
CSC369:
Operating Systems

Fall 2014

Andrew Petersen

Anonymous Feedback

“I really want to know if im the only one found this course super hard”

• I am confident you are not the only one.

• If you’re in this situation, please come talk to me. Let’s figure
out what you’re having trouble with, and let’s build a study
plan for getting comfortable in the course.

• ... I doubt it will get better if you just hope that it gets better.
The key question is, “What will you do about it?”

Any A1 Questions?

What is a Thread?

• A thread is a single control flow through a
program

• What is a “control flow”?

• How is control flow represented?

• A program with multiple control flows is
multithreaded

Control Flow

• Control includes all of the values that select
which instructions in a program are
executed.

• Control flow, then, is the sequence of
instructions being executed.

• The hardware uses the program counter
(PC) and stack to make control flow
decisions.

What does a multi-
threaded address space

look like?

Which segments are
shared?

• Processes (and threads) interact in a
multiprogrammed system

• To share resources (such as shared data)

• To coordinate their execution

• Arbitrary interleaving of thread executions
can have unexpected consequences

• Synchronization is the mechanism that gives
us control over interleavings

• Restores determinism (or, at least, a
semblance of it)

Synchronization

• Two concurrent threads manipulate a shared
resource without synchronization

• The outcome depends on the order in which
accesses take place

• This is called a race condition

• We need to ensure that only one thread at a
time can manipulate the shared resource

• We need mutual exclusion

• Synchronization can provide this

What Could Go Wrong?

• Deadlock occurs when each thread in a set is waiting
for an event that can only be caused by another
thread in the set

• In other words, “circular dependency”

• In the case of semaphores, the event is the
execution of the signal operation

• A thread is suffering starvation (or indefinite
postponement) if it is waiting for a signal that never
comes (or is not guaranteed to be sent)

Deadlock and
Starvation

• Synchronization problems can occur even with a
simple shared variable, even on a uniprocessor:

• T1 and T2 share variable X

• T1 increments X (X := X+1)

• T2 decrements X (X := X-1)

• But at the machine level, we have:

• Same problem of interleaving can occur!

T1: LOAD X
 INCR

 STORE X

T2: LOAD X
 DECR

 STORE X

Caution!

The Critical Section
Problem

11

• Given:

• A set of n threads, T0, T1, …, Tn

• A set of resources shared between threads

• A segment of code which accesses the shared
resources, called the critical section, CS

• We want to ensure that:

• Only one thread at a time can execute in the critical
section

• Or access the critical data

• All other threads are forced to wait on entry

• When a thread leaves the CS, another enters

Mutual Exclusion

• Mutual Exclusion

• If one thread is in the CS, then no other is

• Progress

• The choice of next thread to enter cannot be
postponed indefinitely

• Bounded waiting (no starvation)

• All waiting threads are guaranteed to eventually get
access to the CS

• Performance

• The overhead of entering and exiting the CS is small
with respect to the work being done within it

Critical Section Requirements

• Design a protocol that threads can use to cooperate

• Each thread must request permission to enter its
CS, in its entry section

• The CS may be followed by an exit section

• Each thread is executing at non-zero speed

• Make no assumptions about relative speed

CS
Entry

Exit
remainder

remainder

The Critical Section
Problem

• Assume no special hardware instructions, no
restrictions on the number of processors (for now)

• Assume that basic machine language instructions
(LOAD, STORE, etc.) are atomic:
• If two such instructions are executed concurrently, the result

is equivalent to their sequential execution in some order

• On modern architectures, this assumption may be false

• If only two threads, we number them T0 and T1

• Use Ti to refer to one thread, Tj for the other (j=1-i) when
the exact numbering doesn’t matter

Assumptions & Notation

• Let the threads share an integer variable turn initialized to
0 (or 1)

• If turn=i , thread Ti is allowed into its critical section

My_work(id_t id) { /* id_t can be 0 or 1 */
 ...
 while (turn != id) ; /* entry section */
 /* critical section, access protected resource */
 turn = 1 - id; /* exit section */
 ... /* remainder section */
}

üOnly one thread at a time can be in its CS

û Progress is not satisfied
n Requires strict alternation of threads in their CS: if turn=0, T1

may not enter, even if T0 is in the remainder section

2-Threads: 1st Try

• Replace turn with a shared flag for each thread
boolean flag[2] = {false, false}

• Each thread may update its own flag, and read the other
thread’s flag

• If flag[1-i] is true, Ti may not enter its CS

My_work(id_t id) { /* id can be 0 or 1 */
 ...
 while (flag[1-id]) ; /* entry section */
 flag[id] = true; /* indicate entering CS */
 /* critical section, access protected resource */
 flag[id] = false; /* exit section */
 ... /* remainder section */
}

