
CSC369:
Operating Systems

Fall 2014

Andrew Petersen

Anonymous

I mean't to put a heart...

 Don't sanitize inputs, its no way to make friends.

• Funny story, that ...

• About three years ago, a group of the 347 students decided
to test anonymous feedback, so I received about 300
messages that, in various ways, said, “Sanitize inputs”

Industry Visit Today
• SOTI -- a company focusing on mobile device

management for enterprise customers -- is on campus
today.

• Correction: today (sorry!)

• The career centre will have a booth for them in IB
from 12-2.

• They are primarily looking for upper year students, so
do drop by!

Next

• The operating system manages many resources, but
we will focus on memory

• What do processes assume about their address
spaces?

• What do users/programmers assume about
memory behaviour?

• How do we allocate resources fairly and efficiently?

• To impose logical and physical hierarchy and
enable sharing, protection, and relocation, we’ll
need some tools.

• Modern systems use virtual memory, a
complicated technique requiring hardware
and software support

• Virtual memory is based on segmentation
and paging

• We’ll build up to virtual memory by looking at
some simpler schemes first

• First, we need to place programs in memory

Looking Ahead ...

Outline

• Introduction to Memory Management

• Address Translation

• Memory Partitioning

• Relocation

• Paging

• Virtual Memory

• Programs must be in memory to execute

• Program binary is loaded into a process’s address
space

• Addresses in the program must be translated
(mapped, bound) to real (physical) addresses

• Programmers use symbolic addresses (i.e.,
variable names) to refer to memory locations

• CPU fetches from, and stores to, real memory
addresses

• Address translation is the process of linking variable
names to physical locations.

Address Translation

Partitioning

• How do we determine where programs are placed
within physical memory?

• This is the partitioning problem

• Two considerations:

• Efficiency: are we wasting space?

• Flexibility: are we supporting as many
processes as possible?

• We will consider static and dynamic solutions

• Divide memory into regions with
fixed boundaries

• Can be equal-size or unequal-size

• Operating system occupies one
partition

• A single process can be loaded into
each remaining partition

• Memory is wasted if process is smaller
than partition (internal fragmentation)

• Programmer must deal with programs
that are larger than partition (overlays)

Operating system
8M

Available
8M

Available
8M

Available
8M

Available
8M

Process 1 - 5M

Unusable - 3M

Process 2 - 2M

Unusable - 6M

Static Partitioning of
Physical Addresses

• Number of partitions determines number of active
processes

• If all partitions are occupied by waiting processes, swap
some out, bring others in

• Equal-sized partitions:

• Process can be loaded into any available partition

• Unequal-sized partitions:

• Queue-per-partition, assign process to smallest partition in which it
will fit

• A process always runs in the same size of partition

• Or, single queue, assign to smallest available partition in which the
process fits

Placement with Fixed Partitions

Operating system
8M

Available
4M

Available
8M

Available
16M

Process 1 - 5MProcess 2 - 7M

Available
4M

Process 1 and Process 2 fit in same partition.
With smallest-partition policy, both must share
8M partition while 16M partition goes unused.

Placement Example

• Partitions vary in length and number over time

• When a process is brought in to memory, a partition of exactly
the right size is created to hold it

Operating system
8M

Available
32M

Operating system
8M

Available
27M

Operating system
8M

Available
20M

Process 1 - 5M Process 1 - 5M

Process 2 - 7M

Dynamic Partitioning

• As processes come and go, “holes” are
created

• Some blocks may be too small for any
process

• This is called external fragmentation

• OS may move processes around to create
larger chunks of free space

• This is called compaction

• Requires processes to be relocatable

• We must know, at loadtime, what the
maximum size of the process is

• Else, we must be able to add to its
partition, potentially relocating it

Operating system
8M

Available
18M

Process 1 - 5M

Available - 7M

Process 3 - 2M

Concerns about Dynamic
Partitioning

• How do malloc() and free() solve the partitioning
problem?

