
CSC369:
Operating Systems

Fall 2014

Andrew Petersen

Anonymous ... Prayers?
In moments like these I would hope that many of us do not stray from our daily prayers. Lest
we forget..

The Processes Creed:
I believe in Assembly the Father almighty.
I also believe in Andrew his only son, our Lord.
Conceived of the CPU and born of the BIOS.
Who was crucified under stack smashing, locked, starved and freed.
Descended into the kernel, on the third day rose a zombie process.
And sitteth on the right hand of the pthread.
Whence he come again to judge the code efficiency.

I believe in the holy kernel, the holy catholic OS, the communion of parallel processes, the
remission of API's, the resurrection of Andrew and thread lifespan; eternal.

• I’m not sure I like where this is going. I’m going to be crucified and zombified?

No Office Hours this
Afternoon

• Sorry! I’m downtown for a tribunal right
after CSC108 today.

• We do have office hours immediately after
class, and I can also be reached by email.

Any A1 Questions?

• Semaphores are data structures that provide
synchronization. They include:

• An integer variable count accessed only through 2
atomic operations

• wait (also called P, down, or decrement) - block
until semaphore is free, then decrement the
variable

• signal (also called V, up, or increment) - increment
the variable and unblock a waiting thread if there
are any

• A queue for waiting threads

Software Solution:
Semaphores

• Mutex (or Binary) Semaphore

• Represents single access to a resource

• Guarantees mutual exclusion to a critical section

• Counting semaphore

• Represents a resource with many units available, or
a resource that allows certain kinds of
unsynchronized concurrent access (e.g., reading)

• Multiple threads can pass the semaphore

• Max number of threads is determined by
semaphore’s initial value (count)

• Mutex has count = 1, counting has count = N

Types of Semaphores

//number of readers
int readcount = 0;
//mutual exclusion to readcount
Semaphore mutex = 1;
//exclusive writer or reading
Semaphore w_or_r = 1;

Writer {
 wait(w_or_r); //lock out others
 Write;
 signal(w_or_r); //up for grabs
}

Reader {
 wait(mutex); //lock readcount
 // one more reader
 readcount += 1;
 // is this the first reader?
 if(readcount == 1)
 //synch w/ writers
 wait(w_or_r);
 //unlock readcount
 signal(mutex);
 Read;
 wait(mutex); //lock readcount
 readcount -= 1;
 if(readcount == 0)
 signal(w_or_r);
 signal(mutex);
}

Readers/Writers, Revisited
Implement with Mutexes and CVs

Discussion Question
• The author states that semaphores are capable of

being both locks and CVs.

• Do you agree or disagree?

• Is there any CV behaviour that a semaphore
cannot easily replicate?

• Or is there a semaphore behaviour that would
make us use them differently from CVs?

• Semaphores allow objects to communicate

• If a semaphore is free, then the thread can take it and move
on.

• If a semaphore is absent, then the thread can wait and be
guaranteed a wake-up.

• Forces 1-1 communication and requires that critical
sections be atomic.

• This form of communication is limited.

• What if some arbitrary number of threads want to be
woken up?

• What if we realize we can’t make progress and want to
continue later?

• What we are looking for is notification that some condition
is true.

Communicating State

Condition Variable Ops

• Condition variables support:

• wait() (suspend the invoking process)

• signal() (resume one or zero suspended processes)

• These are the same operations as semaphores, but ...

• On “wait”, the the process gives up a mutex

• On being awakened, the process reacquires the
mutex

• A signal wakes up one process -- if one is waiting

• If no process is suspended, a signal has no effect

• In contrast, a semaphore signal always changes
the state of the semaphore

• Back to the question: “Who goes first?”

• Suppose process P executes a signal operation
that would wake a suspended process Q

• Either process can continue execution ...

• But both cannot be simultaneously active in
the monitor

Wasted Signals?

• Hoare monitors (original): waiter first

• signal() immediately switches from the caller to a waiting thread

• The condition that the waiter was blocked on is guaranteed to hold
when the waiter resumes

• Need another queue for the signaler, if signaler was not done using the
monitor

• Mesa monitors (Mesa, Java, Nachos): signaler first

• signal() places a waiter on the ready queue, but signaler continues inside
monitor

• Condition is not necessarily true when waiter resumes

• Must check condition again

Monitor Semantics

• Hoare
if (empty)

	

 wait(condition);

• Mesa

	

 while(empty)

	

 	

 wait(condition)

• Tradeoffs

• Hoare monitors make it easier to reason

• Mesa monitors are easier to implement, more efficient, can
support additional operations like broadcast

Hoare vs. Mesa
Semantics

• Bounded buffer example: Want a monitor to control
access to a buffer of limited size, N

• Producers add to the buffer if it is not full

• Consumers remove from the buffer if it is not empty

• Need two functions – add_to_buffer() and
remove_from_buffer()

• Need one lock – only lock holder is allowed to be
active in one of the monitor’s functions

• Need two conditions – one to make producers wait,
one to make consumers wait

CV Example

#define N 100
typedef struct buf_s {
 int data[N];
 int inpos; /* producer inserts here */
 int outpos; /* consumer removes from here */
 int numelements; /* # items in buffer */
 struct lock *mylock; /* access to monitor */
 struct cv *notFull; /* for producers to wait */
 struct cv *notEmpty; /* for consumers to wait */
} buf_t;

buf_t buffer;
void add_to_buff(int value);
int remove_from_buff();

