
CSC369:  
Operating Systems

Fall 2014

Andrew Petersen

Monday, November 24, 2014



I hear you. Sorry 
about A1!

A1 marks need a 
review from me, 

and I anticipate that 
will happen late this 

week.

If you’re thinking 
about quizzes -- 

everything has been 
returned in lab.

Monday, November 24, 2014



Thank you.

... but you’re a little 
early.

Monday, November 24, 2014



Outline

• Errors and Recovery

• Logs and Journaling

• Sharing: Permissions

• Caching and Mapped Memory

4

Monday, November 24, 2014



Removing a File

• Consider the steps required to remove a file

• Remove the directory entry.

• Update the inode.

• Potentially free data blocks and the inode.

• What happens if the disk is turned off during 
this process?

5

Monday, November 24, 2014



Journaling

• Keep a log of all updates to the disk.

• Write to this log before making any changes.

• Confirm the changes after they occur.

• If there is a crash, the log can be checked to 
make sure that the system is in a consistent 
state.

6

Monday, November 24, 2014



Log Structured File 
System (LFS)

• Developed by Ousterhout in 1989

• Idea:  Write all file system data in a continuous log

• Uses inodes and directories from FFS

• Needs an inode map to find the inodes

• Cleaner reclaims space from overwritten or deleted blocks.

superblock

summary

inodes

data blocks

7

Monday, November 24, 2014



LFS Reads

• If the writes are easy, what happens to the reads?

• To read a file from disk:

1. Read the superblock to find the index file

2. Read the index file and find the inode-map

3. Get the file’s inode

4. Use the inode as usual to find the file’s data blocks

• Remember, we expect reads to hit in memory most of 
the time … after we open the file in the first place.

8

Monday, November 24, 2014



Other Errors

• Latent Sector Errors: damage to the disk or 
the content of the disk

• Corruption: by definition, errors that are not 
detectable by the disk itself

• These errors tend to not be uniformly 
random

9

Monday, November 24, 2014



Solutions

• Checksums: the use of extra bits to identify 
and reverse limited LSEs.

• The text has an excellent discussion of 
these, so we will not cover them further.

• Redundancy: replication of large chunks of 
data in case of disk failure.

10

Monday, November 24, 2014



RAID
• Redundant Array of Inexpensive Disks (RAID)

• A storage system, not a file system

• Patterson, Katz, and Gibson (Berkeley, ’88)

• Idea: Use many disks in parallel to increase storage 
bandwidth, improve reliability

• Files are striped across disks

• Each stripe portion is read/written in parallel

• Bandwidth increases with more disks

• Better throughput for large requests

11

Monday, November 24, 2014



A0

A4

B0

A1

A5

B1

A2

A6

B2

A3

A7

B3

RAID 0: Disk Striping

One
Stripe

12

One
Disk

Monday, November 24, 2014



RAID 0 Challenge
• Reliability

• More disks increases the chance of media failure (MTBF)

• Turn reliability problem into a feature

• Add an extra disk for each block?

• Or use one disk to store parity data?

• XOR of all data blocks in stripe

• Can recover any data block from all others + parity 
block

• Hence “redundant” in name

• Introduces overhead, but, hey, disks are “inexpensive”

13

Monday, November 24, 2014



• Redundancy via replication, two (or more) copies

• mirroring, shadowing, duplexing, etc.

• Write both, read either

0

1

2

3

0

1

2

3

RAID Level 1: Mirroring

14

Monday, November 24, 2014



• Both: 
• Very small stripe unit 

(single byte or word)
• All writes update parity
• Can correct single-bit 

errors
• Level 2: 

• #parity disks = Log2

(#data disks)
• This is overkill

• Level 3:
• One extra disk

Ap

Bp

Cp

Dp

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

RAID 2&3: Parity Disks

15

Monday, November 24, 2014



• Levels 4-6 introduce 
independence:
• Each disk may be 

writing different data
• Level 5 removes parity 

disk bottleneck
• Distributes parity bits 

across all data disks
• Level 6 tolerates 2 

errors

A

B

C

D

A

B

C

Dp

A

B

D

Cp

A

D

C

Bp

D

B

C

Ap

RAID Levels 4-6

16

Monday, November 24, 2014



Exercise

• What does it mean for a file to be 
“deleted”?

• How do you know that something is 
deleted?

• As an investigator, what would you do to 
recover information from a disk?

17

Monday, November 24, 2014



A Favorite ...

