Page 1 of 6

University of Toronto Mississauga

Sample Synchronization Midterm
Course: CSC369H5F
Instructor: Andrew Petersen
Duration: 45 minutes
Aids allowed: None

Last Name:

Given Name:

Student Number:

This midterm test consists of 2 questions on
6 pages (including this one). Please write MARKING GUIDE
legibly and be as specific as possible. Precise
answers will be given higher marks than

vague ones, and marks will be deducted for #1110
any incorrect statements in an answer. 4 2. /6
If you need extra space or scratch paper, raise

TOTAL: /16

your hand, and the instructor will bring you
a few sheets.

CONTINUED ON PAGE 2



CSC369H5F SAMPLE MIDTERM TEST Page 2 of 6

10 marks Question 1. Short Answer

2 marks Part (a)

)

Define the term “mutual exclusion”.

3 marks Part (b)

Draw a diagram of the address space of a program with two threads. Label all of the major sections
and indicate where the PC and SP registers point.

CONTINUED ON PAGE 3



CSC369H5F SAMPLE MIDTERM TEST Page 3 of 6

2 marks Part (c)

Discuss the trade-off between having many locks protecting small pieces of data and a single lock
protecting all critical sections. (For example, in assignment 1, you could have added a lock to each
file block in the cache, or you could have created a single lock for the entire file table.)

2 marks Part (d)

Add appropriate synchronization to the following threads so that resource-- is executed if and
only if resource is greater than 0. Your solution should not enforce any other constraints. Be sure
to declare and initialize any synchronization variables.

// Synchronization variables and initialization

// Thread X // Thread Y

resource——; resourcet++;

CONTINUED ON PAGE 4



6 marks

CSC369H5F SAMPLE MIDTERM TEST Page 4 of 6

Question 2. Synchronization Problem

Hungry, hungry hippos! There are H hippos (4, in the board game, but we can imagine more).
A referee dumps a handful of marbles (M of them) between the hippos, and the hippos attempt to
consume marbles as quickly as possible. However, each hippo can only consume one marble at a
time. When all of the marbles have been consumed, the hippo who ate the last marble informs the
referee, who prints the score for that round and then dumps M more marbles onto the board. This
game repeats forever.

The basic algorithm for the game is given below, but it lacks any synchronization. Fill in the
appropriate synchronization and any conditionals (if-statements) required to protect the global
data. You will need to declare your synchronization primitives, but you may assume they are
correctly initialized elsewhere.

Hint: Use a monitor implemented with condition variables (CV_wait and CV_signal). Assume these
condition variables follow the Mesa convention.

hippo(int ID) {
while (1) eat(ID);
}

referee() {
while (1) restart_game();

}

// GLOBALS

int marbles = M;

int scores = {0, 0, 0, ... O};

// SYNCHRONIZATION DECLARATIONS

CONTINUED ON PAGE 5



CSC369H5F SAMPLE MIDTERM TEST Page 5 of 6

void eat(int ID) {

marbles—-—;
scores [ID] ++;

void restart_game() {

print_and_clear_scores();
marbles = M;

CONTINUED ON PAGE 6



CSC369H5F SAMPLE MIDTERM TEST Page 6 of 6

[Use the space below for rough work. This page will not be marked, unless you clearly indicate the
part of your work that you want us to mark.]

END OF EXAMINATION



