
CSC369:
Operating Systems

Fall 2014

Andrew Petersen

Anonymous Says!

vague - that is my description of the instructions for
this assignment.

• I agree!

• What do you find most frustrating (or
liberating) about that?

Anonymous Says!

vague - that is my description of the instructions for this
assignment.

• Yes.

• ... and wait until you see A3.

• We will ask for an outcome. We will not tell
you what you must do to make that happen.

Speaking of which, questions on A2?

The File Abstraction

• Users interact with the filesystem using the
abstraction of the file.

• This is similar to the process abstraction: a
file is the OS’s unit of storage.

• First, though, we need directories.

Outline

• Directories

• File Operations

• Inodes

• Traversing Paths

6

Directories
• Directories provide logical structure to file systems

• For users, they provide a means to organize files
• For the file system, they provide a convenient naming interface

• Allows the implementation to separate logical file
organization from physical file placement

• Use to store information about files (owner, permission, etc.)
• Most file systems support multi-level directories

• Naming hierarchies (/, /usr, /usr/local/, /home, …)

/

usr home

local alice bob

myfile myfile

7

Directory Structure
• A directory is a list of entries

• Each entry contains a name and associated metadata
• The metadata describes properties of the file (size,

protection, location, etc.)

• The list is usually unordered (effectively random)
• Entries are usually sorted by the program that reads the

directory

• Directories are typically stored as files
• Only need to manage one kind of secondary storage unit

8

Operations on
Directories

• Search
• Find a particular file within directory

• Create file
• Add a new entry to the directory

• Delete file
• Remove an entry from the directory

• List directory
• Return file names and requested attributes of entries

• Update directory
• Record a change to some file’s attributes

9

Directory
Implementations

• Single-level, two-level, or tree-structured
• Acyclic-graph directories: allows for shared directories

• The same file or subdirectory may be in 2 different directories

/
usr

local

Tree-structured:

/
usr

local

Acyclic graph:

10

File System Mounting
• File system “namespace” may be built by gluing together

subtrees from multiple physical partitions
• Each device (or disk partition) stores a single file system
• Mount point is an empty directory in the existing namespace
• Parent directory notes that a file system is mounted at dir

/

mnt

lib

11

File Links
• Sharing can be implemented by creating a new directory entry

called a link: a pointer to another file or subdirectory
• Symbolic, or soft, link

• Directory entry refers to file that holds “true” path to the
linked file

• Hard links
• Second directory entry identical to the first

File
Name

Start
Block

Type

… … …

local 42 dir

usr 150 dir

‘/’ directory

File
Name

Start
Block

Type

… … …

local 42 dir

… … …

‘usr’ directory (hard link)

File
Name

Start
Block

Type

… … …

local 215 link

… … …

‘usr’ directory (soft link)

12

Issues with Links
• With links, a file may have multiple absolute path names

• Traversing a file system should avoid traversing shared
structures more than once

• Maintaining consistency is a problem
• How do you update permissions in directory entry with a

hard link?
• Deletion: When can the space allocated to a shared file be

deallocated and reused?
• Somewhat easier to handle with symbolic links

• Deletion of a link is OK; deletion of the file entry itself
deallocates space and leaves the link pointers dangling

• Keep a reference count for hard links
• Sharing: How can you tell when two processes are sharing

the same file?

13

File Sharing
• File sharing is incredibly important for getting work done

• Basis for communication and synchronization
• Uh-oh ... there’s that word again ...

• Two key issues when sharing files
• Semantics of concurrent access

• What happens when one process reads while
another writes?

• What happens when two processes open a file for
writing?

• Protection

14

Outline

• Directories

• File Operations

• Inodes

• Traversing Paths

15

File Operations
• Creation

• Find space in file system, add entry to directory
mapping file name to location and attributes

• Writing
• Reading

• Dominant abstraction is “file as stream”
• Repositioning within a file

• File removal
• Truncation and appending

• May erase the contents (or part of the contents) of a
file while keeping attributes

16

Example File Operations
Unix: fcntl.h
• creat(name)

• open(name, mode)
• read(fd, buf, len)

• write(fd, buf, len)
• sync(fd)
• seek(fd, pos)

• close(fd)
• unlink(name)

17

NT
• CreateFile(name, CREATE)

• CreateFile(name, OPEN)
• ReadFile(handle, ...)

• WriteFile(handle, ...)
• FlushFileBuffers(handle, ...)
• SetFilePointer(handle, ...)

• CloseHandle(handle, ...)
• DeleteFile(name)

• CopyFile(name)
• MoveFile(name)

Handling File Operations
• Must search the directory for the entry associated with the named

file
• When the file is first used, store its attribute info in a system-wide

open-file table
• The index into the open-file table is used on subsequent

operations, so no searching is required

Open File Table
<console device>

…

sample.txt

…

…

Unix example (open, read, write are syscalls):

main() {
 char onebyte;
 int fd = open(“sample.txt”, “r”);
 read(fd, &onebyte, 1);
 write(STDOUT, &onebyte, 1);
 close(fd);
}

Shared Open Files
• Actually, we use two levels of internal tables

1. A per-process table of all files that each process has open that contains
the current file position for that process
2. Each entry in the per-process table has a pointer to an entry in the
system-wide open-file table for process independent info

System-Wide Open
File Table
<console device>

somefile.txt

anotherfile.txt

sample.txt

…

Open File
Tableposn, …,

posn, … ,

posn, … ,

posn, … ,

posn, … ,

Open File
Tableposn, …,

posn, … ,

posn, … ,

posn, … ,

posn, … ,

File Access Methods
• General-purpose file systems support simple methods

• Sequential access – read bytes one at a time, in order
• Direct access – random access given block/byte number

• Database systems support more sophisticated methods
• Record access
• Indexed access

• Older systems provide more complicated methods
• Why do modern systems typically only support simple access?

20

