
Optimization
March 1st, 2017

Michael Liut
liutm@mcmaster.ca

michael.liut@utoronto.ca

TABLE OF CONTENTS

SLIDES 1-2 TITLE PAGE AND TABLE OF CONTENTS

SLIDE 3 WHAT IS OPTIMIZATION?

SLIDES 4 - 5 MACHINE INDEPENDENT/DEPENDENT

SLIDES 6 - 10 BASIC BLOCKS

SLIDE 11 LEVELS OF OPTIMIZATION

SLIDE 12 KEY OPTIMIZATION FACTS

SLIDES 13 - 16 CONTROL FLOW GRAPHS AND QA

SLIDES 17 - 21 PEEPHOLE OPTMIZATION AND BREAK

SLIDES 22 - 31 COMMON TECHNIQUES AND EXERCISES

SLIDES 32 - 33 REFERENCES, QA AND CLOSURE

What is Optimization?

The process of analyzing and transforming code to make it more efficient* without affecting the output or end-result.

Two Types:

1. Machine Independent
• e.g. reduction of repeat assignments, improving parse tree mapping to intermediary representation, etc…

2. Machine Dependent
• e.g. register allocation, direct memory addressing, etc…

efficient*: referring to time or space.

Machine Independent

This type of optimization is where the compiler receives some Intermediary Representation and transforms it. The portion
of code transformed in this stage does not involve any CPU registers nor does it involve any memory allocation.

For example (loop optimization):

Note: the modification of the repeated assignment saves CPU cycles.

Before Optimization

while (cnt < 100)
{

val = 10;
cnt = cnt + val;

}

After Optimization

val = 10;
while (cnt < 100)
{

cnt = cnt + val;
}

Machine Dependent

This type of optimization happens when the target code is being transformed to the target machine architecture. It involves
CPU registers and may have absolute memory references*. Machine-dependent optimization uses information about the
limits and special features of the target machine to produce code which is shorter or which executes more quickly on the
machine.

absolute memory references*: specifying the actual address of a memory location versus the distance from another address (relative memory references).

Basic Blocks

A maximal sequence of consecutive three-address instructions with the following properties:

1. The flow of control can only enter the basic through the first instruction.

2. Control will leave the block without halting or branching, except possibly at the last instruction.

Basic blocks become the nodes of a flow graph, with edges indicating the order.

Basic Blocks Example

1)i = 1
2)j = 1
3)t1 = 10 * i
4)t2 = t1 + j
5)t3 = 8 * t2
6)t4 = t3 - 88
7)a[t4] = 0.0
8)j = j + 1
9)if j <= 10 goto (3)
10)i = i + 1
11)if i <= 10 goto (2)
12)i = 1
13)t5 = i - 1
14)t6 = 88 * t5
15)a[t6] = 1.0
16)i = i + 1
17)if i <= 10 goto (13)

for i from 1 to 10 do

for j from 1 to 10 do

a[i,j]=0.0

for i from 1 to 10 do

a[i,i]=0.0

Identifying Basic Blocks

Input: a sequence of instructions instr(i)

Output: a list of basic blocks

Method:

1. Identify Leaders*.
2. Iterate: add subsequent instructions to basic block until you reach another leader.

Leaders* are:
1. The first instruction of a basic block.
2. Any instruction that is the target of a conditional/unconditional jump.
3. Any instruction that immediately follows a conditional/unconditional jump.

1)i = 1
2)j = 1
3)t1 = 10 * i
4)t2 = t1 + j
5)t3 = 8 * t2
6)t4 = t3 - 88
7)a[t4] = 0.0
8)j = j + 1
9)if j <= 10 goto (3)
10)i = i + 1
11)if i <= 10 goto (2)
12)i = 1
13)t5 = i - 1
14)t6 = 88 * t5
15)a[t6] = 1.0
16)i = i + 1
17)if i <= 10 goto (13)

Can you find the
Leaders and

Basic Blocks?

