘:’ (rng_tail)

(rng_tail) == ‘1’
| < IEXPR

3.2.6 CUP/YACC [2, 5]

Yet Another Compiler Compiler (hereinafter referred to as YACC), is a Look Ahead Left-to-
Right (hereinafter referred to as LALR) parser generator for C++ and C#. In general, FLEX
and YACC are utilized in the following manner:

sSource

Files

Lexical
Fules

Fules

Frogram Generated
Generators  Cutput Files

Grammar

Compiler

Compiled
Frogram

Farsed fnpLt for
Another Program

Page 11 of



Michael Liut

CSC 488 Building a Compiler

Construction of Useful Parsers (hereinafter referred to as CUP) is a LALR parser generator
for Java. YACC is intended to be CUP’s predecessor. The Technische Universitat Miinchen is
currently responsible for maintaining CUP. More details and examples can be found here.

3.2.7 Grammar Solution in YACC

Using YACC, verify the grammar (i.e. it should not give you any shift/reduce error).

‘Example Solution

/ *
* Michael Liut
* UofT - CSC488
* COMMANDS TO EXECUTE:
* yacc -d example.yacc
* gcc lex.yy.c y.tab.c -11
* ./a.out < test
*/

o

#include <stdio.h>
extern int yylex(void);

void yyerror (char const xs) { fprintf (stderr, "%s\n",
%}
%$token STRLIT SID IEXPR
/* STRING FUNCTION =/
strfun: SID sid_tail;
sid_tail: /* empty */ | ' (' args;
/* Arguments x/
args: ")’ | strexp args_tail;
args_tail: )’ | ’,’ strexp args_tail;
/* STRING EXPRESSION «/
strexp: STRLIT strlit_tail | SID sid_tail one;
strlit_tail: /* empty */ | [’ rng strlit_tail | '+’ strexp;
sid_tail_one: /* empty */ | ' (' sid_tail_two;
sid_tail_two: ’)’ sid_tail_three | strexp sid_tail_four;
sid_tail_three: /% empty */ | [’ rng ']’ sid_tail_three | '+’
sid_tail_ four: ’)’ sid_tail_three | ’,’ sid_tail_four;

/* RNG for Integer Expressions =/
rng: ’:’ IEXPR ']’ | IEXPR ’:’ rng_tail;

rng_tail: "]’ | ’:’ IEXPR;

o
o

int main() {

s); }

strexp;

Page 12 of


http://www2.cs.tum.edu/projects/cup/

Michael Liut CSC 488 Building a Compiler

yyparse () ;

3.2.8 Grammar Solution in C++

/%
* Michael Liut
x UofT — CSC488
% Recursive Descent Parser for my LL(1) grammar
x* NOTE: Followed skeleton format located in Sebesta’s
* Concepts of Programming Languages Textbook.
* Edition 10. Pages 172 — 177.
x* NOTE: Dr. Franek’s ”Help” code wutilized here too.

*/

/******************************************************************************/
/******************************************************************************/

/* Including Base Packages %/
#include <stdio.h>
#include <ctype.h>

/* Global Variable Declarations */
int charClass;

char lexeme [100];

char nextChar;

int lexLen;

int token;

int nextToken;

FILE *in_fp, xfopen ();

/* Blue Printing — Function Declarations x/
void addChar ();

void getChar ();

void getNonBlank ();

int lex ();

/% Character Classes */
#define LETTER 0
#define DIGIT 1
#define UNKNOWN 99

/* Defining Token Codes */
#define INT_ LIT 10
#define IDENT 11

#define ASSIGN_OP 20
#define ADD OP 21

#define SUB_OP 22

#define MULT OP 23

#define DIV_OP 24

#define LEFT PAREN 25
#define RIGHT PAREN 26

/* Defining Multi—Purpose Functions */
#define isdigit (x) ((x)>=’0&&(x)<="9")
#define isvar(x) (((x)>=’a’&&x)<="z")||((x)>="A’&&(x)<="2Z"))

Page 13 of



Michael Liut

CSC 488 Building a Compiler

#define isws (x) ((x)=="-" || (x)=="\n" || (x)=="\¢")
#define EatGarbage () while(isws(s[*spp])) (*spp)++
#define SavePosition() sppl = #*spp

