
CSC369:
Operating Systems

Fall 2014

Andrew Petersen

Sunday, November 2, 2014

No Afternoon
Office Hours

• No afternoon office hours today!

• I’ll be in the office immediately after class

• I’m also available by appointment tomorrow

Sunday, November 2, 2014

SOTI
• Thanks for dropping by the industry booth

last week!

• I heard a story that two of you helped fix
their wireless.

• The career centre wants you to know that
while the company has high experience
requirements for many positions, they will
be looking for junior developers.

Sunday, November 2, 2014

• Partition memory into equal, fixed-size chunks

• These are called page frames or simply frames

• Divide processes’ memory into chunks of the same
size

• These are called pages

• Any page can be assigned to any free page frame

• External fragmentation is eliminated

• Internal fragmentation is at most a part of a page

• Possible page frame sizes are restricted to powers of 2
to simplify translation

Paging

Sunday, November 2, 2014

• Need more than base & limit register

• The OS maintains a page table for each process

• Page table records which physical frame holds each page

• virtual addresses are now page number + page offset

• page number = vaddr / page_size

• page offset = vaddr % page_size

• On each memory reference, processor translates the
page number to its frame number and adds the offset to
generate a physical address

Support for Paging

Sunday, November 2, 2014

Paged Address Translation

Sunday, November 2, 2014

Example: Pentium

Data Cache/
Main Memory

To page table

Sunday, November 2, 2014

• Simplest version
• a linear array of entries, 1 entry per page
• Stored in memory, attached to process
• Virtual page number (VPN) is array index

Where are Page Tables Stored?

struct addrspace {
 paddr_t pgtbl;
 …
}

struct addrspace *
as_create(void) {
 struct addrspace *as =
 kmalloc(sizeof(struct addrspace));
 int nentries = (unsigned)(-1) >> 13;
 int npages = DIVROUNDUP(nentries*

 sizeof(pte_t), PAGE_SIZE);
 as->pgtbl = getppages(npages);
 ...
}

Sunday, November 2, 2014

MIPS R2000 Virtual Memory Space

• MMU defines 4 distinct regions with
different properties:

• KUSEG for user-addresses. Translated using
paging, cacheable

• KSEG0 for direct-mapped, cacheable kernel
addresses

• Translation to/from physical simply
subtracts/adds 0x80000000 to V.A.

• KSEG1 like KSEG0 but no caching

• KSEG2 for kernel addresses that are
translated using paging

0xffffffff

KSEG2

0xc0000000

KSEG2

0xbfffffff
0xa000000

KSEG1

0x9fffffff
0x80000000

KSEG0

0x7fffffff

KUSEGKUSEGKUSEG

0x00000000

KUSEG

Sunday, November 2, 2014

Addressing Page Tables
Where do we store page tables (which address space)?

• Physical memory

• Easy to address, no translation required (or very simple translation, like KSEG0
in MIPS R2000)

• allocated page tables consume memory for lifetime of VAS

• Virtual memory (OS virtual address space, KSEG2)

• Cold (unused) page table pages can be paged out to disk

• But, addressing page tables requires translation

• Do not page the outer page table (called wiring)

• If we’re going to page the page tables, might as well page the
entire OS address space, too

• Need to wire special code and data (fault, interrupt handlers)

Sunday, November 2, 2014

• N == not cached
• D == dirty (meaning “writable”, not set by hardware)
• V == valid
• G == global (can be used by all processes)

• Maximum 220 physical pages, each 4 kB
• Maximum 4GB of physical RAM

Example: MIPS Page Table Entries

nPage Frame Number
n20

N D V
1 1 1 n81

G unused

Sunday, November 2, 2014

Paging Limitations - Space
• The memory required for a page table can be very large

• Need one PTE per page

•32 bit virtual address space w/ 4K pages = 220 PTEs

•4 bytes/PTE = 4MB/page table

•25 processes = 100MB just for page tables!

•And modern processors have 64-bit address spaces
-> 16 petabytes for the page table!

•Observation: We only need to map the portion of the
address space actually being used (a tiny fraction of
entire addr space)

Sunday, November 2, 2014

02/25/09

Two-Level Page Tables
Virtual addresses (VAs) have three parts:

• Master page number, secondary page number, and offset

• Master page table maps VAs to secondary page table

• Secondary page table maps page number to physical frame

• Offset selects address within physical frame

Physical Address

Virtual Address

Page table

Master page number Secondary

Master Page Table

Page frame Offset

Physical Memory

Offset

Page frame

Secondary Page Table

Sunday, November 2, 2014

2-Level Paging Example
• 32-bit virtual address space

• 4K pages, 4 bytes/PTE

•How many bits in offset?