Basic Blocks Example

Leaders

Basic Blocks

1) i = 1

2) j = 1

3) t1 = 10 * i

4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 - 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10)i = i + 1

11)if i <= 10 goto (2)

12)i = 1

13)t5 = i - 1

14)t6 = 88 * t5

15)a[t6] = 1.0

16)i = i + 1

17)if i <= 10 goto (13)

Code

A
B1

B2

C

D1
D2

B

D

Levels of Optimization

Local Global
(Intra-Procedural)

Inter-Procedural

• inside a basic block
• across basic blocks
• whole procedure

analysis

• across procedures
• whole program

analysis

Key Optimization Facts

1. 80% of a program’s execution time is spent executing 20% of the code.
• Known as the 80/20 rule
• Performance-hungry programs change this rule to 90/10
• Spend time targeting that 10%/20% and optimize it

2. “Premature optimization is the root of all evil” – Donald Knuth.
• Optimization can introduce new, subtle bugs
• Optimization usually makes code harder to understand and maintain

3. Ensure your code is fully functioning prior to optimizing.
• Optimize the common case, even at the cost of making the uncommon case slower
• Document optimization carefully
• Keep the non-optimized code

Control-Flow Graphs

Node: an instruction or sequence of instructions (a Basic Block).
• Two instructions (i and j) in the same basic block iff execution of i guarantees

execution of j. Essentially i à j (“j” is functionally dependent on “i”).

Directed Edge: potential flow of control.

Distinguished Start Node: distinguished start node (entry and exit).
• First and last instruction in the program.

Control-Flow Edges

Basic Blocks = nodes

Edges: Add directed edge between B1 and B2 if:
• the branch from the last statement of B1 to the first statement of B2 (B2 is a leader);
• B2 immediately follows B1 in program order and B1 does not end with an

unconditional branch (goto).

Note: B1 is a predecessor of B2,
while B2 is a successor of B1.

Input: block(i), sequence of basic blocks
Output: CFG where nodes are basic blocks

for i = 1 to the number of blocks

x = last instruction of block(i)
if instr(x) is a branch

for each target y of instr(x),

create edge (i -> y)
if instr(x) is not unconditional branch,

create edge (i -> i+1)

Control-Flow Edge Algorithm

CFG Example

DOES ANYONE HAVE ANY QUESTIONS?

Q A&

Questions?

Peephole Optimization

Machine code instructions that could be examined and potentially replaced by less or more efficient instructions.
Peephole, as in a “window” size of code to examine.

For example, let’s look at the following Java bytecode*:

Note: it is assumed that the dup operation is more efficient than the aload x operation.
Java bytecode*: the instruction set of the Java Virtual Machine.

Before Optimization

…
aload 1
aload 1
mul
…

After Optimization

…
aload 1
dup
mul
…

Removing
Redundant Code

Exercise

Redundant Code Removal

Given the following snippet of code, eliminate the redundant load stores.

a = b + c;
d = a + e;

MOV b, R0 #	Copy	b	to	the	register
ADD c, R0 #	Add		c	to	the	register
MOV R0, a #	Copy	the	register	to	a
MOV a, R0 #	Copy	a	to	the	register
ADD e, R0 #	Add		e	to	the	register
MOV R0, d #	Copy	the	register	to	d

High-Level Instructions

Redundant Code Removal

Given the following snippet of code, eliminate the redundant load stores.

MOV b, R0 #	Copy	b	to	the	register
ADD c, R0 #	Add		c	to	the	register
MOV R0, a #	Copy	the	register	to	a
ADD e, R0 #	Add		e	to	the	register
MOV R0, d #	Copy	the	register	to	d

MOV b, R0 #	Copy	b	to	the	register
ADD c, R0 #	Add		c	to	the	register
MOV R0, a #	Copy	the	register	to	a
MOV a, R0 #	Copy	a	to	the	register
ADD e, R0 #	Add		e	to	the	register
MOV R0, d #	Copy	the	register	to	d

Before Optimization After Optimization

INTERMISSION
TAKE 5-10 MINUTES

Common Techniques

1. Constant Folding: evaluate common sub expressions in advance.

2. Constant Propagation: substituting values of known constants and expressions.

3. Strength Reduction: replacing slow operations with faster equivalents.

4. Null Sequences: deleting useless operations.

5. Combine Operations: replace several operations with one equivalent.

6. Algebraic Laws: use algebraic laws to simplify or re-order instructions.

7. Special Case Instructions: use instructions for special operand cases.

8. Address Mode Operations: use address modes to simplify code.

Constant Folding

Before Optimization

int foo (void)
{

return (128 * 32);
}

After Optimization

int foo (void)
{

return (4096);
}

Example 1:

Before Optimization

int foo (int x)
{

return (x * 0);
}

After Optimization

int foo (void)
{

return (0);
}

Example 2*:

*NOTE: we do not need to know what x is, as it will always evaluate to 0.

