
CSC258: Computer
Organization

Adders, Counters, and Memory

1

Device Building

2

Adder-Subtracter

• Assume you have a 16-bit adder that has been
validated on unsigned values.

• How do you create a 16-bit adder for 2’s
complement values that can perform addition and
subtraction?

• Hint: Subtracting is adding a negative number.

A Ripple-Carry Adder-Subtracter

• To add, just use adders

• To subtract, use the complement of the
second input and add 1

4

4-bit Up-Down-Hold-Set Counter

• Build a counter that takes a 4-bit data input and a 2-
bit control input.

• The control input determines whether the register
(a) increments by 1, (b) decrements by 1, (c) holds
the current value, or (d) loads a new value from the
4-bit data input.

• You may define which input of control corresponds
to which operation.

• You may use any basic devices: registers, muxes,
adders, etc.

4-bit Shift Register

• Build a counter that takes a 4-bit data input and a 1-
bit control.

• The control input determines whether the register
(a) loads a value from the 4-bit input or (b) performs
a 1-bit circular shift on the existing input.

• You may use any basic devices: registers, muxes,
adders, etc.

Adders

7

Full adder

• A full adder adds three numbers,
not two: X, Y, and Z (carry-in)

• Two outputs are produced: C
(carry-out) and + (the sum)

• To add a multi-bit number, adders
must be chained series

• Is this a problem?

X Y Z C +
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

8

Full Adder Latency

9

To calculate the latency, find the longest path
through the circuit.

In this case, it’s the path from A (or B) to Cout
-- a total of 3 gates.

A Ripple-Carry Adder-Subtracter

• To add, just use adders

• To subtract, use the complement of the
second input and add 1

10

Adders and Latency

• Just chaining adders in series creates a ripple-carry
design.

• The name comes from the behavior of the carry-
bits which “ripple” from the first adder to the last.

• The latency of the design is proportional to the
number of adders!

• Can we improve this latency ... ?

11

Faster Adders

• Carry look-ahead is a technique for speeding up an
adder by calculating the carry-bit quickly.

• Parallel-prefix is a recursive, tree-like structure for
computing the carry-bits.

• Adders that use these techniques pre-compute the
value of carry-in as much as possible.

• The key: each pair of bits that is added can ...
(G)enerate a carry or
(P)ropagate a carry or
Quash (or Kill) a carry

12

Carry-bits: 3 Cases

13

14

A Carry Look-Ahead Block

Blocks are wired in series, like the adder we saw earlier.

15

Prefix Adder Structure

Instead of wiring the blocks in series, prefix adders
build a tree-like structure to compute the carry-bit

The first level computes the (G)enerate and
(P)ropagate bits for two bits at a time.

16

Prefix Adder Structure

The second level uses the previous result to compute
for four bits.

17

Prefix Adder Structure

18

Prefix Adder Structure

The structure growths in depth logarithmically.

Table-Based Hardware

19

Tables Instead of Gates

• Many fast operations (like fast division) rely on table
look-ups.

• This requires a memory that can be accessed to get
the value of the row.

• The memory stores the values of each row of the
table.

Dot Notation Example

• Use dot notation to demonstrate how a 16-2 ROM
can implement the following function:

X = ABC + (¬B)D
Y = (¬A)CD + AB(¬D) + ¬(BD)

• Hint: think of the decoder as generating the rows of
a truth table.

Memory

22

Memory in a Processor

23

Memory Addressing

• Memory is structured in bytes, words, and lines

• Each byte has an address: it is addressable

• We often write addresses in base 16 (hex)

• Word-size differs from machine to machine, but
it is typically 4 or 8 bytes.

• A line is a small set of words. We use lines to
maximize performance. (More on this in week
12!)

24

Instructions and Data

• Everything in memory is stored in binary.

• There is no good way to determine if an arbitrary binary
word is data ... or an instruction.

• Many hacks use this to their advantage.

• This is actually a feature, not a bug. It means that we can
treat instructions and data in the same way.

• They’re both data ... we just use instructions to run the
machine.

25

0x08048000

Stack

0x40000000

Code (Text Segment)

Static Data (Data Segment)

Heap
(created at runtime by malloc)User

Addresses

SP

PC

Kernel virtual memory
0xC0000000

0xFFFFFFFF

Memory mapped region
for shared libraries

Unused0x0

brk

Foreshadowing:
Memory Layout

26

