
CSC369:
Operating Systems

Fall 2014

Andrew Petersen

... A1 must be a
tribulation

In moments like these I would hope that many of us do not stray from our daily
prayers. Lest we forget..

The Thread's Prayer:

Our Andrew, who art in parallel,
hallowed be thy name,
Thy process come,
Thy will be done
on earth as it is in memory.

Give us this day our daily compiles
and forgive us our seg faults
as we forgive those who seg fault against us,
and lead us not into plagiarism
but deliver us from malloc

Amen.

Haskell Workshop

• Abbas is running a Haskell workshop on
either Oct 15 or 20

• Register here:

http://goo.gl/5ONJNA

Outline

• What is CPU Scheduling?

• Types of Schedulers

• Basic Scheduling Heuristics

• Advanced Heuristics

• Real-world Schedulers

4

• “The allocation of processors to processes over time”

• “Who gets to execute when?”

• This is the key to multiprogramming

• We want to increase CPU utilization and job
throughput

• Mechanisms: process states, process queues

• Policies:

• Given more than one runnable process, how do we
choose which to run next?

• When do we make this decision?

What is Processor Scheduling?

5

• All systems

• Fairness - each process receives fair share of CPU

• Avoid starvation

• Policy enforcement - usage policies should be met

• Balance - all parts of the system should be busy

• Batch systems

• Throughput - maximize jobs completed per hour

• Turnaround time - minimize time between
submission and completion

• CPU utilization - keep the CPU busy all the time

Scheduling Goals

6

• Interactive Systems

• Response time - minimize time between
receiving request and starting to produce output

• Proportionality - “simple” tasks complete quickly

• Real-time systems

• Meet deadlines

• Predictability

• Goals often conflict with each other!

• We need different schedulers for different systems

Goals, continued

7

• Processes repeatedly alternate between computation
and I/O (reading files, accessing memory)

• Called CPU bursts and I/O bursts

• Last CPU burst ends with a call to terminate the
process (_exit() or equivalent)

• During I/O bursts, the CPU is not needed

• We have an opportunity to execute another process!

The Life Cycle of a Process

8

Aside: Limits on Performance

• At some point, you will need to optimize an application

• This leads to profiling

• System architects break programs into two major classes:

• CPU-bound: very long CPU bursts, infrequent I/O bursts

• I/O-bound: short CPU bursts, frequent (long) I/O bursts

• What can you do about CPU-bound applications?

• What about I/O bound applications?

9

Outline

• What is CPU Scheduling?

• Types of Schedulers

• Short, medium, and long-term

• Preemptive and nonpreemptive

• Basic Scheduling Heuristics

• Advanced Heuristics

10

New

Suspend Ready Running

Long-term scheduler

Medium-
term

scheduler

Long-term scheduler

Short-
term

scheduler

Blocked

Process State Diagram

11

• Long-term scheduling (admission scheduling/control)

• Used in batch systems, not common today

• Medium-term scheduling (memory scheduling)

• A common but infrequent task

• Decides which processes are swapped out to disk

• We’ll talk about this later in memory management

• Sometimes called “long-term”, and admission control
is ignored

• Short-term scheduling (dispatching)

• Occurs frequently

• Needs to be efficient (fast context switches, fast
queue manipulation)

Types of CPU Scheduling

12

?

Review: What Happens on Dispatch
(Context Switch)?

13

• Save currently running process state

• Unless the current process is exiting

• Select next process from ready queue

• Insert your favorite scheduling heuristic here!

• Restore state of next process

• Restore registers

• Restore OS control structures

• Switch to user mode

• Set PC to next instruction in the process

Review: What Happens on Dispatch
(Context Switch)?