Constant Propagation

Before Optimization

…
int x = 14;
int y = 7 – x / 2;
return y * (28 / x + 2);
…

After Optimization

…
int x = 14;
int y = 7 – 14 / 2;
return y * (28 / 14 + 2);
…

1. Propagate x:

Before Optimization

…
int x = 14;
int y = 7 – x / 2;
return y * (28 / x + 2);
…

After Optimization

…
int x = 14;
int y = 0;
return 0;
…

2. Continued Propagation
(& Dead Code Elimination*):

*Dead Code Elimination (DCE) is a technique whereby code that does affect the program’s results are removed.

Constant Folding
and Propagation

Exercise

Exercise

Reduce the following snippet of code, use constant folding and propagation.

int a = 30;
int b = 9 – (a / 5);
int c;

c = b * 4;

if (c > 10) {
c = c – 10;

}

return c * (60 / a);

Before Optimization HINTS

1. Apply constant propagation

2. Apply constant folding

3. Repeat 1. and 2. twice

4. Once a and b are simplified (i.e.
become constant values), apply
DCE.

Exercise

Reduce the following snippet of code, use constant folding and propagation.

int a = 30;
int b = 9 – (a / 5);
int c;

c = b * 4;

if (c > 10) {
c = c – 10;

}

return c * (60 / a);

Before Optimization After Optimization

int c;

if (true) {
c = 2;

}

return c * 2;

return 4;

Strength Reduction

• The compiler is interested in loop invariants (values not changing in a loop) and induction variables (values that
are being iterated each time in a loop).

Let’s look at an example for expressions involving a loop invariant c and an induction variable i:

NOTE: the optimized result replaces multiplication with successive weaker additions.

c = 7;

for (int i = 0; i < N; i++)
{

y[i] = c * i;
}

Before Optimization After Optimization

c = 7;
k = 0;

for (int i = 0; i < N; i++)
{

y[i] = k;
k = k + c;

}

Strength Reduction
Exercise

Strength Reduction

Given the following lines of code, utilize strength reduction to optimize them.

1. a = b * 2;

2. a = b / 2;

Before Optimization After Optimization

1. a = b + b;
or

a = b << 1;

2. a = b >> 1;

Algebraic Sequences

It is beneficial to recognize single instructions with a constant operand, for example:

Null Sequences Strength
Reduction Constant Folding

1. a + 0 = a;

2. a * 0 = 0;

3. a * 1 = a;

4. a / 1 = a;

1. a * 2 = a + a;

2. a / 2 = a * 0.5;
1. 3.14 * 2 = 6.28;

1. Advanced	 Compiler	Design	&	Implementation,	Steven	 S.	Muchnick.	University	of	Kansas.
2. Compiler	Design	– Code	Optimization,	Tutorials	Point.	<https://www.tutorialspoint.com/compiler_design/compiler_design_code_optimization.htm>
3. Optimisation,	Mick	O’Donnell.	Autonomous	University	of	Madrid.	<http://arantxa.ii.uam.es/~modonnel/Compilers/08_1_OptimisationI.pdf>
4. Introduction	to	Optimization,	Yao	Guo.	School	of	EECS,	 Peking	University.	

<https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiA-
fe4_qTSAhUF5oMKHQK6BAIQFggqMAA&url=http%3A%2F%2Fsei.pku.edu.cn%2F~yaoguo%2FACT11%2Fslides%2Flect2-
opt.ppt&usg=AFQjCNEtcCtJk4D4T4ThjZZCC_a12nUlxw&sig2=VCiblNeR0I_p8FzKOzitow>

5. Peephole	Optimization,	Wikipedia.	<https://en.wikipedia.org/wiki/Peephole_optimization>
6. Dead	Code	Elimination,	Wikipedia	<https://en.wikipedia.org/wiki/Dead_code_elimination>
7. Constant	Folding,	Wikipedia	<https://en.wikipedia.org/wiki/Constant_folding>
8. Strength	Reduction,	Wikipedia	<https://en.wikipedia.org/wiki/Strength_reduction>
9. Compiler	Writing,	What-When-How	<http://what-when-how.com/compiler-writing/machine-dependent-optimization-compiler-writing-part-1/>

References

I’LL BE ANSWERING QUESTIONS NOW

Q A&

THANKS FOR LISTENING

Q & A SESSION