#define RestorePosition () *spp = sppl

/o Kk kK ko o ok o ok KKk ok o ok ok ok KK Kok ok ok ok o KK Kok ok ok ok o o K KK ok o ok o ok kK Kok ok ok o ok K KK ok ok ok ok o K K Kk ok ok ok %/
/s ks sk sk ok ok ok Kk sk sk ok ok ok sk ok ok sk ksk kR koo kkokok PARSER skosk sk sk sk kst sk ok sk ok ok sk sk sk sk ok o sk sk sk sk sk ok ok ok ok sk sk skok ok /
/o kKK o o o o K KKk ok o o o o KK Kok ok ok ok o KK Kok ok o o ok o K K KK ok o o ok o K KK Kok o o o o K K KK ok ok ok ok o K KKk ok ok ok %/
/*int Parse(charx s) {

int spp;

spp = 0;
if (!'strFun (s, &spp))
return 0;

while (isws (s[spp])) spp++;

if (s[spp] == "\0’)
return 1;
else
return 0;
} //end Parse Functionx/

/o ko sk sk ok ok ok sk ok ok ok o ok ok ok ok sk ok ok ok s ok ok ok ok sk ok sk ok sk sk sk ok ok sk ok sk ok sk ok sk ok sk s sk sk ok ok sk sk ok ok ok koK kK sk ok ok ok ok ok ok ok ok /
/3 ok ok sk sk ok ok sk ok ok sk ok ok sk sk sk okok ook skok kR skokoskoskok ok ok GRAMIMAR, stk sk ok sk sk sk sk ok ok sk sk sk sk ok ok sk ok sk sk ok ok sk sk sk sk ok ok sk ok skok ok ok /
/o ko sk sk sk ok sk sk sk sk ok sk sk ok sk sk ok sk sk sk ok K sk ok sk ok ok sk sk sk sk ok sk sk ok sk ok ok s sk sk sk ok sk sk ok sk ok sk sk ok sk ok ok sk ok sk ok sk sk ok sk ok ok ok ok sk ok Kk ok sk ok ok /

V&

* <strfun> ::= SID <sid_tail>

* <sid_tail> ::= Epsilon | 7(7 <args>

* <args> ::= 7)” | <strexp> <args_tail>

* <args tatl> ::= 7)” | 7,7 <strexp> <arg_tail>

* <strexp> ::= STRLIT <strlit_tail> | SID <sid_tail_one>

* <strlit _tail> ::= Epsilon | 7[” <rng> <strlit_tail> | 7+” <strezp>
* <sid_tail_ome> ::= Epsilon | 7(”7 <sid_tail two>

* <sid_tail_two> ::= 7)” <sid_tail_three>

* <sid_tatl_three> ::= Epsilon | 7[7 <rng > 7]” <strlit_tail_three>
* <sid_tail—four> ::= 7)” <sid_tail_three> | 7,” <sid_tail_four>

* <rng> ::= ”:” IEXPR 7]” | IEXPR ”:” <rng_tail>

* <rng_tail> ::= 7]” | 7:” IEXPR

*/
/******************************************************************************/
/******************************************************************************/

int sidTail (charx s, int *spp);

// <strexp> ::= STRLIT <strlit_tail> | SID <sid_tail_one>
int strExp(charx s, int *spp) ;

// Checks if it is an integer
int isIEXPR(charx s, int *spp)

)

// Checks if it is a Java Identifier
int isSID (charx s, int x*spp) ;

// <strfun> ::= SID <sid_tail>
int strFun(charx s, int *spp) {
int sppl, spp2;

SavePosition ();
EatGarbage () ;

if (1isSID (s, spp)) {

Page 14 of



Michael Liut CSC 488 Building a Compiler

RestorePosition ();
return 0;

}

Spp2 = *spp;

if (!sidTail(s, &spp2)) {
RestorePosition ();
return 0;

}

return 1;

}

// Checks if it is a string literal
int isSSTRLIT (charx s, int *spp) {
int sppl;

SavePosition ();
EatGarbage () ;

i£ (s [xsppl=="\"") {
(*spp)++;
while (s [*spp]!="\"")

(*spp)—+-+;

