
CSC 488: Building a Compiler
For Beginners

Michael Liut

liutm@mcmaster.ca

January 16, 2017

1

Michael Liut CSC 488 Building a Compiler

Contents

1 Introduction 3

1.1 Software Design . 3

1.2 Biting Off More Than You Can Chew . 3

1.3 What Does a Compiler Do? What Do I Need To Know? . 3

2 The DOs and DON’Ts of Compiler Construction 4

2.1 DO . 4

2.2 DON’T . 5

3 Using FLEX and CUP 5

3.1 FLEX [1] . 5

3.1.1 Example . 6

3.1.2 Solution . 6

3.2 CUP . 7

4 Conclusion 7

Page 2 of 8

Michael Liut CSC 488 Building a Compiler

1 Introduction

This document has been composed as supplemental material to assist the students of CSC488H: Compilers

and Interpreters from The University of Toronto with their compiler construction project.

1.1 Software Design

If you recall any of your previous software design and specification courses, you will remember that

above all else your primary goal is to ensure that your software works. Once you have a functioning

program, you must strive for: elegance, beauty and finesse. Remember, perfection is in the details!

Finally, your concern must be efficiency. Optimize you program, but ensure that you never compromise

the primary goal; your software must work!

1.2 Biting Off More Than You Can Chew

Over the years I have seen many students take on more than they can handle. Remember, many of

you are taking 4-6 courses (some even 7 or 8), building a compiler is a huge task that is not to be

taken lightly.

One example I refer to often is the inverted trapezoid model. The layers (from top to bottom) are as

follows:

1. Software Requirements Specification.

2. High-Level Architecture Design

3. Detailed Design

4. Final Product

The idea behind this model is that at each layer you will shave something off from your initial software

requirements specification. As you move into a more detailed design you soon realize the importance

of simplicity and will scale down your overall construction. Once you reach your final product (i.e.

the compiler) you want to remember what is said in 1.1! If have already forgotten, go back and read

it again!

Remember: you must ensure that your input language meets the minimum requires as per the

assignment! You cannot “shave” these off.

1.3 What Does a Compiler Do? What Do I Need To Know?

In general, a compiler transforms an input language into a target language. For the purpose of this

document I will not be discussing the three major components of a compiler in detail (i.e. the Front

End, the Optimizer, and the Back End). Instead, I will be providing a toned down overview to allow

you to hone in on key subsections for you to directly apply to your project. I will also imply some

suggestions below, I strongly recommend you follow them for your first construction.

Firstly, a compiler is responsible for recognizing the syntax of a language. This means that the

sentence(s) of the source program must be checked for validity. What you need to know is that pars-

ing is where the source code, in essence, is converted into an Abstract Syntax Tree (hereinafter known

as “AST”) and semantically validated with your grammar.

A grammar is a set of rules that explicitly states how to properly form strings in a language’s alpha-

bet and ensure they are valid with respect to the language’s syntax. What you need to know is that

you are best conducting a top-down parsing approach and creating a predictive grammar (thereby

being LL(1)). Alternatively, you may opt for LALR(1), a superset of LL(*), but I think a predictive

Page 3 of 8

Michael Liut CSC 488 Building a Compiler

grammar will reduce your work in later sections (i.e. sprints). Also, use of a predictive grammar will

remove the risk of memory leaks.

At this point you may be wondering how to transform your code from a high-level (source) lan-

guage into your desired lower-level (target) language. You may also be wondering how to implement

some high-level optimization. What you need to know is that your AST has to be transformed to

represent a more efficient computation utilizing the same semantics. Eliminating superfluous local

assignments, early calculations of constant expressions and common subexpressions are just a few

examples of trivially redundant high-level code that can be optimized at an early stage.

Now you may be asking yourselves, how do I generate the low-level (target) language? The gen-

eral idea is to utilize the AST by transforming it into a low-level language; commonly x86, MIPS, or

ARM. What you need to know is that this is typically left up to the developers and this can widely

vary depending on the source language and intended target language. With respect to optimization

at a low-level stage (also commonly referred to as peephole optimization), what you need to know is

that, the low-level code is scanned for inefficiencies which are then modified and corrected.

Note: both code generation and low-level optimization can be repeated several times.

Let’s look at an example:

If we look at the GNU Compiler Collection (hereinafter known as “GCC”), GCC repeats the code

generation and low-level optimization stages many times. It transforms the high-level C code

into an intermediary (lower-level) language (which is platform independent). It further optimizes

the intermediary code and then transforms this intermediary language into its target (and true

low-level) language (e.g. x86, MIPS, ARM, etc...). Optimization occurs several more times, and

finally, linking occurs (i.e. the resolution of references to other modules).

2 The DOs and DON’Ts of Compiler Construction

This section will provide you with a brief list of common tips to ease your compiler construction experience.

2.1 DO

1. Define your language well!

Ensure that your language is defined well syntactically and semantically. If it is not, it can turn

out to be more work on your part.

2. Choose a good syntax analyzer!

There are many that you can choose from, we will show you how to use FLEX. It is fast, easy

to use and open-source.

3. Choose a good parser!

There are many that you can choose from, we will show you how to use CUP; an LALR parser

generator. You can use CUP with your predictive grammar. Alternative options to CUP that I

have worked with are: ANTLR3/4 (LL(*)), Bison (LALR(1)), and YACC (LALR(1)).

