
CSC258: Computer
Organization

Memory Systems

1

Schedule

This week …

• First, a few minutes on exceptions to set the stage
for the last lab.

• Second, an overview of the memory system.

Next week …

• Wrap-up

• Exam review

Exceptions

3

Key Questions

• What is the purpose of an exception?

• What is a system call?

• How are function calls and exceptions similar?
How are they different?

• How is an exception invoked? How do you
return?

4

System Calls

• A system call is just a function call

• ... that invokes the operating system.

• Printing, getting input, and allocating memory are
all system call operations.

• We can’t just give user programs control over
thse operations because they must be shared
across multiple users.

5

Invoking a System Call

• For security, the operating system must be able to access
memory and execute instructions that the user cannot.

• Otherwise, what would stop the user from just using a
resource, rather than asking the OS to do so?

• A system call is invoked by placing arguments in the
registers and then causing an exception.

• The exception places the processor in a privileged mode -
- one that can act as the OS.

6

Exceptions in MIPS

• An exception can be caused by a program or by an
event.

• For example, when you divide by zero, that
causes an exception. syscall also creates an
exception.

• The cause of the exception is placed in a special
register -- accessed using mfc0.

• Then, an exception handler is invoked.

• System calls are sent directly to a syscall handler.
7

Exception Registers

8
Source: Larus, Assemblers, Linkers, and the SPIM Simulator. http://pages.cs.wisc.edu/~larus/HP_AppA.pdf

Things to Remember
• The exception handler is just assembly code.

• It’s like any other function!

• … but it must not cause an error.

• It should leave the machine just as it was -- except for fixing
whatever condition caused the exception.

• It can’t change the stack. It shouldn’t junk any registers.

• The exception handler you’ll use in the last lab saves two
registers in the data segment. Those are the only registers
you may use.

9

The Memory System

10

Quiz-like Questions

Last week, we discussed spatial and temporal parallelism.
This week, it’s spatial and temporal locality. They aren’t
particularly related, so be careful!

1. Generate examples of both types of locality outside
of a computing context.

2. Define spatial locality and temporal locality.

Key Computer Systems

• So far, we’ve focused on the processor. That’s
where execution happens.

• There are two other key systems: memory and I/O.

• Memory controls the storage of data.

• I/O controls the flow of information into and out
of the system.

12

Connections to OS

• We’ll focus on the memory system and not talk
much about I/O this term.

• At a high level, the memory system includes RAM,
the hard drive, and the communication infrastructure
that connects those devices to the processor.

• We won’t discuss the hard drive much.

• That’s the realm of virtual memory, and that’s
where this material connects with CSC369 (OS).

13

Why is the Memory System
Important?

• Most processor spend most of their time waiting.

• ... often for memory. This is the “memory wall”.

• As processors get faster, more processor cycles
can be executed before a load completes.

• As a result, Amdahl’s Law tells us this is an aspect of
performance that is becoming increasingly important.

• Caches are one way to reduce waiting time.

14

Quiz-like Questions

1. State Amdahl’s law.

2. For discussion: What does Amdahl’s law tell us about
optimizing performance of software?

A Memory System

• A whole memory system includes main memory (RAM) and
a series of caches.

• The L1 (level-one) is very close to the processor, and it is
quite small.

• The L2 is a bit further away and a bit bigger.

• The L3, if there is one, is often off-chip and even larger.

• The further a cache is from the processor, the more it
stores.

• The size of the cache line shrinks as you get closer to the
processor.

16

Caching

• Caches are a solution that makes it appear that
memory is closer than it is.

• Every load to memory fetches more than just the
value that is loaded.

• In fact, a lot of values -- a block (or line) -- is
brought from the memory to a location close to
the processor.

• That location is called a cache. It stores the value
that was loaded and the values near it, in case they
are needed soon.

17

Locality

• Locality is one of the big ideas in computer science.

• In essence, locality is the assumption that history will
repeat itself. That:

• spatial locality: If one object in memory is accessed,
objects close to it will also be accessed.

• temporal locality: If one object is accessed, it (and
objects around it) will be accessed again soon.

• Locality is required for caches to function well.

18

Examples

• “Iterating over an array” exhibits both temporal and
spatial locality.

• “Executing code” often exhibits temporal and spatial
locality.

• “Accessing items from a dictionary” does not: the
items in the dictionary may not be close to each
other in memory.

• Linked lists and other dynamically allocated
structures can also cause locality problems.