(*spp)+-+;
return 1;

} else {
RestorePosition ();
return 0;

}

// <args_tail> ::= 7)” | 7,7 <strexp> <arg_tail>
int argsTail (charx s, int *spp) {
int sppl, spp2;

SavePosition ();
EatGarbage () ;

// }’)!’
if(s[xspp] = ")) {
return 0;
}
if(s[*spp] = *\0°) {
RestorePosition ();
return 0;
}
if(s[xspp] = ’,’) {
// <strexp> <args_tail>
if (!strExp (s, spp)) {
RestorePosition ();
return 0;
}
Spp2 = *spp;
if (largsTail(s, &spp2)) {
RestorePosition ();
return O;
}
}
return 1;

Page 15 of



Michael Liut CSC 488 Building a Compiler

}

// <args> ::= 7)” | <strexp> <args_tail>
int args(charx s, int xspp) {
int sppl, spp2;

SavePosition ();
EatGarbage ();

/)7

if(s[xspp] = 7)) {
return 0;

}

if(s[*spp] = ’\0’") {

RestorePosition ();
return 0;

}

// <strexp> <args_tail>

if (!strExp(s, spp)) {
RestorePosition ();
return 0;

}
Spp2 = *spp;
if (largsTail (s, &spp2)) {

RestorePosition ();
return 0;

}
return 1;
}
// <sid_tail_one> ::= Epsilon | 7(7 <sid_tail_two>
int sidTailOne(char*x s, int *spp) {
int sppl;
SavePosition ();
EatGarbage ();
// 7(7 <sid_tail_two>
if(s[xspp] = "(7) {
(*spp)++;
if (largs(s, spp)){
RestorePosition ();
return 0;
}
(*spp)——;
}
return 1; // Epsilon
}
// <strexp> ::= STRLIT <strlit_tail> | SID <sid_tail_one>

int strExp(charx s, int *spp) {
int sppl, spp2;

SavePosition ();
EatGarbage ();

Page 16 of



Michael Liut

CSC 488 Building a Compiler

// STRLIT <strlit_tail>
if (lisSTRLIT (s, spp)) {
return 0;

}

if (s[xspp] = "\07") {
RestorePosition ();
return 0;

}

// SID <sid_tail_one>

if (!strExp (s, spp)) {
RestorePosition ();
return 0;

}
Spp2 = *spp;
if (!sidTailOne (s, &spp2)) {

RestorePosition ();
return 0;

}
return 1;
}
// <sid_tail> ::= Epsilon | 7(” <args>

int sidTail(charx s, int *spp) {

int sppl;

SavePosition ();
EatGarbage ();

// (7 <args>
if(s[+spp] = " () {
(#spp)++;
if (largs(s, spp)){
RestorePosition ();
return 0;

}
(xspp)——;
}
return 1; // Epsilon
}
// <rng_tail> ::= ”]” | 7:” IEXPR

int rngTail(char* s, int *xspp) {

int sppl, spp2;

SavePosition ();
EatGarbage ();

if (s[*spp]!="1") {
RestorePosition ();
return 0;
}
// 7:” IEXPR 7]”
if (s[*spp]l==":") {
(*spp)++;
if (1isIEXPR (s, spp)) {
(*spp)++;
if (s[*sppl=="]"){

Page 17 of



Michael Liut CSC 488 Building a Compiler

RestorePosition ();
return 0;

}
}
}
return 1;
}
// <rng> ::= 7”:” IEXPR ”]” | IEXPR ”:” <rng_tail>

int rng(charx s, int xspp) {
int sppl, spp2;

SavePosition ();
EatGarbage ();

// 7.7 JEXPR v]v

if (s[xsppl==":") {
(*+spp)++;
if (1isIEXPR (s, spp)) {
(+spp)++;
if (s[*sppl=="]"){

RestorePosition ();
return 0;

}

// IEXPR 7:” <rng_tail>
if ({isIEXPR(s, spp)) {
if (s [*sppl==":") {
(*spp)++;
if (!rngTail(s, spp)) {
RestorePosition ();
return 0;

}
}
}
return 1;
}
// <strlit_tail> ::= Epsilon | 7[7 <rng> <strlit_tail> | 7+” <strezp>

int strlitTail (charx s, int *spp) {
int sppl, spp2;

