
CSC258: Computer
Organization

Assembly and Machine Code

1

Reading Check

1. List the three machine code instruction formats. What is
each used for?

2. How is “Make the common case fast” reflected in the MIPS
ISA?

3. For “Good design demands good compromises,” the text
notes that MIPS supports three instruction formats. Why is
this a compromise?

2

Machine Code

3

This Week’s Questions

• What is the difference between assembly and
machine code?

• What types of MIPS instructions are there?

• What is the interface to memory?

• How do we build higher-level constructs like arrays,
conditionals, and loops?

4

What Do Instructions Look Like?
• From the machine’s perspective, an instruction is a word of

binary data in an easily decoded format.

• This format is the machine language.

• From the programmer’s perspective, an instruction is a
simple operation, its inputs, and its output.

• The programmer must know about storage in the
processor -- registers.

• The programmer must know about supported operations

• This is the assembly language.
5

Two Types of Instruction Sets

• RISC (reduced instruction set computer)

• Provides very simple (and very fast) instructions

• Complex instructions are built out of simple
ones by the compiler and assembler

• CISC (complex instruction set computer)

• Very powerful (and perhaps slow) instructions

• The instruction decoder (and processor) are
more complex

• The compiler has to do a lot of work
6

MIPS

• MIPS, our ISA, is register-to-register.

• Every operation operates on data in registers.

• Memory is accessed with load and store.

• Instructions come in three formats based on their input:

• Register: the instruction takes 3 registers

• Immediate: the instruction takes 2 registers and a
constant

• Jump: the instruction takes a large constant 7

Registers
• MIPS provides 32 registers.

• Several have special values:

• Register 0 ($zero): value 0 -- always.

• Registers 2-3 ($v0, $v1): return values

• Registers 4-7 ($a0-$a3): function arguments

• Registers 8-15, 24-25 ($t0-$t9): temporaries

• Registers 16-23 ($s0-$s7): saved temporaries

• Registers 28-31 ($gp, $sp, $fp, $ra): memory and
function support

8

Quiz-like Question (See Ex 6.7-6.8)
• The user wants two values to be added:

C = A + B

• The values must be in registers:
A in $t0
B in $t1
C in $t2

• Assembly command:
add $t2, $t0, $t1

• Machine code:
000000 01000 01001 01010 XXXXX 100000

9

Quiz-like Question (See Ex 6.7-6.8)
• The user wants two values to be added:

C = A + B

• The values must be in registers:
A in $t0
B in $t1
C in $t2

• Assembly command:
add $t2, $t0, $t1

• Machine code:
000000 01000 01001 01010 XXXXX 100000

10

Review: Trace How Add is Executed
(Credit: DDCA)

11

Quiz-like Question (See Ex6.7-6.8)

• The user wants two values to be added:
C = A + 6

• The values must be in registers:
A in $t0
C in $t2

• Assembly command:
addi $t2, $t0, 6

• Machine code:
001000 01000 01010 0000000000001010

12

Quiz-like Question (See Ex6.7-6.8)

• The user wants two values to be added:
C = A + 6

• The values must be in registers:
A in $t0
C in $t2

• Assembly command:
addi $t2, $t0, 6

• Machine code:
001000 01000 01010 0000000000001010

13

Quiz-like Question (See RG)

• Why do we not have an instruction with two
immediate values?

• Explain why we can’t have such an instruction with
the existing ISA.

• Cite the design principles that explain why we
don’t have such an instruction.

14

Design Principles

• Simplicity favors regularity

• Make the common case fast

• Smaller is faster

• Good design demands good compromises

15

Coding Constraints
• The limitations of the encoding put constraints on

the code we can write.

• There is not enough room to encode two
immediate values in any of our formats.

• An extra encoding for an uncommon case is not a
good compromise.

• A more common case is using two operands that are
in memory. Why don’t we allow in-memory
instructions?

16

Coding Constraints
• The limitations of the encoding put constraints on

the code we can write.

• There is not enough room to encode two
immediate values in any of our formats.

• An extra encoding for an uncommon case is not a
good compromise.

• A more common case is using two operands that are
in memory. Why don’t we allow in-memory
instructions?

17

What if the Data is in Memory?
• The user wants to add two integers *A and *B and

store back to the address B.

• A and B are memory locations!

• MIPS cannot operate directly on values in memory.
They must be loaded (or stored). Here is the
assembly, assuming A is $t0 and B is $t1.

lw $t2, 0($t0) # Load a word from address A + 0
lw $t3, 0($t1)
add $t3, $t2, $t3
sw $t3, 0($t1) # Store a word to address B + 0

18

Loading

The load instruction specifies the address to load
from and the destination register.

1. The address is sent to memory.

2. The processor “stalls” until the memory system
returns the loaded value.

We have to do this because it takes a while for the
result to be returned from memory.

3. The loaded value is moved into the register file.

19

Cost of Memory Operations
• Foreshadowing: Later this term, we’ll consider

caching, which is a way to reduce the cost of
memory operations.

• In a modern processor, a memory operation can
take several hundred times longer than a register-to-
register operation.

• This leads to an issue called the memory wall.

• Processors are constrained by the distance to
memory, rather than instruction execution speed.

20

Back to the Question ….

A more common case is using two operands that are in
memory. Why don’t we allow in-memory instructions?

• … almost all the design principles say we should do
this.

• We want the common case to be fast, and loads are
not fast.

• Adding memory addressing would likely increase the
number of instruction formats and would increase
their complexity.

Storing

• The store instruction specifies the register with the
value to be stored and an address to store into

• ... once those addresses arrive at the memory unit,
we’re done -- without waiting!

• The memory system will perform the operation,
and the processor can continue to execute, since a
store operation does not return a value

22

The Stack and Heap
• Memory contains two structures that the program

can use for extra storage: the stack and heap.

• The pointer to the top of the stack is contained in a
hardware register: the stack pointer (SP)

• It is the program’s responsibility to manage the
stack.

• Whenever stack space is allocated, it should be
deallocated later by the same function

• The operating system manages heap allocation.

• Whenever you malloc, you’re getting heap space.
23

0x08048000

Stack

0x40000000

Code (Text Segment)

Static Data (Data Segment)

Heap
(created at runtime by malloc)User

Addresses

SP

PC

Kernel virtual memory
0xC0000000

0xFFFFFFFF

Memory mapped region
for shared libraries

Unused0x0

brk

Memory Layout (Linux, x86)

Control: Ifs and Loops

• The textbook has good examples of the basic
control structures (if statements and loops) and
array accesses

• I also recommend using a flowchart to diagram what
you want the code to do.

• The translation from flowchart to code (and vice
versa) is fairly straightforward.

25

Quiz-like Question (See RG)

bne $s3,$s4,L1
add $s0,$s1,$s2
j L2

L1:
sub $s0,$s0,$s3

L2:

• What high-level construct does this implement?

26

Quiz-like Question (See RG)
add $s1,$0,$0
addi $s0,$0,0
addi $t0, $0, 10

L1:
beq $s0, $t0, L2
add $s1,$s1,$s0
addi $s0, $s0, 1
j L1

L2:

• What high-level construct does this implement?

27

Exam-like Question (See Q2)

• Write MIPS assembly code that finds the largest
value in an array.

• Assume that the array’s base address and the
number of array elements are in $a0 and $a1,
respectively

28