19

Caches

20

Key Cache Terms

• Address

• Tag

• Block

• Set

• Associativity

• Hit rate (and miss rate)

• Average Memory Access Time (AMAT)

21

Addresses and Caches

• Each load fetches an entire cache block -- not just a
single value.

• The size of a cache “block” is dependent on the
cache.

• A “block” is a set of words with closely related
addresses.

• The easiest way to define a block is to look at its
mask.

22

Bit Masking
• A bit vector is an integer that should be interpreted as a

sequence of bits.

• We can think of an address as a bit vector.

• A mask is a value that can be used to turn specific bits in a
bit vector on or off.

• For example, let’s set a mod-16 mask.
value =
mod_16 = 15 # 0x000000F
print (value & mod_16) # Only the bottom 4 bits

“&” is “bitwise and”
23

Masking Addresses
• We can create masks to define different parts of an address.

• Suppose we have 32-bit (4-byte) words.

• Suppose an array starts at base. Then the offset is:
address = ...
base = ...
offset = address & base

• Similarly, suppose a cache block contains 8 words. Then
every block contains the least significant 32-bytes (5 bits)
cacheblockoffset = 31 # 0x0000001F
cacheblock = maxint - 31 # 0xFFFFFFE0

24

Quiz-like Question

Given a 32-byte address space, identify the tag, set, and
block offset for the following cache configurations:

1. A direct mapped cache that stores 16 32-byte
blocks.

2. A 2-way set associative cache that stores 32 16-byte
blocks.

3. A fully associative cache that stores 8 16-byte
blocks.

Discussion

What is the effect of increasing:

(a) block size
(b) associativity
(c) cache size

What is the impact of having a two-processor system
with:

(a) a shared cache
(b) separate caches but shared memory

26

Discussion

What is the effect of increasing:

(a) block size
(b) associativity
(c) cache size

What is the impact of having a two-processor system
with:

(a) a shared cache
(b) separate caches but shared memory

27

Cache Loading and Evicting

• Back to caches: every load brings in a block.

• Each cache has a finite size.

• It can store some maximum number of blocks.

• Based on associativity, it can store a set number of blocks
with a specific hash.

• Every time a load is performed from memory, the block
must be stored.

• This means that another block might need to be evicted.

28

Associativity

• Most caches use some form of hashing.

• The caches are smaller than the memory they are
caching from, so they can’t store everything!

• If two blocks hash to the same value, they can’t both
be stored. To avoid that, caches are often associative.

• A 2-way set associative cache can store two
blocks that hash to the same value.

• A fully associative cache doesn’t have to worry
about hash collisions at all.

29

Eviction Heuristic

• How do we choose which cache block to remove
(evict)?

• The most common heuristic is “least recently used”
(LRU).

• The cache block that was accessed the longest
time ago is dropped.

• Other heuristics include “first in first out” (FIFO),
“least frequently used”, and others.

30

Quiz-like Question

Simulate the performance of a cache on the following
(hex) address loads.

40 48 4c 40 50 58 5c 40 60 48 4c 44 40 60 58 5c

The cache is direct-mapped and stores 4 words. It uses
a FIFO eviction policy.

Quiz-like Question

Simulate the performance of a cache on the following
(hex) address loads.

40 48 4c 40 50 58 5c 40 60 48 4c 44 40 60 58 5c

The cache is direct-mapped and stores 2 blocks of two
words. It uses a FIFO eviction policy.

Quiz-like Question

Simulate the performance of a cache on the following
(hex) address loads.

40 48 4c 40 50 58 5c 40 60 48 4c 44 40 60 58 5c

The cache is 2-way set associative and stores 4 words.
It uses a FIFO eviction policy.

Quiz-like Question

Simulate the performance of a cache on the following
(hex) address loads.

40 48 4c 40 50 58 5c 40 60 48 4c 44 40 60 58 5c

The cache is 2-way set associative and stores 4 words.
It uses an LRU eviction policy.

Quiz-like Question

Simulate the performance of a cache on the following
(hex) address loads.

40 48 4c 40 50 58 5c 40 60 48 4c 44 40 60 58 5c

The cache is fully associative and stores 4 words. It
uses a FIFO eviction policy.

Cache Consistency

• Consistency is a huge problem -- and we won’t
discuss it.

• Imagine a multi-processor system: each processor
has its own L1.

• What happens when one of the processors issues
a store? Is it written back to memory? To the
other processor’s L1?

• How quickly does that write-back happen? What
will occur if the second processor accesses that
memory address before the write-back?

36