SavePosition ();
EatGarbage () ;

J/ 7[7 <rng> <strlit_tail>
if (s[+spp]l=="[") {
(*spp)++;
if (!rng(s, spp)) {
RestorePosition ();
return 0;
}
if (!I'strlitTail (s, spp)){
RestorePosition ();
return 0;

}

/) 7+ <strexp>
£ (s [xsppl=="+") {

Page 18 of



Michael Liut CSC 488 Building a Compiler

(*xspp)++;
if (!'strExp(s, spp)) {
RestorePosition ();

return 0;
}
}
return 1; // Epsilon
}
// <stid_tail three> ::= Epsilon | ”[”7 <rng> 7]” <strlit_tail three>

int sidTailThree(charx s, int *spp) {
int sppl, spp2;

SavePosition ();
EatGarbage () ;

/) 7[7 <rng> 7]” <strlit_tail _three>
if (s[xspp]=="1[") {
(*spp)++;
if (args(s, spp)) {
RestorePosition ();
return 0;

}

if (s[xspp]!="]1") {
RestorePosition ();
return 0;

}

(xspp)++;

if (!sidTailThree(s, spp)) {
RestorePosition ();
return 0;

}
}
return 1; // Epsilon
}
// <sid_tail_two> ::= 7)” <sid_tail_three>

int sidTailTwo(char*x s, int *spp) {
int sppl, spp2;

SavePosition ();
EatGarbage () ;

// 7)7 <sid_tail three>
it s — 0 |
(*spp)+-+;
if (!sidTailThree(s, spp)){
RestorePosition ();
return 0;
}
(*¥spp)——;
}

return 1;

Page 19 of



Michael Liut CSC 488 Building a Compiler

// <sid_tail—four> ::= 7)” <sid_tail_three> | 7,” <sid_tail_four>
int sidTailFour (char*x s, int *spp) {
int sppl;

SavePosition ();
EatGarbage ();

// 7)7 <sid_tail_three>
if(s[xspp] = *)°)
if (!sidTailFour (s, spp)) {
RestorePosition ();
return 0;

}

// 7,7 <sid_tail_four>
if(s[xspp] = 7,7) {
if (!sidTailFour (s, spp)) {
RestorePosition ();
return 0;

}

return 1;

}

/o ko sk sk sk ok sk sk sk sk ok sk sk ok sk sk ok sk sk sk ok K sk ok sk ok ok sk sk sk sk ok sk sk ok sk ok ok s sk sk sk ok sk sk ok sk ok sk sk ok sk ok ok sk ok sk ok sk sk ok sk ok ok ok ok sk ok Kk ok sk ok ok /
/3 ok sk ok ok ok ok ok sk okok ok okokskokok ok sk okokokkok ok JID JINT /STRLIT sk sk skt ok s sk sk skokok ok sk ok ook ok o sk okokok ok skokokok o/
/o ok ok sk sk sk ok sk sk ok sk sk ok sk sk sk sk sk ok ok sk ok ok sk ok ok ok ok ok ok CHECKER sk sk sk ke ok sk sk ok ok ok ok sk sk ok ok sk ok ok sk ok K sk ok sk sk ok ok sk ok ok ok ok ok /
/o ok o sk sk ok ok ok sk sk sk ok ok s ok sk ok ok sk ok sk ok ok sk sk sk ok ok sk ok sk ok sk sk ok sk ok ok s sk sk ok ok ok sk ok sk ok ok sk ok sk ok ok sk ok sk ok o sk ok skok ok sk sk ok ok ok ok ok ok ok ok /

// Checks if it is an integer
int isIEXPR (char* s, int *spp) {
int sppl, i;

SavePosition ();
EatGarbage () ;

if (s[+spp]=="0") {
(*spp)+-+;
return 1;

}
for(i = 0; i < 9 && isdigit(s[*spp]); i++, (*spp)++);

if (i = 0) {
RestorePosition ();
return 0;

return 1;

}

// Checks if it is a Java Identifier
int isSID (char* s, int *spp) {
int sppl;

