
CSC C69H1 F, Fall 2003, Midterm                                 Student Number: |_  _  _|  |_  _  _|  |_  _  _| 3

3.  [12 marks; 6 each] Consider the following program to 
demonstrate the operation of pthread_create and pthread_join.  The pthread_join 
function blocks the calling thread until the specified thread has exited.  If the thread 
has already exited at the time pthread_join is called, the caller continues execution 
without blocking.  Assume the existence of a �“pthread_attr_setpriority�” function which 
allows the priority for a new thread to be specified.  Assume also that higher numbers 
correspond to higher priorities, and that all printf statements are executed without 
blocking the caller 
 
 
int main() { 
   pthread_t t; 
   pthread_attr_t attr; 
    
   pthread_attr_init(&attr); 
   pthread_attr_setpriority(&attr,10); 
   printf(�“bam �“); 
   pthread_create(&t, &attr, A, 0); 
   printf(�“baf �“); 
   pthread_join(t, 0); 
   printf(�“blam �“); 
   pthread_exit(0); 
} 

void *A(){ 
   pthread_t t2; 
   pthread_attr_t attr2; 
 
   pthread_attr_init(&attr); 
   pthread_attr_setpriority(&attr, 20); 
   printf(�“umph �“); 
   pthread_create(&t2, &attr, B, 0); 
   printf(�“ugh �“); 
   pthread_join(t2, 0); 
   printf(�“urk �“); 
   pthread_exit(0); 
} 
 
void *B() { 
   printf(�“krak �“); 
   pthread_exit(0); 
} 
 

(a) Assume that the scheduler runs threads using a FCFS policy, ignoring priorities.  What 
will the program above print out? 
 
bam baf umph ugh krak urk blam 
 
 
 
(b) Assume that the scheduler runs threads using a preemptive priority policy, and that the 
priority of the �“main�” thread is 0.  What will the program above print out now? 
 
bam umph krak ugh urk baf blam

../continued 



CSC C69H1 F, Fall 2003, Midterm                                 Student Number: |_  _  _|  |_  _  _|  |_  _  _| 5

5.  [11 marks; breakdown given below]  
You have been hired as an OS consultant to solve a problem with a client�’s system.  Their OS 
has a set of queues, each of which is protected by a lock (implemented as a 
pthread_mutex_t).  To enqueue or dequeue an item, a thread must hold the lock associated 
with the queue. 
     They have implemented an atomic transfer routine that dequeues an item from one queue 
and enqueues it on another.  The client requires that the transfer appear to occur 
atomically.  The transfer routine is being used extensively throughout their multithreaded 
system, and may be called by many different threads with any of the system queues as 
inputs.  
     Unfortunately, their first attempt, shown below, causes the system to deadlock. 
 
void transfer(Queue *queue1, Queue *queue2) 
{ 
 Item *thing; /* the thing being transferred */ 
 pthread_mutex_lock(&queue1->lock); 
      thing = Dequeue(queue1); 
      if (thing != NULL) { 
  pthread_mutex_lock(&queue2->lock); 
  Enqueue(queue2, thing); 
  pthread_mutex_unlock(&queue2->lock); 
 } 
 pthread_mutex_unlock(&queue1->lock); 
} 
 

You have already verified that the Enqueue and Dequeue functions are correct, that the 
synchronization variables have all been initialized properly, and that the transfer function is 
never called with the same queue for both inputs (that is, the client has guaranteed that 
transfer(queueA, queueA) will never occur). 
   
(a) [5 marks] Demonstrate how the use of the transfer function can lead to deadlock. 
 
Suppose thread T1 calls transfer(queueA, queueB) and T2 calls transfer(queueB, queueA).  We 
could have the following sequence of events: 
 
T1: 
pthread_mutex_lock(&queueA->lock); 
 
 
thing = Dequeue(queueA); 
if (thing != NULL) { 
 pthread_mutex_lock(&queueB->lock); 
 /* blocks waiting for queueB to be free */

 
T2: 
 
pthread_mutex_lock(&queueB->lock); 
thing = Dequeue(queueB); 
 
 
 
if (thing != NULL) { 
 pthread_mutex_lock(&queueA->lock); 
 /* blocks waiting for queueA to be free */ 

../continued 



CSC C69H1 F, Fall 2003, Midterm                                    Student Number: |_  _  _|  |_  _  _|  |_  _  _| 6
 
(b) [2 marks] Which of the 4 conditions for deadlock could be easily removed to fix this 
problem? 
 
Either hold-and-wait, or circular-wait could be broken.  (Breaking mutual exclusion would violate 
the atomicity of the transfer function, and could cause the queues to become corrupted; breaking 
�“no preemption�” would require a way to roll back a partially complete transfer, which wouldn�’t be 
easy) 
 
(c) [3 marks] Briefly describe (in words) how you would solve the problem.   
 
(i) Break the hold-and-wait condition on queue locks:  Introduce a new, global lock (e.g. 
pthread_mutex_t transfer_lock).  In the transfer function, acquire the new lock before locking 
either queue involved in the transfer.  Release the new lock only when the transfer is complete.  
Note that all other operations on the queues would have to hold the new transfer_lock as well to 
really break the hold-and-wait condition. 
 
(ii) Break the circular wait condition:  Use the addresses of the queue variables to create a total 
order of queues in the system.  The transfer function could be re-written to always lock the queue 
with the lower address first.  This is preferable to a single global lock as it allows greater 
concurrency. 
 
(d) [1 mark] Which of the 3 strategies for dealing with deadlock does your solution use? 
 
Both of the strategies above use deadlock prevention because they prevent one of the four 
conditions for deadlock from occurring.   
 
 
 
 
 
 
 
 
 
 
 
Total marks = (50) 
End of test 

    ../continued 


