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No Afternoon 
Office Hours

• No afternoon office hours today!

• I’ll be in the office immediately after class

• I’m also available by appointment tomorrow
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SOTI
• Thanks for dropping by the industry booth 

last week!

• I heard a story that two of you helped fix 
their wireless.  

• The career centre wants you to know that 
while the company has high experience 
requirements for many positions, they will 
be looking for junior developers.
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• Partition memory into equal, fixed-size chunks

• These are called page frames or simply frames

• Divide processes’ memory into chunks of the same 
size

• These are called pages

• Any page can be assigned to any free page frame

• External fragmentation is eliminated

• Internal fragmentation is at most a part of a page

• Possible page frame sizes are restricted to powers of 2 
to simplify translation

Paging
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• Need more than base & limit register

• The OS maintains a page table for each process

• Page table records which physical frame holds each page

• virtual addresses are now page number + page offset

• page number = vaddr / page_size

• page offset = vaddr % page_size

• On each memory reference, processor translates the 
page number to its frame number and adds the offset to 
generate a physical address

Support for Paging
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Paged Address Translation
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Example:  Pentium

Data Cache/
Main Memory

To page table
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• Simplest version
• a linear array of entries, 1 entry per page
• Stored in memory, attached to process
• Virtual page number (VPN) is array index

Where are Page Tables Stored?

struct addrspace {
    paddr_t pgtbl;
    …
}

struct addrspace *
as_create(void) {
    struct addrspace *as = 
     kmalloc(sizeof(struct addrspace));
    int nentries = (unsigned)(-1) >> 13;
    int npages = DIVROUNDUP(nentries*

   sizeof(pte_t), PAGE_SIZE);
    as->pgtbl = getppages(npages); 
    ...
}   
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MIPS R2000 Virtual Memory Space

• MMU defines 4 distinct regions with 
different properties:

• KUSEG for user-addresses.  Translated using 
paging, cacheable

• KSEG0 for direct-mapped, cacheable kernel 
addresses

• Translation to/from physical simply 
subtracts/adds 0x80000000 to V.A.

• KSEG1 like KSEG0 but no caching

• KSEG2 for kernel addresses that are 
translated using paging

0xffffffff

KSEG2

0xc0000000

KSEG2

0xbfffffff
0xa000000

KSEG1

0x9fffffff
0x80000000

KSEG0

0x7fffffff

KUSEGKUSEGKUSEG

0x00000000

KUSEG
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Addressing Page Tables
Where do we store page tables (which address space)?

• Physical memory

• Easy to address, no translation required (or very simple translation, like KSEG0 
in MIPS R2000)

• allocated page tables consume memory for lifetime of VAS

• Virtual memory (OS virtual address space, KSEG2)

• Cold (unused) page table pages can be paged out to disk

• But, addressing page tables requires translation

• Do not page the outer page table (called wiring)

• If we’re going to page the page tables, might as well page the 
entire OS address space, too

• Need to wire special code and data (fault, interrupt handlers)
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• N == not cached
• D == dirty (meaning “writable”, not set by hardware)
• V == valid
• G == global (can be used by all processes)

• Maximum 220 physical pages, each 4 kB  
• Maximum 4GB of physical RAM

Example:  MIPS Page Table Entries

nPage Frame Number
n20

N D V
1 1 1 n81

G unused
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Paging Limitations - Space
• The memory required for a page table can be very large 

• Need one PTE per page

•32 bit virtual address space w/ 4K pages = 220 PTEs

•4 bytes/PTE = 4MB/page table

•25 processes = 100MB just for page tables!

•And modern processors have 64-bit address spaces 
-> 16 petabytes for the page table!

•Observation: We only need to map the portion of the 
address space actually being used (a tiny fraction of 
entire addr space)
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02/25/09

Two-Level Page Tables
Virtual addresses (VAs) have three parts:

• Master page number, secondary page number, and offset

• Master page table maps VAs to secondary page table

• Secondary page table maps page number to physical frame

• Offset selects address within physical frame

Physical Address

Virtual Address

Page table

Master page number Secondary

Master Page Table

Page frame Offset

Physical Memory

Offset

Page frame

Secondary Page Table
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2-Level Paging Example
• 32-bit virtual address space

• 4K pages, 4 bytes/PTE

•How many bits in offset? 