• Dynamic partitioning system, without relocation

• malloc(size) returns a pointer to a block of memory of
at least “size” bytes, or NULL

• free(ptr) releases the previously-allocated block
pointed to by “ptr”

• Internally, malloc/free manage a contiguous range of
logical addresses

• Starts just after uninitialized data segment

• Can be extended with sbrk() system call

Example: Heap Management

• First Implementation: Bitmaps

• 1 bit per allocation unit

• “0” == free, “1” == allocated

• See kern/arch/mips/mips/dumbvm.c

• Allocation unit is a page of physical memory

• Allocating a N-unit chunk requires scanning bitmap for sequence of N
zero’s

• Drawback? Slow

111000001110011111000011

Memory:

Bitmap:

Tracking Memory Allocations

• Free lists: a linked list of allocated and free segments

• List needs memory too. Where do we store it?

• Implicit list

• Each block has header that records size and status (allocated or free)

• Searching for free block is linear in total number of blocks

• Explicit list

• Store pointers in free blocks to create doubly-linked list

5/f 2/f 4/f4/a 4/a 6/a 3/a

Tracking Allocations (continued)

• Adjacent free blocks can be coalesced

5/f 2/f 4/f4/a 4/a 6/a 3/a

p = malloc(3);
. . .

free(p);

5/f 2/f 4/f4/a 4/f 6/a 3/a

11/f 4/f4/a 6/a 3/a

Freeing Blocks

• Easier if all blocks end with a footer with size/status info (called the
boundary tag)

Outline

• Introduction to Memory Management

• Address Translation

• Memory Partitioning

• Relocation

• Paging

• Virtual Memory

• Compaction is time-consuming and not always possible

• We can reduce the need for it by being careful about how
memory is allocated to processes over time

• First-fit - choose first block that is large enough; search can
start at beginning, or where previous search ended (called
next-fit)

• Best-fit - choose the block that is closest in size to the
request

• Worst-fit – choose the largest block

• Quick-fit – keep multiple free lists for common block sizes

Placement Heuristics

• Best-fit

• left-over fragments tend to be small (unusable)

• In practice, similar storage utilization to first-fit

• First-fit
• Simplest, and often fastest and most efficient

• May leave many small fragments near start of memory that must be
searched repeatedly

• Next-fit variant tends to allocate from end of memory

• Free space becomes fragmented more rapidly

• Worst-fit
• Not as good as best-fit or first-fit in practice

• Quick-fit
• Great for fast allocation, generally harder to coalesce

Comparing Placement Algorithms

• Swapping and compaction require a way to change the physical
memory addresses a process refers to

• Really, we need dynamic relocation (execution-time binding of
addresses)

• Processes refer to relative addresses

• The hardware translates to physical addresses as instructions are
executed

• Let’s begin with minimum requirements to relocate fixed or dynamic
partitions…

• Assume: All memory used by a process is contiguous

Relocation

• Basic idea: add relative address to process starting (base)
address to form a real (physical) address

• Check that the address generated is within process’s space

• 2 registers, “base” and “limit”

• When process is assigned to CPU (i.e., set to “Running” state), load
base register with starting address for that process

• Load the limit register with last legal address of process

• On memory reference instruction (load, store) add base to address
and compare with limit

• If compare fails, trap to operating system

• if (addr < base || addr >= (base+limit)) then trap

• This is an illegal address exception

Hardware for
Relocation

• With fixed partitioning, internal fragmentation and need for
overlays are big problems

• Scheme is too inflexible

• With dynamic partitioning, external fragmentation and
managing the available space are major problems

• The basic problem is the assumption that processes must
be allocated to contiguous blocks of memory

• Hard to figure out how to size these blocks given that processes are
not all the same

• Paging provides the appearance of a contiguous allocation

Problems with Partitioning

Outline
• Introduction to Memory Management

• Address Translation

• Memory Partitioning

• Relocation

• Paging

• Segmentation

• Virtual Memory

• Alternate means of dividing user program

• Divisions reflect the logical organization of the program

• Text segment - read-only

• Data segment - read/write, may be subdivided further

• Segments are variable-sized

• A lot like dynamic partitioning, but a process may occupy multiple,
non-contiguous segments

• Suffers from external fragmentation

• No simple mapping from logical to physical addresses

Segmentation

• Operating system maintains a segment table

• Like the page table, but records start address and length for each
segment

• Physical start of segment need not be power-of-2

• Logical addresses consist of a segment # and an offset
within that segment

• For translation, may reserve a fixed number of high-order bits for
segment number

• Maximum segment size is determined by the number of bits left for
the offset.