... quote, from the article on deleting information 
from a drive:

“If the data is very sensitive and is stored on floppy disk, 
it can best be destroyed by removing the media from the 
disk liner and burning it, or by burning the entire disk, 
liner and all (most floppy disks burn remarkably well - 
albeit with quantities of oily smoke - and leave very little 
residue).”

18

Monday, November 24, 2014



19

Monday, November 24, 2014



Outline

• Errors and Recovery

• Logs and Journaling

• Sharing: Permissions

• Caching and Mapped Memory

20

Monday, November 24, 2014



File Buffer Cache
• Fortunately, applications exhibit locality for reading and writing 

files

• Idea: Cache file blocks in memory to capture locality
• This is called the file buffer cache
• Cache is system wide, used and shared by all processes
• Even a 4 MB cache can be very effective

• Issues
• The file buffer cache competes with VM (tradeoff here)
• Like VM, it has limited size
• Need replacement algorithms again (LRU is common)

21

Monday, November 24, 2014



Caching Writes
• On a write, some applications expect that data makes it 

through the buffer cache and onto the disk
• As a result, writes are often slow even with caching

• Several ways to compensate for this
• write-behind

• Maintain a queue of uncommitted blocks
• Periodically flush the queue to disk
• Unreliable and may break program expectations

• Battery backed-up RAM (NVRAM)
• As with write-behind, but maintain queue in NVRAM
• Expensive

• Log-structured file system
• Always write contiguously at the end of the previous write

22

Monday, November 24, 2014



Read Ahead
• Many file systems implement read ahead

• FS predicts that the process will request next block
• FS goes ahead and requests it from the disk
• This can happen while the process is computing on previous block

• Overlap I/O with execution
• When the process requests block, it will be in cache
• Compliments the on-disk cache, which also is doing read ahead

• For sequentially accessed files, can be a big win
• Unless blocks for the file are scattered across the disk

• File systems try to prevent that, though (during allocation)

23

Monday, November 24, 2014



Mapped Memory 
Exercise

24

Monday, November 24, 2014



Outline

• Errors and Recovery

• Logs and Journaling

• Sharing: Permissions

• Caching and Mapped Memory

25

Monday, November 24, 2014



File Sharing
• File sharing is incredibly important for getting work done

• Basis for communication and synchronization
• Uh-oh ... there’s that word again ...

• Two key issues when sharing files
• Semantics of concurrent access

• What happens when one process reads while 
another writes?

• What happens when two processes open a file for 
writing?

• Protection

26

Monday, November 24, 2014



Protection
• File systems must implement some kind of protection system

• Who can access a file?
• How they can access it?

• More generally…
• Objects are “what”, subjects are “who”, actions are 

“how”

• A protection system dictates whether a given action 
performed by a given subject on a given object should be 
allowed
• You can read and/or write your files, but others cannot
• You can read “/etc/motd”, but you cannot write it

27

Monday, November 24, 2014



Types of Access
• None
• Knowledge
• Execution
• Reading
• Appending
• Updating
• Changing Protection
• Deletion

• Unix provides only Read/Write/Execute permissions

28

Monday, November 24, 2014



Representing Protection
Access Control Lists (ACL)
• For each object, maintain a list of 

subjects and their permitted actions

Capabilities
• For each subject, maintain a list of 

objects and their permitted actions

/one /two /three

Alice rw - rw
Bob w - r
Charlie w r rw

Subjects

Objects

ACL

Capability

29

Monday, November 24, 2014



ACLs and Capabilities
• The approaches differ only in how the table is represented

• What does UNIX use?

• Capabilities are easier to transfer
• They are like keys and can be handed off

• In practice, ACLs are easier to manage
• Object-centric (each file has its own ACL), so easy to grant 

or revoke
• To revoke capabilities, we have to keep track of all subjects 

that have the capability
• ACLs have a problem when objects are heavily shared

• The ACLs become very large
• How could we mitigate this?

30

Monday, November 24, 2014



Summary
• The main abstraction is the file

• Files have a basic set of operations
• For organizational purposes, we use a special type of file called a 

directory
• This leads to the ideas of a path and working directory
• Files may need to reside in different places, so we create links 

to keep track of the various places a file might reside
• We can mount filesystems together within a single namespace

• We must consider sharing, which leads to a need for protection
• ACLs vs. capabilities

• All file operations must begin by locating the file
• Path search is very expensive and may be cached

• Inodes separate logical and physical location but add to the cost of 
path search

31

Monday, November 24, 2014