•4K = 12 bits, leaves 20 bits

•Want master/secondary page tables in 1 page frame 
each: 

•4K/4 bytes = 1K entries.  How many bits? 

•Master (1K) = 10, offset = 12, inner = 32 – 10 – 12 
= 10 bits
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CSC369H1S

Pentium Address 
Translation

Data Cache/
Main Memory
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64-bit Address Spaces

• Suppose we just extended the hierarchical page tables 
with more levels

• 4K pages à 52 bits for page numbers

•Maximum 1024 entries per level à 6 levels

•Too much overhead

• 16K pages à 48 bits for page numbers

•Maximum 4096 entries per level -> 4 levels

•Better, but still a lot

Sunday, November 2, 2014



Efficient Translations
• Our original page table scheme already doubled 

the cost of doing memory lookups

• One lookup into the page table, another to 
fetch the data

• Two-level page tables triple the cost!

• Two lookups into the page tables, a third to 
fetch the data

• And this assumes the page table is in memory

• TLB’s hide the cost for frequently-used pages
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Inverted Page Tables
•Keep one table with an entry for each physical 

page frame

• Entries record which virtual page # is stored in 
that frame 

•Need to record process id as well

• Less space, but lookups are slower

•References use virtual addresses, table is 
indexed by physical addresses

•Use hashing to reduce the search time
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Advanced Material
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Sharing
• Private virtual address spaces protect applications from each 

other

• Usually exactly what we want

• But this makes it difficult to share data (have to copy)

• Parents and children in a forking Web server or proxy will want to share an in-
memory cache without copying

• We can use shared memory to allow processes to share data 
using direct memory references

• Both processes see updates to the shared memory segment

• Process B can immediately read an update by process A

• How are we going to coordinate access to shared data?
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Sharing 
• How can we implement sharing using page tables?

• Have PTEs in both tables map to the same physical frame

• Each PTE can have different protection values

• Must update both PTEs when page becomes invalid

• Can map shared memory at same or different virtual 
addresses in each process’ address space

• Different: Flexible (no address space conflicts), but pointers inside the 
shared memory segment are invalid (Why?)

• Same: Less flexible, but shared pointers are valid (Why?)

• What happens if a pointer inside the shared segment 
references an address outside the segment?
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Copy on Write
• OSes spend a lot of time copying data

• System call arguments between user/kernel space

• Entire address spaces to implement fork()

• Use Copy on Write (CoW) to defer large copies as long as 
possible, hoping to avoid them altogether

• Instead of copying pages, create shared mappings of parent pages in child 
virtual address space

• Shared pages are protected as read-only in child

• Reads happen as usual

•Writes generate a protection fault, trap to OS, copy page, change page 
mapping in client page table, restart write instruction

• How does this help fork()? 
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02/25/09

Mapped Files
• Mapped files enable processes to do file I/O using loads and 

stores

• Instead of “open, read into buffer, operate on buffer, …”

• Bind a file to a virtual memory region (mmap() in Unix)

• PTEs map virtual addresses to physical frames holding file data

• Virtual address base + N refers to offset N in file

• Initially, all pages mapped to file are invalid

• OS reads a page from file when invalid page is accessed

• OS writes a page to file when evicted, or region unmapped

• If page is not dirty (has not been written to), no write needed

• Another use of the dirty bit in PTE
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Clock Slides (for A2)
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• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5
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An Approximation:  
The Clock Algorithm
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• A clock hand sweeps through the entries in order

• When an eviction is required, inspect the reference bit of 
the current page

• If ref bit is 0, replace the page

• If ref bit is 1, clear ref bit and move to next page

• Pages that are used often enough to keep reference bits 
set will not be replaced

• This scheme is sometimes called “Not Recently Used”

Clock Details
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