•4K = 12 bits, leaves 20 bits

•Want master/secondary page tables in 1 page frame
each:

•4K/4 bytes = 1K entries. How many bits?

•Master (1K) = 10, offset = 12, inner = 32 – 10 – 12
= 10 bits

Sunday, November 2, 2014

CSC369H1S

Pentium Address
Translation

Data Cache/
Main Memory

Sunday, November 2, 2014

64-bit Address Spaces

• Suppose we just extended the hierarchical page tables
with more levels

• 4K pages à 52 bits for page numbers

•Maximum 1024 entries per level à 6 levels

•Too much overhead

• 16K pages à 48 bits for page numbers

•Maximum 4096 entries per level -> 4 levels

•Better, but still a lot

Sunday, November 2, 2014

Efficient Translations
• Our original page table scheme already doubled

the cost of doing memory lookups

• One lookup into the page table, another to
fetch the data

• Two-level page tables triple the cost!

• Two lookups into the page tables, a third to
fetch the data

• And this assumes the page table is in memory

• TLB’s hide the cost for frequently-used pages

Sunday, November 2, 2014

Inverted Page Tables
•Keep one table with an entry for each physical

page frame

• Entries record which virtual page # is stored in
that frame

•Need to record process id as well

• Less space, but lookups are slower

•References use virtual addresses, table is
indexed by physical addresses

•Use hashing to reduce the search time

Sunday, November 2, 2014

Advanced Material

Sunday, November 2, 2014

Sharing
• Private virtual address spaces protect applications from each

other

• Usually exactly what we want

• But this makes it difficult to share data (have to copy)

• Parents and children in a forking Web server or proxy will want to share an in-
memory cache without copying

• We can use shared memory to allow processes to share data
using direct memory references

• Both processes see updates to the shared memory segment

• Process B can immediately read an update by process A

• How are we going to coordinate access to shared data?

Sunday, November 2, 2014

Sharing
• How can we implement sharing using page tables?

• Have PTEs in both tables map to the same physical frame

• Each PTE can have different protection values

• Must update both PTEs when page becomes invalid

• Can map shared memory at same or different virtual
addresses in each process’ address space

• Different: Flexible (no address space conflicts), but pointers inside the
shared memory segment are invalid (Why?)

• Same: Less flexible, but shared pointers are valid (Why?)

• What happens if a pointer inside the shared segment
references an address outside the segment?

Sunday, November 2, 2014

Copy on Write
• OSes spend a lot of time copying data

• System call arguments between user/kernel space

• Entire address spaces to implement fork()

• Use Copy on Write (CoW) to defer large copies as long as
possible, hoping to avoid them altogether

• Instead of copying pages, create shared mappings of parent pages in child
virtual address space

• Shared pages are protected as read-only in child

• Reads happen as usual

•Writes generate a protection fault, trap to OS, copy page, change page
mapping in client page table, restart write instruction

• How does this help fork()?

Sunday, November 2, 2014

02/25/09

Mapped Files
• Mapped files enable processes to do file I/O using loads and

stores

• Instead of “open, read into buffer, operate on buffer, …”

• Bind a file to a virtual memory region (mmap() in Unix)

• PTEs map virtual addresses to physical frames holding file data

• Virtual address base + N refers to offset N in file

• Initially, all pages mapped to file are invalid

• OS reads a page from file when invalid page is accessed

• OS writes a page to file when evicted, or region unmapped

• If page is not dirty (has not been written to), no write needed

• Another use of the dirty bit in PTE

Sunday, November 2, 2014

Clock Slides (for A2)

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

R=1

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

R=1

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

R=1

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

R=1

R=0

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

R=1

R=0

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

R=1

R=0

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

R=1

R=0R=1

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• 1st page fault:

• Advance hand to frame 4, use frame 3

• 2nd page fault (assume none of these pages are referenced)

• Advance hand to frame 6, use frame 5

R=1 R=1

R=1

R=1

R=1

R=1

R=0

R=1R=0

0
1

2

3

45

6

7

8

Physical
Frames

R=0

R=0

R=1

R=0R=1

An Approximation:
The Clock Algorithm

Sunday, November 2, 2014

• A clock hand sweeps through the entries in order

• When an eviction is required, inspect the reference bit of
the current page

• If ref bit is 0, replace the page

• If ref bit is 1, clear ref bit and move to next page

• Pages that are used often enough to keep reference bits
set will not be replaced

• This scheme is sometimes called “Not Recently Used”

Clock Details

Sunday, November 2, 2014