2-Threads: 2nd Try

• Mutual exclusion is not guaranteed

• Each thread executes while statement, finds flag set to false

• Each thread sets own flag to true and enters CS

• Can’t fix this by changing order of testing and setting flag
variables (leads to deadlock)

My_work(id_t id) { /* id can be 0 or 1 */
 ...
 while (flag[1-id]) ; /* entry section */
 flag[id] = true; /* indicate entering CS */
 /* critical section, access protected resource */
 flag[id] = false; /* exit section */
 ... /* remainder section */
}

2-Threads: 2nd Try

2-Threads: 3rd Try
My_work(id_t id=0) {
 flag[id] = true;
 turn = id
 while (turn == id
 && flag[1-id]);
 /* critical section */
 flag[id] = false;
}

• Combine the two ideas -- use both a flag and turn variable.

• Does this work?

2-Threads: 3rd Try
My_work(id_t id=0) {
 flag[id] = true;
 turn = id
 while (turn == id
 && flag[1-id]);
 /* critical section */
 flag[id] = false;
}

• Basic idea: if both threads try to enter their CS at the same
time, turn will be set to both 0 and 1 at roughly the same time.
Only one of these assignments will last. The final value of turn
decides which of the two threads is allowed to enter its CS first.

• This is the basis of Dekker’s Algorithm (1965) and Peterson’s
Algorithm (1981)

• Peterson’s Algorithm can be extended to N threads

• Another approach is Lamport’s Bakery Algorithm

• Upon entering each customer (thread) gets a #

• The customer with the lowest number is served
next

• No guarantee that 2 threads do not get same #

• In case of a tie, thread with the lowest PID (or
TID) is served first

• Thread id’s are unique and totally ordered

Multiple-Thread Solutions

Synchronization
Primitives

22

• There are two operations on locks: acquire()
and release()

• This is a spinlock

• Uses busy waiting - thread doesn’t release CPU

boolean lock;

void acquire(boolean *lock) {
 while(test_and_set(lock));
}

void release(boolean *lock) {
 *lock = false;
}

A Lock Implementation

• To build higher-level abstractions, it is useful
to have some help from the hardware

• On a uniprocessor, in the OS, we can
disable interrupts before entering critical
section (prevents context switches)

• Why does this stop us from
implementing user level locks?

• Disabling interrupts is insufficient on a
multiprocessor

• Need some special “atomic instructions”

Synchronization Hardware

• The semantics of test-and-set are:

• Record the old value of the variable

• Set the variable to some non-zero value

• Return the old value	

• Hardware executes this atomically!

• Can be used to implement simple lock variables

boolean test_and_set(boolean *lock) {
 boolean old = *lock;
 *lock = true;
 return old;
}

Atomic Instructions:
Test-and-Set

Withdraw(acct, amt) {

 acquire(lock);
 balance = get_balance(acct);
 balance = balance - amt;
 put_balance(acct,balance);
 release(lock);
 return balance;
}

Deposit(account, amount) {

 acquire(lock);
 balance = get_balance(acct);
 balance = balance + amt;
 put_balance(acct,balance);
 release(lock);
 return balance;
}

acquire(lock);
balance = get_balance(acct);
balance = balance - amt;

acquire(lock);

put_balance(acct, balance);
release(lock);

balance = get_balance(acct);
balance = balance + amt;
put_balance(acct, balance);
release(lock);

Function Definitions

Possible schedule

Using Locks

• Other hardware instructions are possible

• For example, Swap (or Exchange) instruction

• Operates on two words atomically

• Machine instructions have three problems:

• Busy waiting

• Starvation is possible

• The scheduler affects who gets to enter their
critical section next; with bad luck, a thread
will never get a chance to enter

• Deadlock is possible through priority inversion

Drawbacks to Machine
Instructions

A Motivating Example

• Readers/Writers Problem:

• An object is shared among several threads

• We can allow multiple concurrent readers

• But only one writer

• How can semaphores control access to the object and
implement this protocol?

• Use three variables

• int readcount - number of threads reading object

• Semaphore mutex - control access to readcount

• Semaphore w_or_r - exclusive writing or reading

The Read/Write Problem

//number of readers
int readcount = 0;
//mutual exclusion to readcount
Semaphore mutex = 1;
//exclusive writer or reading
Semaphore w_or_r = 1;

Writer {
 wait(w_or_r); //lock out others
 Write;
 signal(w_or_r); //up for grabs
}

Reader {
 wait(mutex); //lock readcount
 // one more reader
 readcount += 1;
 // is this the first reader?
 if(readcount == 1)
 //synch w/ writers
 wait(w_or_r);
 //unlock readcount
 signal(mutex);
 Read;
 wait(mutex); //lock readcount
 readcount -= 1;
 if(readcount == 0)
 signal(w_or_r);
 signal(mutex);
}

Readers/Writers

