
Grammar Exercise - Workshop 2

Let’s say that we are trying to define string expressions for a new programming language.

The terminals are as follows:

1. STRLIT is a token string literal .

2. SID is a token string identifier representing a name of a string variable or a name of a method

returning a string value.

3. ‘[’ is a token.

4. ‘]’ is a token.

5. ‘:’ is a token.

6. ‘(’ is a token.

7. ‘)’ is a token.

8. ‘,’ is a token.

9. ‘+’ is a token.

For simplicity’s sake, we will treat the non-terminal iexpr as a terminal (i.e. we will not provide a definition

for iexpr – which is representing an integer expression).

Given the following notation of string expressions below, give a Context-Free Unambiguous Grammar in

Backus-Naur Form.

1. STRLIT is a string expression (meaning a string literal).

2. SID is a string expression (meaning a name of a string variable).

3. SID() is a string expression (meaning a call to a method returning a string value).

4. if X, X1, ..., Xn are string expressions, then so are the following sentential forms:

(a) SID(X1) represents a call to a method with one string argument returning a string value.

(b) SID(X1, X2) represents a call to a method with two string arguments returning a string

value.

(c) SID(X1, X2, X3) represents a call to a method with three string arguments returning a

string value.

(d) SID(X1, ..., Xn) represents a call to a method with n string arguments returning a

string value.

(e) X[iexpr] represents the symbol of the value of X at position iexpr.

(f) X[iexpr1:iexpr2] represents the symbol of the value of X at position iexpr1 to position

iexpr2.

(g) X[:iexpr] represents the prefix of the value of X from position 0 to position iexpr.

(h) X[iexpr:] represents the suffix of the value of X from position iexpr to the end position.

(i) X1 + X2 represents the concatenation of the value of X1 with the value of X2.

1