• E.g., 16 bit address, 4 bit segment number = 16 segments of max size
4096 bytes (212 = 4096)

Address Translation

3 78
Segment# Offset

0 750
Segment# Length

1 224
2 1020
3 100

418
Address

510
1372
2128
340

Base

+

Example

Segments and Pages

• Segments and pages are orthogonal

• Can place one segment on a page, for example

• Segments support a logical partitioning

• Pages are a mechanism for supporting non-
contiguous memory

• A real scheme may use both!

• Partition memory into equal, fixed-size chunks

• These are called page frames or simply frames

• Divide processes’ memory into chunks of the same
size

• These are called pages

• Any page can be assigned to any free page frame

• External fragmentation is eliminated

• Internal fragmentation is at most a part of a page

• Possible page frame sizes are restricted to powers of 2
to simplify translation

Paging

• We can fit Process D into memory, even though we don’t have
3 contiguous frames available!

A.0
A.1
A.2

C.0
C.1

0
1
2
3
4
5
6
7
8

Main memory
A.0
A.1
A.2
D.0
D.1
C.0
C.1
D.2

0
1
2
3
4
5
6
7
8

Main memory

Suppose a new process, D, arrives needing 3 frames of memory

Example of Paging

• Need more than base & limit registers now

• Operating system maintains a page table for each process

• Page table records which physical frame holds each page

• virtual addresses are now page number + page offset

• page number = vaddr / page_size

• page offset = vaddr % page_size

• On each memory reference, processor translates the
page number to its frame number and adds the offset to
generate a physical address

Support for Paging

Paged Address Translation

• Suppose addresses are 16 bits, pages are 1024 bytes

• Least significant 10 bits of address provide offset within a
page (210 = 1024)

• Most significant 6 bits provide page number

• Maximum number of pages = 26 = 64

• To translate virtual address: 0xDDE

• Extract page number (high-order 6 bits)

-> pg = vaddr >> 10 (== vaddr/1024)

• Get frame number from page table

• Combine frame number with page offset

• offset = vaddr & 0x3FF (== vaddr % 1024)

• paddr = (frame << 10) | offset

3 478
Page# Offset

0 11
Page# Frame#

1 16
2 7
3 28

28 478
Frame# Offset

9

OffsetPg #

010Bit 15

Logical address

physical address

Example of Address Translation

• Simplest version
• a linear array of entries, 1 entry per page
• Stored in memory, attached to process
• Virtual page number (VPN) is array index

Where are Page Tables Stored?

struct addrspace {
 paddr_t pgtbl;
 …
}

struct addrspace *
as_create(void) {
 struct addrspace *as =
 kmalloc(sizeof(struct addrspace));
 int nentries = (unsigned)(-1) >> 13;
 int npages = DIVROUNDUP(nentries*

 sizeof(pte_t), PAGE_SIZE);
 as->pgtbl = getppages(npages);
 ...
}

• N == not cached
• D == dirty (meaning “writable”, not set by hardware)
• V == valid
• G == global (can be used by all processes)

• Maximum 220 physical pages, each 4 kB
• Maximum 4GB of physical RAM

Example: MIPS Page Table Entries

nPage Frame Number
n20

N D V
1 1 1 n81

G unused

• Memory reference overhead is large
• 2 references per address lookup (first page table,

then actual memory)
• Solution: use a hardware cache of lookups

• Translation Lookaside Buffer (TLB)
• Small, fully-associative hardware cache of recently

used translations
• Part of the memory management unit (MMU)

Limitation of Paging:
Access Time

The Main Drawback: Time

• 2 loads are required per address lookup (first into the page table,
then for the requested address)

• Loads are the most expensive operations!