14

• When a process enters the ready state

• I/O interrupts

• Signals

• Process creation (or admission)

• When the running process blocks (or exits)

• Operating system calls (e.g., I/O)

• Signals

• At fixed intervals

• Clock interrupts

• See kern/thread/hardclock.c

When to Dispatch

15

• Non-preemptive scheduling

• Once the CPU has been allocated to a
process, it keeps the CPU until it
terminates or blocks

• Suitable for batch scheduling

• Preemptive scheduling

• CPU can be taken from a running process
and allocated to another

• Needed in interactive or real-time systems

Types of Scheduling

16

Outline

• What is CPU Scheduling?

• Types of Schedulers

• Basic Scheduling Heuristics

• FCFS, SJF, Round-Robin, Priority

• Advanced Heuristics

• Real-world Schedulers

17

• “First come, first served”

• Non-preemptive

• Choose the process at the head of the FIFO
queue of ready processes

• Average waiting time under FCFS is often
quite long

• convoy effect: all other processes wait for
the one big process to release the CPU

Scheduling Algorithms:
FCFS

18

• Note that E waits five times as long as it runs!

• Total run time is 20

• Total wait time is 23, average wait is 4.6

Process Arrival
Time

Service
Time

A 0 3
B 2 6
C 4 4
D 6 5
E 8 2

A
B

C
D

E

B
C

D
E

0 2 4 6 8

FCFS Example

19

• aka Shortest Process Next, SJF or SPN

• Choose the process with the shortest
expected processing time ... judged somehow:

• Programmer estimate

• History statistics

• Can be shortest-next-CPU-burst for
interactive jobs

• Provably optimal for “average wait time”

Algorithm: Shortest-Job-First

20

• Total run time still 20

• Total wait time is now 18?, average wait time now 3.4

Process Arrival
Time

Service
Time

A 0 3
B 2 6
C 4 4
D 6 5
E 8 2

A
B

C
D

E

B
C

D
E

First opportunity to
choose process

Example: SJF

21

• Designed for time-sharing systems

• Preemptive

• Ready queue is circular

• Each process runs for time quantum q before
being preempted and placed on the queue

• Choice of quantum (aka time slice) is critical

• as q → ∞, RR → FCFS; as q → 0, RR →
processor sharing (PS)

• we want q large w.r.t. the context switch time

Algorithm: Round Robin

22

• Using a quantum of 2

• Assuming new processes arrive before running process is
evicted

Process Arrival
Time

Service
Time

A 0 3
B 2 6
C 4 4
D 6 5
E 8 2

Example: Round-Robin

23

0 2 4 6 8

A
B
C
D
E

101214 161820

• Very different with a quantum of 4!

Process Arrival
Time

Service
Time

A 0 3
B 2 6
C 4 4
D 6 5
E 8 2

Example: Round-Robin

24

0 2 4 6 8

A
B
C
D
E

101214 161820

• A priority p is associated with each process

• The highest priority job is selected from the
Ready queue

• Can be preemptive or non-preemptive

• Enforcing this policy is tricky

• A low priority task may prevent a high
priority task from making progress by
holding a resource (priority inversion)

• A low priority task may never get to run
(starvation)

Algorithm:
Priority Scheduling

25

Outline

• What is CPU Scheduling?

• Types of Schedulers

• Basic Scheduling Heuristics

• Advanced Heuristics

• Queue, Feedback, and Fair-Share

• Real-world Schedulers

26

• Have multiple ready queues

• Each runnable process is on only one queue

• Processes are permanently assigned to a queue

• Criteria include job class, priority, etc.

• Each queue has its own scheduling algorithm

• Another level of scheduling decides which queue
to choose next

• Usually priority-based

Algorithm: Multi-Level Queue
Scheduling

27

• Adjust the criteria for choosing a particular
process based on past history (dynamic algorithm!)

