CSC258: Computer
Organization

Adders, Counters, and Memory

Device Building

Adder-Subtracter

® Assume you have a |6-bit adder that has been
validated on unsigned values.

® How do you create a |6-bit adder for 2’s
complement values that can perform addition and

subtraction?

® Hint: Subtracting is adding a negative number-.

A Ripple-Carry Adder-Subtracter

® To add, just use adders

® To subtract, use the complement of the
second input and add |

Mode

B3 A3 B2 A2 B1 A1 810 A0
. / ‘_ / W \‘\ P
[| I Al B
FA FA FA |—FSoul Fa [Cin
| | sSum
e s3 $2 S1 S0

4-Bit Adder Subtractor

renca: M. Mara, "Digits’ Desigr® 3rd ad., Prantice-Hall, 200z, pg. 127

4-bit Up-Down-Hold-Set Counter

® Build a counter that takes a 4-bit data input and a 2-
bit control input.

® The control input determines whether the register
(a) increments by |, (b) decrements by |, (c) holds
the current value, or (d) loads a new value from the

4-bit data input.

® You may define which input of control corresponds
to which operation.

® You may use any basic devices: registers, muxes,
adders, etc.

4-bit Shift Register

® Build a counter that takes a 4-bit data input and a |-
bit control.

® The control input determines whether the register
(a) loads a value from the 4-bit input or (b) performs
a |-bit circular shift on the existing input.

® You may use any basic devices: registers, muxes,
adders, etc.

Adders

Full adder

® A full adder adds three numbers,
not two: X, Y, and Z (carry-in)

® Two outputs are produced: C
(carry-out) and + (the sum)

® To add a multi-bit number, adders
must be chained series

® Is this a problem?

— — — — 0 0 0o o X

© O o ()

Full Adder Latency

A X?i o
B L= ;‘COJT‘

CJ' N

To calculate the latency, find the longest path
through the circuit.

In this case, it’s the path from A (or B) to Cout
-- a total of 3 gates.

A Ripple-Carry Adder-Subtracter

® To add, just use adders

® To subtract, use the complement of the
second input and add |

Mode

B3 A3 B2 A2 B1 A1 810 A0
. / ‘_ / W \‘\ P
[| I Al B
FA FA FA |—FSoul Fa [Cin
| | sSum
e s3 $2 S1 S0

4-Bit Adder Subtractor

renca: M. Mara, "Digits’ Desigr® 3rd ad., Prantice-Hall, 200z, pg. 127

Adders and Latency

® Just chaining adders in series creates a ripple-carry
design.

® The name comes from the behavior of the carry-
bits which “ripple” from the first adder to the last.

® The latency of the design is proportional to the
number of adders!

® Can we improve this latency ... ?

Faster Adders

® Carry look-ahead is a technique for speeding up an
adder by calculating the carry-bit quickly.

® Parallel-prefix is a recursive, tree-like structure for
computing the carry-bits.

® Adders that use these techniques pre-compute the
value of carry-in as much as possible.

® The key: each pair of bits that is added can ...
(G)enerate a carry or
(P)ropagate a carry or
Quash (or Kill) a carry

Carry-bits: 3 Cases

0 X
0

0
\ X
(oes

) X

ﬁ |

‘]/ —
\ X
(rereete

S

pue

+) +D

-—-—"—"-J

-

\ X X
»
]/QI’)OSC:I?

Cur7 N
j’) /7?0\5«'}8-‘.1

A Carry Look-Ahead Block

] |
(&= &= & [=1]
| g2 |[_3.2 g1 p1 g0 |
| v v !

'-.. =1 — |
a3 || | e | al
| >=1 >=1 ‘
PR ! B »
& (& & |
| 11 1 ‘
| .°

0_ - & ® - _0_

Blocks are wired in series, like the adder we saw earlier.

Prefix Adder Structure

15 | 14 | 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0 -1

AR AR ar gy ar x4

Instead of wiring the blocks in series, prefix adders
build a tree-like structure to compute the carry-bit

The first level computes the (G)enerate and
(P)ropagate bits for two bits at a time.

00D60000a0000600]

Prefix Adder Structure

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1
14:13 12:11 10:9 8:7 6:5 4:3 2:1 0:-1
14:11 H3:11 ‘ 10:7 ‘ 9:7| 6:3‘ 5:3 ‘ 2:-1 ‘1:—1 |

The second level uses the previous result to compute
for four bits.

00DE000060000000]

Prefix Adder Structure

15 | 14 | 13
13 12:1

14: :
14:11 [13:11

12 | 1
1 1

10 9 8 7
0:9 8:7
0:7 | 97

: - 10:
14:.7 ‘13:7 | 12:.7 ‘ 117 |

6 5
6:5

4 3
4:3

L1

2 1
1

0 -1
=1

2: 0:-
2:-1 | 1:=1

RCCCH

00DE000060000000]

Prefix Adder Structure

15 |14 | 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0 -1

s

RCAER CORR COlN 1
k| | | | W

14:7 | 13:7 | 12:7 | 117 6:-1|5-1|4-1|3:-1

C f?(500060000a00f

The structure growths in depth logarithmically.

Table-Based Hardware

Tables Instead of Gates

® Many fast operations (like fast division) rely on table
look-ups.

® This requires a memory that can be accessed to get
the value of the row.

® The memory stores the values of each row of the
table.

Dot Notation Example

® Use dot notation to demonstrate how a 16-2 ROM
can implement the following function:

X = ABC + (-B)D
Y = (FA)CD + AB(-D) + —(BD)

® Hint: think of the decoder as generating the rows of
a truth table.

Memory

Memory in a Processor

Regjs(é: Immediate —-o-

Control (from decoder)

To/From or Mem? / o e i] Regimm? / Take branch?
Memory ,’ s AV e !
System J i - - _-" Control Branch/Jump l
- - Address—»
Instructio -~ from decoder)
from Memo

Instruction
Decoder

._pc_.

Memory Addressing

® Memory is structured in bytes, words, and lines
® Each byte has an address: it is addressable

® We often write addresses in base 16 (hex)

® Word-size differs from machine to machine, but
it is typically 4 or 8 bytes.

® A lineis a small set of words. We use lines to

maximize performance. (More on this in week
12!)

Instructions and Data

® Everything in memory is stored in binary.

® There is no good way to determine if an arbitrary binary
word is data ... or an instruction.

® Many hacks use this to their advantage.

® This is actually a feature, not a bug. It means that we can
treat instructions and data in the same way.

® They’re both data ... we just use instructions to run the
machine.

Foreshadowing:
Memory Layout

OXFFFFFFFF

0xC0000000

SP

0x40000000|

brk

Addresses

Static Data (Data Segment)

Code (Text Segment) «— pC

0x08048000
0x