SavePosition ();
EatGarbage ();

if ((s[xspp]=="_")||(s[*spp]=="8")||isvar(s[+spp])) {
(xspp)++;
while (! (isws(s[*spp]))) {

Page 20 of



Michael Liut CSC 488 Building a Compiler

if ((s[*sppl=="_")||(s[*spp]=="8")||isvar(s[*+spp])||isdigit (s[*spp])){
(xspp)++;
} else {

RestorePosition ();
return 0;

}

return 1;

} else {
RestorePosition ();
return 0;

}

/o ok ok sk sk sk ok sk sk sk sk ok sk sk ok sk sk ok ok sk sk ok K sk ok sk sk ok sk sk ok sk ok sk sk sk sk ok K s sk sk sk ok sk sk ok sk ok sk sk ok sk sk ok sk ok sk sk ok ok sk ok sk ok ok sk ok sk sk ok K sk ok sk ok sk /
/o ko sk ok kot ok ok ok ok kot ko kok kot kokokoskokokokkokokok MAIN METHOD stk sk sk skt ok sk sk sk skoskok ks sk okoskok ok sk sk okokok ok sk okokok o/
/% sk kKK koK kKK K K K K K o o ok ok ok ok ok ok ok ok ok ok Sk Sk K oK oK KKK KK KK K K K K K o o ok ok ok ok ok ok ok ok ok sk sk ok kKKK KKK K K K K K K R R ok ok %/

// main() {

// /+* Open the input data file and process its contents x/
// if ((in_fp = fopen(”front.in”, ”r”)) == NULL)

// printf(”ERROR — cannot open front.in \n”);
// else {

// getChar ();

// do {

// le ();

// } while (nextToken != EOF);

// }
// Y // end of main method

int main (int argc, char xx argv){
+targv ;
——argc;
if (arge > 0){
in_fp = fopen(argv[0], "1r”);

if (in_fp = NULL)
printf (?’ERROR_—_cannot._open._file!_\n”);
} else {
in_fp = stdin;
}

printf(” Test_Passed!\nHave_a_great.day!.:—)_\n");

}

/o ko sk sk sk ok ok sk sk sk ok ok s ok sk ok ok sk ok ok ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok sk sk ok ok sk ok sk ok sk s sk sk ok ok sk ok ok ok ok sk ok skok ok sk ok ok ok ok k ok ok ok ok /
/% ko skok ok ok ok sk ok ok ok skokok ok ok ok kskokskk ok ok k OTHER FUNCTIONS' s sk sk sk sk ok s sk sk sk sk ok sk sk sk sk sk ok ok sk sk sk sk ok ok sk ok ook ok ok /
/o ko sk sk sk ok sk sk ok sk ok ok sk sk sk sk ok sk sk sk ok K sk ok sk ok ok sk sk ok sk ok sk sk ok sk ok K s sk sk sk ok ok sk ok sk ok sk sk ok sk sk ok sk ok sk ok sk sk ok sk ok ok ok ok sk ok Kk ok ok ok ok /

/* lookup Function
* ?Looks up” operators and parentheses, the returns the token
*/
int lookup (char ch) {
switch (ch) {
case '(:
addChar ();
nextToken = LEFT PAREN;
break;
case ) ’:
addChar ();
nextToken = RIGHT PAREN;
break;
case '+’:

Page 21 of



Michael Liut

CSC 488 Building a Compiler

addChar ();
nextToken = ADD_OP;
break;

case '—':
addChar ();
nextToken = SUB OP;
break;

case ’'x’:
addChar ();
nextToken = MULT OP;
break;

case '/’:
addChar ();
nextToken = DIV_OP;
break;

default:
addChar ();
nextToken = EOF;
break;

}

return nextToken;
} // end of int lookup function

/******************************************************************************/

/* addChar Function
* Adds the next Char to lexeme
*/
void addChar () {
if (lexLen <= 98) {
lexeme [lexLen++4] = nextChar;
lexeme [lexLen| = 0;

}

else
printf (” Error .—_lexeme.is_too_long_\n”);
} // end of addChar function

/******************************************************************************/

/* getChar Function
* Gets the mext character of input and determine its character class
*/
void getChar () {
if ((nextChar = getc(in_fp)) != EOF) {
if (isalpha(nextChar))
charClass = LETTER;
else if (isdigit (nextChar))
charClass = DIGIT;
else charClass = UNKNOWN;
}
else
charClass = EOF;
} // end of getChar function