• Can boost priority of processes that have waited
a long time (aging)

• Can prefer processes that do not use full
quantum

• Can boost priority following a user-input event

• Can adjust expected next-CPU-burst

• Combine with queue scheduling to move
processes between queues

Algorithm:
Feedback Scheduling

28

• Group processes by user or department

• Ensure that each group receives a proportional
share of the CPU

• Shares do not have to be equal

• Priority of a process depends on own priority and
past history of entire group

• Variant: Lottery scheduling - each group is
assigned “tickets” according to its share

• Hold a lottery to find next process to run

Algorithm:
Fair Share Scheduling

29

Exercise
• 4 processes (P0-P3) are being run

• Each process Pi starts at time 2 * i

• Each process does has a 3-unit CPU burst, a 2-unit
I/O burst, and then a 5-unit CPU burst

• The scheduler is a 3-queue (Q0-Q2) priority scheduler
(Q0 is the highest priority)

• New processes and processes returning from I/O
start in Q0

• Each queue uses round-robin with a quantum of 2

• If a process is preempted, it moves from queue i to
queue i + 1

30

Outline

• What is CPU Scheduling?

• Types of Schedulers

• Basic Scheduling Heuristics

• Advanced Heuristics

• Queue, Feedback, and Fair-Share

• Real-world Schedulers

31

• Interactive processes are favored

• Small CPU time slices are given to processes by a priority
algorithm that reduces to Round Robin for CPU-bound jobs

• The more CPU time a process accumulates, the lower its
priority becomes (negative feedback)

• “Process aging” prevents starvation

• Newer Unixes reschedule processes every 0.1 seconds and
recompute priorities every second

Unix CPU Scheduling

32

• Multi-level Feedback Queue with Round Robin within each
priority queue

• Priority is based on process type and execution history
Pj(i) = basej + [CPUj(i-1)]/2 + nicej

 CPUj(i) = Uj(i)/2 + [CPUj(i-1)]/2

• Pj(i): priority of process j at beginning of interval i; lower values equal
higher priorities

• basej: base priority of process j

• Uj(i): processor utilization of process j in interval i

• CPUj(i): exponentially weighted average processor utilization by
process j through interval i

• nicej: user-controllable adjustment factor

UNIX Scheduling Details

33

• 2 separate process scheduling algorithms:

• time-sharing and real-time tasks

• Time-sharing: use a prioritized, credit-based algorithm

• Chooses process with the most credits

• At every timer interrupt, the running process loses
one credit

• When credits reach 0, the process is suspended	

• If no runnable processes have any credits, linux
performs a recrediting, adding credits to every
process: credits = credits/2 + priority

(Old) Linux CPU
Scheduling

34

• Re-credit step takes time proportional to the number
of processes – O(N)

• For large scale systems, spend too much time making
scheduling decisions

• 2.5 kernel introduced O(1) scheduler

• Each process gets a time quantum, based on its priority

• Two arrays of runnable processes, active and expired

• Processes are selected to run from the active array

• When quantum exhausted, process goes on expired

• When active is empty, swap the two arrays

Linux Scheduling Details

35

• Dispatcher uses a 32-level MLFQ priority
scheme

• The real-time class has threads with priorities
16 - 31; the variable class has threads with
priorities 0 - 15

• Dispatcher traverses the queues from highest to
lowest until it finds a ready thread

• When a variable class thread’s quantum expires,
its priority is lowered; when it is released from a
wait, its priority is raised

Windows NT CPU Scheduling

36

• Preemptive scheduler

• Real-time:

• All threads have a fixed priority

• At a given priority, processes are in a RR queue

• Variable:

• A thread’s priority begins at some initial assigned value but may
change

• There is a FIFO queue at each priority level

• If it has used up its current time quantum, NT lowers its priority

• If it is waiting on an I/O event, NT raises its priority (more for
interactive waits than for other types of I/O waits)

Windows Scheduling Details

37

• Scheduling is one example of sharing a fixed
resource

• Influences process/thread performance
and impacts synchronization

• Several criteria must be considered:
fairness, performance, real-time demands, ...

• Most “real” implementations are hybrids of a
handful of theoretical algorithms

Scheduling Summary

38

