CSC258: Computer
Organization

Devices

Your Mission ...

Generate the circuit that adds two one-bit numbers.

Start with a truth table.

Optimize the formula.

Draw the circuit.

Where are we!

® Our goal, eventually, is to build a simple processor.
® For that, we need:

® The ability to execute simple operations (like “add”)

® The ability to choose between values.

® Storage for a small number of values (variables)

A circuit to process instructions from the user.

Memoty Data o

Addregs Stor >
M -
Y U Hegister
MAR | | MDR [Da@> File >LU
from ; (with
Memory, SP) >
// “S— M /
Daja ol Immediate —» //
fromyALU Regjster /
Memn? Control (from decoder) , ,
To/From or/ P e —=——— RegHmm? , Take branch?
Memory / - ALU - ———
/ / - -~ Control
System / / s - Branch/Jump
7 7 Address—»
fInStTACﬁon -~ from decoder) “J
rom iemo Instruction PC | i >
Decoder

How do we get there?

® We can already do NAND -- and that’s everything right?

® We'll look at shifters and adders in a couple of weeks, and
we’ll use those to create an ALU.

Where are we!

® Our goal, eventually, is to build a simple processor.

® For that, we need:

® The ability to execute simple operations (like “add”)

® The ability to choose between values.
Storage for a small number of values (variables)

A circuit to process instructions from the user.

Memoty Data o

Addregs Stor I
o >
A4 U Register
MAR | | MDR [Dat?™ F':teh)'—U
from (w
Memory, SP) 4
// S — I\S /
Da}a el Immediate —» //
fronyALU Register /
" Ceontrol (from decoder)
To/From or Mem pd —————— RegHAmm? // Take branch?
Memory // v Pid ALU T _ l
7 < -~ Control
System S e Branch/Jump
7 s -~ Address—»
flnstrkxnction g from decoder) “J
rom iemo Instruction PC o -
Decoder

Multiplexer (Mux)

® Sometimes, we need “select” or “choose”

® A mux takes multiple inputs and a selector
Input

® The selector chooses which input to

output
Al Ao Out
o N
D, out 0 0 Do
gz_ MUX
g;— 0 | D,
D_Tﬂ | 0 D>

| I D3

... and the Reverse

® Since we “mux”, we should be able to “demux”

® Take one input and a selector, and produce the
input on one of the outputs

® The text also covered encoders and decoders.

® An encoder takes 2N inputs and produces a N-bit
(compacted) output

® A decoder takes an N-bit input and produces 2N
(extracted) outputs

Where are we!

® Our goal, eventually, is to build a simple processor.

® For that, we need:
® The ability to execute simple operations (like “add”)
® The ability to choose between values.
® Storage for a small number of values (variables)

® A circuit to process instructions from the user.

How do we get there?

® We need some device that can store data.

® We also need some concept of “time”, so we know when
to store new data.

® We'll start putting together these pieces today.

Memoty Data o

Addregs Stor I »
\4 U Register
MAR | | MDR [Da@™ T
from (wi
& Memory, SP) .
/
D }/ /7
aja . .
fomALY Fegrer (fr:)Tnmdeedc;ztieer)
or Mem? Control
To/From / o 7 vl RegAmm?
Memory / 0 ALU __ _ _ l
7 = - Control
System S e Branch/Jump
i Address—»
Instruction - from decoder) M
from Memo , U
Instruction PC o ol
Decoder

Storing Data

® Our circuits so far provide

an output given some inputs s D °
=

® The other half of the
equation is storage

® Use feedback to “freeze”
a value

(8]

® These are SR latches

® They rely on feedback.

Your Mission ...

® Provide the truth table and the circuit for an SR
latch.

SR Latches

R is labeled “reset”

S is labeled “‘set”

When R is high, Q
becomes 0

When S is high, Q
becomes |

Otherwise, Q keeps its
previous value.

R

Your Mission ...

® Add a clock input to your latch truth table.

® Think about what you want the clock input to mean:
when does the device trigger?

Adding Timing to Circuits

i

> A
\. ;"
rising edge faling edge

N

voltage

T - period {in seconds) P..- pulse width (in seconds)
time ¢_fequency pulse width (in Hertz) f=1/1

® Idea: We need to hold a value long enough for it to stabilize and
to use it for computation

® Solution: Add a “clock” that tells all of the latches in the circuit
to change their value

® Pulse width must be large enough to let values stabilize

® Period must be long enough to let computation finish

Gated Latches

S R Q-Q

Cl

x Q =Q
0 0 Q -Q

X
0

o -

0

Characteristic Equation

® Every gated-latch can be defined as a function based
on time

® This is called its
characteristic equation.

® For the SR gated latch:
Qt+1)=Se) +-ReQr | O |

| | Transition Problems

® For an SR latch, the “I |” state is unstable
® BothQand Q are 0

® A transition to the “00” state yields undefined
outputs

® Solution: Eliminate the “11” state

D Latch

® Instead of two inputs,
the D latch has one

® D stands for “data” D Q Q
0O O |
® Easily made from an | 1 0
SR latch

® How!

Transparency

® All latches are “transparent”

® When the input changes, the output immediately
changes (within some propagation delay)

® Problem: What happens if an input changes in the
middle of a clock cycle?

® This happens often! Many circuits use latches
that feed into other latches

® If the cycle is longer than the propagation delay,
problems occur

Master-Slave Flip-Flop

® Output of the flip-

flop is delayed to 1—‘ c
break a circuitinto ||
a sequence of

circuits operating in
parallel.

® Prevents value from ,___ | ——
being propagated :j—'_:_‘ — 1

early

Latches and Waveforms

Clock

L]

Gated SR 2
latch ' 5 :

Rising-edge 4‘ 5 5
SR flip-flop :

Solution

Clock L

R

Gated SR -
latch XX 5 : 2

Rising-edge 45 5
SR flip-flop XX r