Bounded Buffer Example: Variables

void add_to_buf(int value) {

 lock_acquire(buffer.mylock);
 while (nelements == N) {

 /* buffer is full, wait */
 cv_wait(buffer.notFull, buffer.mylock);

 }
 buf.data[inpos] = value;

 inpos = (inpos + 1) % N;
 nelements++;

 cv_signal(buffer.notEmpty, buffer.mylock);
 lock_release(buffer.mylock);

}

Bounded Buffer Example: add

• Locks

• Very primitive, minimal semantics, difficult to use
correctly

• Semaphores

• Basic, easy to understand, hard to program with

• Condition Variables (to implement monitors)

• High-level, ideally has language support (Java)

• Event-based synchronization

• Essentially a polling loop

• Transactions

Higher-level Abstractions

When Parallelizing,
Consider ...

• How critical is the code to be (potentially)
parallelized?

• How much parallelism is available?

• How many dependencies are there
between operations?

• How frequent are collisions?

Discussion Question

Discuss	

the issues you would consider if
asked to parallelize the following	

python-like
pseudocode:	

 L = [...]
 sums = [0, 0, 0, ...]
 for item in L:
 sums[hash(item)] += func(item)

Concurrency Bugs

• The majority of bugs are ones of omission

• Missing locks or synchronization that lead
to race conditions.

• But too much synchronization is also a
problem ...

Supplementary Material
on Deadlock

• Deadlock occurs when each thread in a set is waiting
for an event that can only be caused by another
thread in the set

• In other words, “circular dependency”

• In the case of semaphores, the event is the
execution of the signal operation

• A thread is suffering starvation (or indefinite
postponement) if it is waiting for a signal that never
comes (or is not guaranteed to be sent)

Deadlock and
Starvation

• The permanent blocking of a set of processes that either:

• Compete for system resources, or

• Communicate with each other

• Each process in the set is blocked, waiting for an event
which can only be caused by another process in the set

• Resources are finite

• Processes wait if a resource they need is unavailable

• Resources may be held by other waiting processes

Deadlock Defined

23

• Reusable

• Can be used by one process at a time,
released and used by another process

• Printers, memory, processors, files

• Locks, semaphores, monitors

• Consumable

• Dynamically created and destroyed

• Can only be allocated once

• e.g. interrupts, signals, messages

Types of Resources

24

• Suppose processes P and Q need (reusable) resources A
and B:

Process Q
...

Process
P ...

A

B

Get A
...

Get B

Get B
...

Get A
...

Release A
...

Release B

...
Release B

...
Release A

Example of Deadlock

25

1. Mutual Exclusion

• Only one process may use a resource at a time

2. Hold and wait

• A process may hold allocated resources while
awaiting assignment of others

3. No preemption

• No resource can be forcibly removed from a
process holding it

• These are necessary conditions

Conditions for
Deadlock

26

4. Circular wait

• A closed chain of processes exists, such that each
process holds at least one resource needed by the
next process in the chain

• Together, these four conditions are necessary and
sufficient for deadlock

• Circular wait implies hold and wait

• Circular wait is a sequence of events

• Hold and wait is a policy decision

One more condition…

27

• Prevention and avoidance is awkward and costly

• The need to be cautious leads to low
utilization

• Instead, allow deadlocks to occur, but detect
when this happens and find a way to break it

• Check for circular wait condition periodically

• When should the system check for deadlocks?

Deadlock Detection &
Recovery

28

• Finding circular waits is equivalent to finding a cycle in the
resource allocation graph

• Nodes are processes (drawn as circles) and resources
(drawn as squares)

• Arcs from a resource to a process represent allocations

• Arcs from a process to a resource represent ungranted
requests

• Any algorithm for finding a cycle in a directed graph will
do

• Note: with multiple instances of a type of resource,
cycles may exist without deadlock

Detection

29

A B

DC

F

G

ES

R

W

U

T

V

Example Resource
Allocation Graph

30

• Basic idea is to break the cycle

• Drastic - kill all deadlocked processes

• Still drastic - selectively kill deadlocked
processes until cycle is broken

• Re-run detection alg. after each kill

• Costly - back up and restart deadlocked
processes (hopefully, non-determinism will keep
deadlock from repeating)

• Best (but tricky) - selectively preempt resources
until cycle is broken

• Processes must be rolled back

Deadlock Recovery

31

• No single strategy for dealing with deadlock is
appropriate for all resources in all situations

• All strategies are costly in terms of computation
overhead, or restricting use of resources

• Most operating systems employ the “Ostrich
Algorithm”

• “Ignore the problem and hope it doesn’t happen
often”

Reality Check

32

• Recall the causes of deadlock:

• Resources are finite

• Processes wait if a resource they need is unavailable

• Resources may be held by other waiting processes

• Prevention/Avoidance/Detection deal with the last 2 points

• Modern operating systems virtualize most physical
resources, eliminating the first problem

• Some logical resources can’t be virtualized (there must be
exactly one), such as bank accounts or the process table

• These are protected by synchronization objects, which
are now the only resources that can cause deadlock

Why does the Ostrich
Algorithm Work?

33