4. Test your code!

Establish a set of test cases and be sure to run them regularly. Remember, regular expressions

are your friend and you can use them in your test cases!

Page 4 of 8

Michael Liut CSC 488 Building a Compiler

5. Correct errors before moving forward!

Running those test cases is one thing, but if they fail you need to fix what is broken prior to

moving on. This can be slow, long and tedious; but it is essential!

2.2 DON’T

1. Code before having your language and design specifications!

Skipping to the coding phase without verifying your language and design specifications can turn

out to be detrimental.

2. Get overwhelmed by thinking of the project as a whole from the beginning!

This project is broken up into chunks (i.e. sprints) for a reason.

3. Shoot down others ideas!

Give them a chance! Their ideas can prove to be useful!

4. Make a syntax analyzer!

There are many that you can choose from, it is difficult to make one from scratch and quite

frankly not the easiest thing to do!

5. Make a parser!

There are many that you can choose from, it is difficult to make one from scratch and quite

frankly not the easiest thing to do!

3 Using FLEX and CUP

This section will be used to briefly explain a scanner and parser that you may use for your project.

3.1 FLEX [1]

The scanner performs lexical analysis of your program by reading in the input language as a sequence

of characters and recognizing them as tokens. FLEX (Fast LEXical analyzer generator) is used to

generate scanners. This is done by identifying the pattern in the text of a certain language. For

example, a digit would represent [0− 9].

In general, FLEX is utilized in the following manner:

FLEX begins by reading a specification of a scanner (either an input file *.lex or from standard input)

which it uses to generate a C target file as output lex.yy.c. This outputted C file is then compiled and

linked using the “-lfl” library, which produces an executable file a.out. This executable file analyzes

its input stream and transforms it into a sequence of tokens.

Page 5 of 8

Michael Liut CSC 488 Building a Compiler

What you need to know:

• *.lex uses regular expressions and C code.

• lex.yy.c defines a routine yylex() that uses the specification to recognize tokens.

• a.out is the scanner.

3.1.1 Example

Give a lex/flex input file to generate a scanner that recognizes the following tokens:

1. Java identifier

2. C unsigned integer

3. C literal string

and that ‘eats’ multi-line comments, where the comment starts with “[|[” and ends with “]|]”.

The nested multi-line comments are not allowed (similarly as in C/C++/Java). The scanner

must treat the comment as white space.

3.1.2 Solution

Given the requirements in 3.1.1., you should have a solution that looks like this:

example.txt

%{
/* Michael Liut */
/* UofT - CSC488 */
/* COMMANDS TO EXECUTE:

* lex example.lex

* gcc -ll lex.yy.c

* ./a.out < test

*/
%}

%option noyywrap
%x checkComments

%{
/* REGEX Variable Initialization */

%}
ws [\n]|[\n]|[\r\n]|[\t]|[\r]
begComment "[|["
endComment "]|]"
integers [0-9]+
cLiteral \"(\\.|[ˆ"])*\"
jIdentifiers (([a-zA-Z_$])([a-zA-Z0-9_$])*)

%%

%{
/* Begin Function */

%}

Page 6 of 8

Michael Liut CSC 488 Building a Compiler

{begComment} {BEGIN(checkComments);}

%{
/* Checks for comment end without a start -- Returns -1 */

%}
{endComment} {fprintf(stderr, "Error: Found comment end without a beginning!\n"); return -1;}

%{
/* Error Checking -- Check for opening comment inside of a comment */

%}
<checkComments>{endComment} {BEGIN(INITIAL);}
<checkComments>{begComment} {fprintf(stderr, "Error: Found [|[inside another

[|[comment!\n"); return -1;}

%{
/* Removes the comments & comment content */

%}
<checkComments>(.|\n)
<checkComments><<EOF>> {fprintf(stderr, "Error: Found [|[without closing]|]!\n"); return -1;}

{integers} {printf("An integer (%s): %d \n", yytext, atoi(yytext));}
{jIdentifiers} {printf("Java identifier: %s \n", yytext);}
{cLiteral} {printf("C Literal: %s \n", yytext);}
{ws} {}
. {printf("ERROR DETECTED %s \n", yytext);}

%%
int main(int argc, char* argv[]){

yylex();
}

3.2 CUP

More to come in time...

4 Conclusion

I hope that you have found this document somewhat useful. Recall, this is document is meant for novice
compiler construction. Furthermore, if you have an issues or concerns with your project please do not
hesitate to contact me.

I leave you with one quote to think about on your journey in your compiler construction:

“Perfection (in design) is achieved

not when there is nothing more to

add, but rather when there is

nothing more to take away.”

— Antoine de Saint-Exupéry

Page 7 of 8

Michael Liut CSC 488 Building a Compiler

References

[1] Lan Gao. Flex tutorial, 2007.

Page 8 of 8

	Introduction
	Software Design
	Biting Off More Than You Can Chew
	What Does a Compiler Do? What Do I Need To Know?

	The DOs and DON'Ts of Compiler Construction
	DO
	DON'T

	Using FLEX and CUP
	FLEX FLEX
	Example
	Solution

	CUP

	Conclusion

