
CSC258H Lab 7: A Taste of Verilog

1 Reminder: Submit Your Last Lab!

If you didn’t submit all of the ALU lab that occurred before reading week, please start by demon-
strating it to your TA. Here were the items being checked: 1 mark for showing your left circular
shift and ALU schematics to the TA and explaining how they work; 1 mark for completing and
testing the left circular shift circuit and demonstrating your understanding of the device to the TA;
and 1 mark for completing the ALU circuit.

2 Introduction

This week, we’ll experiment with a hardware design language called Verilog. While the schematics
we used before reading week suffice for specifying small circuits, they become increasingly cum-
bersome as the size of the circuits being designed increase. To build larger logic devices and state
machines, we would need to switch to a design language.

Unfortunately, Verilog (and the other major hardware design language, VHDL) can be difficult
to use effectively because the problem it is solving is very difficult. Hardware design forces you to
consider many issues that you don’t normally encounter when programming. For example, should
your assignment be “blocking” (a register) or “non-blocking” (a wire)? Do you care about the
order in which your statements are executed, or can they be executed in parallel? We will explore
these issues in this lab.

The easiest mistake to make in Verilog is to generate complex code. For example, avoid code
with nested loops and many variables. As a general rule, you should always have a rough idea of
the circuit diagram the compiler will create from your Verilog design. If you cannot envision the
circuit that Verilog will build from your code, simplify it.

If you want to do further reading about Verilog or need a reference, the web has a few solid
choices. Here are two favorites:

1. Verilog in One Day: http://www.asic-world.com/verilog/verilog one day.html

2. Verilog Quick Reference: http://www.asic-world.com/verilog/vqref.html

3 Creating a Verilog Project

module light(x1, x2, f);
input x1, x2;
output f;
assign f = (x1 & ˜x2) | (˜x1 & x2);

endmodule

1



Begin by implementing a simple light controller circuit. The circuit and the verilog code that
implements it is displayed above. Create a new Quartus project and add a new Verilog HDL file.
Note that the Text Editor in Quartus provides a series of Verilog templates. For now, however,
just enter the Verilog code from above into the file.

As you enter the file, note its structure. You’re creating a module (a device) named light that
has three wires. Two of those wires are declared to be inputs, and one is declared to be an output.
The output line is assigned a logical value, with & standing for “AND”, | standing for “OR”, and
˜ standing for “NOT”.

The assign statement uncovers one key difference between Verilog and most traditional lan-
guages. If we had more than one assign statement, they would be considered to be in parallel, and
the ordering of the statements would not matter. The assignments are said to be “continuous”
or “concurrent”. This reflects the parallel nature of many circuits. (Think about your 7-segment
controller, for example. Each bit of the output could be computed in parallel.)

Compile the circuit and create a test vector to verify that the circuit is working as expected.
Show your TA the simulation result before moving on.

4 Multi-bit Values and Procedural Statements

module mux4to1(In0, In1, In2, In3, S, f);
input In0, In1, In2, In3;
input [1:0] S;
output reg f;

always @(*)
begin

if (S == 2’b00)
f = In0;

else if (S == 2’b01)
f = In1;

else if (S == 2’b10)
f = In2;

else
f = In3;

end
endmodule

module mux4to1(In0, In1, In2, In3, S, f);
input In0, In1, In2, In3;
input [1:0] S;
output reg f;

always @(*)
begin

case (S)
0: f = In0;
1: f = In1;
2: f = In2;
3: f = In3;

endcase
end

endmodule

The code above contains two different implementations of a 4-to-1 mux. Both implementations
use “always” blocks. The statements within an always block are executed procedurally (sequen-
tially), rather than in parallel. The always block itself, however, is executed concurrently; if a
module has multiple always blocks (or a combination of always blocks and assigns), they are exe-
cuted in parallel.

The parameter list to an always block is called a “sensitivity list”. The list should include all
signals (wires) that affect the output generated by the always block. In both of the examples above,
the wildcard “*” is used to indicate that all of the inputs to the module affect the output of the
always block. If you can be more precise, you should be, as it will decrease simulation time.

2



The two implementations from above both contain a multi-bit input. The selector bits are
designated by an array of bits named S. The array can be dereferenced as normal. For example,
“S[0]” refers to the bit at position 0 in array S, and “S[1]” refers to the bit at position 1. The
keyword “reg” in front of the output tells the compiler that the output should maintain its value
until it is changed by the always block; the output value is being stored in a flip-flop (or “register”).

The two implementations above differ in two ways. First, one uses if-else statements, and the
other uses a case statement. Verilog also supports “for” and “while” loops within always blocks.
Second, the example to the right compares S to a 2-bit binary value, and the example to the left
uses decimal values.

Using the code from above as an example, create a Verilog module for a 7-bit wide, 8-to-1
mux, i.e., the mux is choosing from eight inputs each of which is a 7-bit number. After compiling
the file, create a test vector that verifies that the selector bits steer the correct input to the output
and verify the results of your simulation. Show it your TA.

5 Blocking and Non-Blocking Assignments

module Dflipflops v1(D, Clock, Q1, Q2);
input D, Clock;
output reg Q1, Q2;

always @(posedge Clock)
begin

Q1 = D;
Q2 = Q1;

end
endmodule

module Dflipflops v2(D, Clock, Q1, Q2);
input D, Clock;
output reg Q1, Q2;

always @(posedge Clock)
begin

Q1 <= D;
Q2 <= Q1;

end
endmodule

Verilog uses two kinds of assignments – blocking and nonblocking. “=” designates a blocking
assignment and “<=” designates a nonblocking assignment. The two modules above are identical
except that the one on the left uses blocking assignments and the one on the right uses nonblocking
assignments. Both circuits contain only two D flip-flops. Your goal is to determine what the
difference is between the two modules by creating a test vector and simulating both circuits. Use
the results of simulation to infer the circuit diagram for each module.

Draw the circuit diagrams for these two implementations and show them and the
results of your simulation to the TA.

6 Summary of TODOs

Below is a short summary of the steps to be completed for this lab:

1. Submit the ALU lab, if you did not do so before reading week.

2. Implement the light controller circuit, simulate it, and show it to your TA.

3. Implement the 7-bit wide 8-to-1 mux and show it to your TA.

3



4. Simulate the blocking and nonblocking assignments and draw their circuit diagrams. Be
prepared to explain the difference between the two implementations to your TA.

Evaluation (3 marks in total): 1 mark for the simulation result of the light controller circuit,
1 mark for the simulation result of the 7-bit wide 8-to-1 mux, and 1 mark for the circuit diagram
and the simulation result for the blocking/non-blocking assignments.

Congratulations! We’re now done with all the Quartus/DE-2 labs. Next week we will start
working with a new tool – assembly!

4


