
CSC369:
Operating Systems

Fall 2014

Andrew Petersen

Today

• Administrivia

• Introduction to Operating Systems

• ...

• Computer Organization

• OS Structure

• What is a Process?

Administrivia

• Make sure to read the course information sheet.

• The discussion board is your best friend.

• Announcements will be posted there.

• It will be your best resource on assignments.

Course Objectives

• Understand the role of a modern OS.

• Become familiar with the major components of a
modern OS and how they are implemented.

• How are we going to get there?

• Discussion (“lectures” and tutorials) of material
from online readings (textbook)

• Practice (C assignments, pen-and-paper exercises)

Course Content

• The role of OS

• The system call interface

• Memory management

• CPU scheduling

• Processes vs. threads

• Concurrency (synchronization and deadlock)

• File and I/O systems

Homework is 50%
• Two kinds of homework: assignments and exercises

• The three assignments are each moderate-sized C
coding assignments.

• We are not using OS/161 this year; each
assignment is “standalone”.

• Each should be completed individually.

• At each class meeting (lecture or tutorial), we will
complete work in class or you will be asked to
bring some work to class.

• 3 points per day, for a total of 72 points. 60 is
considered “full credit”.

Why the Exercises?

• The goal is to make our discussions productive.

• The exercises are either:

• Results of work in class

• Preparation for class

• To get full credit, you’ll need to be familiar with the
assigned reading, which will help you get more our
out of class.

Tests are 50%

• The midterm is 10% and covers system
calls, scheduling, and some concurrency.

• The final exam is 40% and comprehensive.

• The tests will cover material very similar to
our discussions and exercises in class.

• Assignments will also be represented.

Workload

• Karen and I are hoping this course is less work than
previous offerings -- but has the same OS value.

• That being said, the course covers a lot of material.
• Much of it is very abstract.
• It will require practice to really understand.

• The material draws from many prerequisites.
• UNIX tools, C programming (especially pointers)
• Computer organization

Academic Dishonesty

• Please don’t.

• It’s painful for everyone involved ...

• It doesn’t say good things about the perpetrator.

• And it creates paperwork.

• I hate paperwork.

• You may discuss concepts and tools with your
classmates.

• Discuss assignment solutions with me or your TA.

Your Resources

• Lectures/tutorials: Please ask questions!

• Office hours: Please visit!

• Discussion board: Fast response (if
everyone participates!)

• Email: Please reserve for administrative or
private issues (24-48 hour response, usually)

• Anonymous email: For feedback

Today

• Administrivia

• What’s coming up?

• Introduction to Operating Systems

• ...

• Computer Organization

• OS Structure

Coming Up
• Today’s activity is a mind map (we’ll get to it

shortly)

• Wednesday, we’ll be discussing processesand
system calls and will complete an activity in
tutorial

• Next week: processes, address spaces

Today

• Introduction to Operating Systems

• What is an OS?

• Computer Organization

• OS Structure

• What is a Process?

Setting the Stage

• What is an OS?

• What’s its purpose?

• What impacts OS development?

What is an OS?

Applications

Operating System

Hardware

Goals of the OS

• Primary: convenience for the user

• It should be easier to compute with the
OS than without it.

• Secondary: efficient use of the system

• These goals are sometimes contradictory!

• To be honest ... often contradictory

Other Views of the OS
• An OS is a resource allocator

• Allows the proper use of resources (hardware,
software, data) in the operation of the computer
system

• Provides an environment within which other
programs can do useful work

• An OS is a control program

• Controls the execution of user programs to prevent
errors and improper use of the computer

• Especially concerned with the operation and control
of I/O devices

What Impacts OS
Design?

• On one hand, its goals

• Convenience

• Efficiency and speed

• On the other hand, practical constraints

• What do applications need?

• What does the hardware provide?

Applications

Operating System

Hardware

Today

• Computer Organization

• OS Structure

• What is a process?

• Process Lifecycle

Computer System Structure

• CPU: Processing

• Memory system

What Components Do
We Care About?

• Processor: efficient sharing of execution
resources (scheduling, concurrency)

• Memory: improving execution performance
and enabling multitasking (virtual memory)

• Disk (persistent storage): organizing data
into a filesystem

• Network: distributed systems

Focusing on Memory...

• Main memory is the only storage the CPU
can access (directly)

• Ignore registers for the moment :)

• Viewed as a large array of bytes

• The memory is byte-addressable

Storage Hierarchy

• Registers, main memory, and auxiliary
memory form a memory hierarchy

• Caches can be installed to increase
performance and hide access-time gaps

Disk

Main MemoryCPU
L2/L3
Cache

Larger, slower, cheaper

L1$ Tape

C’s View of Memory
• A variable in C is a symbolic name for a data item

(stored in memory)

• The variable’s type indicates its size and alignment

• The variable’s address is an index into memory

• The variable’s value is the data at that address

• A pointer is a variable whose value is an address

• An array is a contiguous chunk of memory that is
interpreted as some number of variables

• ... but it’s really just a pointer

Memory Example

int main(){
 char a = ‘h’;
 int b = 0xdeadbeef;
 char *c = &a;
 int *d = &b;

 printf(“b=%d (0x%x)\n”,
 b, b);

}

0xbfffeb08

 a 0xbfffeb07 ‘h’ (0x68)

 b06 Unused

 b05 Unused

 b04 Unused

 b03 0xde

 b02 0xad

 b01 0xbe

 b 0xbfffeb00 0xef

 aff 0xbf

 afe 0xff

 afd 0xeb

c=&a 0xbfffeafc 0x07

 afb 0xbf

 afa 0xff

 af9 0xeb

d=&b 0xbfffeaf8 0x00

0x08048000

Stack

0x40000000

Code (Text Segment)

Static Data (Data Segment)

Heap
(created at runtime by malloc)User

Addresses

SP

PC

Kernel virtual memory
0xC0000000

0xFFFFFFFF

Memory mapped region
for shared libraries

Unused0x0

brk

Memory Layout (Linux, x86)