• Solution: use a hardware cache of lookups to remove the first
load

• Translation Lookaside Buffer (TLB)

• Small, fully-associative hardware cache of recently used
translations

• Part of the MMU

TLBs
• Given a virtual page number, returns the page’s page table

entry

• The tags (indices) into the cache are virtual page numbers

• With PTE + offset, can directly calculate physical
address with existing hardware

• TLBs must return a value within a single machine cycle

• This implies that the structure is fully associative (all
entries are looked up in parallel)

• Fully associative structures are very space-expensive

• The TLB cannot be very large

Why do TLBs work?
• TLBs (like all caches) exploit locality

• Locality is the idea that programmers tend to:

• Access an item multiple times in a short period of time (temporal
locality)

• Access items close to an already accessed item (spatial locality)

• Processes only use a handful of pages at a time

• 16-48 entries/pages (64-192K)

• Only need those pages to be “mapped”

• Hit rates are therefore very important

• If you have a large, sprawling structure in the heap, you get what you
deserve

Example: Pentium

Data Cache/
Main Memory

To page table

TLBs, Common Case

• Situation: Process is executing on the CPU, and it issues a read to an
address

• The address goes to the TLB in the MMU

1. TLB does a lookup using the page number of the address

2. Common case is that the page number matches, returning a page table
entry (PTE) for the mapping for this address

3. TLB validates that the PTE protection allows reads

4. PTE specifies which physical frame holds the page

5. MMU combines physical frame & offset into a physical address

6. MMU reads from that physical addr, returns value to CPU

TLB Misses
• At this point, two other things can happen

1. TLB does not have a PTE mapping this virtual address

2. PTE exists, but memory access violates PTE protection bits

• Translations for most instructions are handled using the TLB

• >99% of translations hit, but there are misses (TLB miss or TLB
fault)…

• On a miss, the missed entry needs to be loaded into the TLB

• The big question: Who loads (places translations into) the TLB?

Reloading the TLB
• If the TLB does not have mapping, two possibilities:

• 1. MMU loads PTE from page table in memory

• Hardware managed TLB, OS not involved in this step

• OS has already set up the page tables so that the hardware can access it
directly

• 2. Trap to the OS

• Software managed TLB, OS intervenes at this point

• OS does lookup in page table, loads PTE into TLB

• OS returns from exception, TLB continues

• Most machines will only support one method or the other

• At this point, there is a PTE for the address in the TLB

Software-Managed TLB

• TLB faults to the OS, OS finds appropriate PTE, loads it in TLB

• Must be implemented to be fast (but still 20-200 cycles)

• CPU ISA has instructions for manipulating TLB

• Tables can be in any format convenient for OS (flexible)

struct region {
 vaddr_t vbase;
 int len;
 pte_t *table;
}

struct addrspace {
 array of region
}

int
as_define_region(vaddr_t vbase, int len,…)
{
 struct region *r = (struct region *)
 kmalloc(sizeof(struct region));
 r->vbase = vbase;
 r->len = len;
 int nentries = DIVROUNDUP(len,PAGE_SIZE);
 r->table = (pte_t *)kmalloc(nentries *
 sizeof(pte_t));
 add r to array of regions in addrspace
}

Software Management
• OS ensures that TLB and page tables are consistent

• When a PTE is modified, if it is in the TLB, it must be
invalidated there (valid is a bit flag in the PTE)

• On a context switch, the TLB must be reloaded

• Why?

• When the TLB misses and a new PTE has to be loaded, a cached
PTE must be evicted

• Choosing PTE to evict is called the TLB replacement policy

• Sometimes, the eviction policy is implemented in hardware

One Last Problem ...
• Page table lookup (by HW or OS) can cause a recursive fault if the page table is

paged out

• This assumes page tables are in OS virtual address space

• These (and issues with the protection bits in PTEs) become page faults

• Page faults trap to the OS, where the fault is handled in software

• Example: Virtual page not allocated in address space

• OS sends fault to process (e.g., segmentation fault)

• Example: Page not in physical memory

• OS allocates frame and reads it in

• Sometimes, the OS will use the page fault mechanism for other services
(copy on write or mapped files, for example)

Summary
• The major drawback to paging was the increased cost of a

lookup

• We use a small hardware cache called the TLB to remove
much of the overhead of a page table lookup

• TLBs can be managed by hardware or software

• Software management of the TLB is a major portion of
A2

• Occasionally, the OS must be invoked to handle cases
where the PTE does not have a valid entry or the page
table itself is paged out