/******************************************************************************/

/* getNonBlank Function
* Calls getChar wuntil it returns a non—whitespace character
*/
void getNonBlank () {
while (isspace(nextChar))

Page 22 of



Michael Liut

CSC 488 Building a Compiler

getChar ();
} // end of getNonBlank function

/******************************************************************************/

/* lex Function
* A simple lexical analyzer for arithmetic expressions
*/
int lex () {
lexLen = 0;
getNonBlank ();
switch (charClass) {

// Parse Identifiers
case LETTER:
addChar ();
getChar ();
while (charClass — LETTER
addChar ();
getChar ();

| charClass =— DIGIT) {

}

nextToken = IDENT;
break;

// Parse Integer Literals
case DIGIT:

addChar ();

getChar ();

while (charClass =— DIGIT) {
addChar ();
getChar ();

}

nextToken = INT LIT;

break;

// Parentheses and Operators
case UNKNOWN:

lookup (nextChar);

getChar ();

break;

// EOF
case EOF:

nextToken = EOF;
lexeme [0] = "E’;
lexeme [1] R
lexeme [2] = 'F’;
lexeme [3]
break;

} //end switch

|
=)

printf(”Next_token.is: %d, _.Next_.lexeme._is %s\n”, nextToken, lexeme);

return nextToken;
} //end lex Function

/o ok sk sk sk sk ok sk sk sk sk ok sk sk ok sk sk ok sk ok sk sk ok sk sk sk sk ok sk sk sk sk ok K ok sk sk ok ok sk sk sk sk ok K sk ok sk ok sk sk ok sk sk ok sk ok sk sk ok K sk ok sk ok ok sk ok ok sk ok K ok ok ok ok ok /
/o ok sk ok sk ok ok sk ok sk ok Kk sk ok ok ok ok sk sk ok ok o kk skt ok okokokok FIINID) ok sk sk sk sk sk ok sk sk ok sk ok ok ok sk ok sk ok ok sk sk ok sk ok ok sk sk ok skok ok ok ok ok ok ok ok /
/3 ok ok sk sk sk ok sk ok sk sk ok ok sk s sk ok ok sk ok sk sk ok sk sk sk sk sk ok sk ok sk sk ok sk ok sk sk sk ok sk sk sk sk ok sk ok sk sk ok ok ok sk sk sk ok sk ok sk sk ok ok sk sk sk ok ok sk ok sk ok ok sk ok sk ok ok ok /

Page 23 of



Michael Liut CSC 488 Building a Compiler

4 Conclusion

I hope that you have found this document somewhat useful. Recall, this is document is meant for novice
compiler construction. Furthermore, if you have an issues or concerns with your project please do not
hesitate to contact me.

I leave you with one quote to think about on your journey in your compiler construction:

“Perfection (in design) is achieved
not when there is nothing more to
add, but rather when there is
nothing more to take away.”

— Antoine de Saint-Exupéry

Page 24 of



Michael Liut CSC 488 Building a Compiler

References

[1] Dr. Christopher Brown. Recursive patterns and context free grammars, 2005.

[2] Instituto Nazionale di Fisica Nucleare. Creating input language analyzers and parsers.
[3] Dr. Frantisek Franek. Compilers, 2002.

[4] Lan Gao. Flex tutorial, 2007.

[5] Technische Universitdt Miinchen. Cup.

Page 25 of



	Introduction
	Software Design
	Biting Off More Than You Can Chew
	What Does a Compiler Do? What Do I Need To Know?

	The DOs and DON'Ts of Compiler Construction
	DO
	DON'T

	Using LEX/FLEX and CUP/YACC
	LEX/FLEX FLEX
	Example
	Solution

	CUP Franek,Brown
	Recursive Patterns and Context Free Grammars Brown
	Ambiguous Grammars Brown
	The Problem with Ambiguous Grammars Brown
	Grammar Example Franek
	Grammar Solution
	CUP/YACC Rome,CUP
	Grammar Solution in YACC
	Grammar Solution in C++


	Conclusion

