Spectral Analysis (Theory)

AI Nosedal
University of Toronto

Winter 2019

Idea: Decompose a stationary time series $\left\{X_{t}\right\}$ into a combination of "sinusoids", with random (and uncorrelated) coefficients.

Example: A periodic time series

Consider

$$
X_{t}=A \sin (2 \pi w t)+B \cos (2 \pi w t)
$$

where A, B are uncorrelated random variables with mean zero and variance one.

Example: A periodic time series

i) Find its mean.
ii) Find its autocovariance function.
iii) Find its autocorrelation function.

Solution i)

i) $E\left(X_{t}\right)=E[A \sin (2 \pi w t)+B \cos (2 \pi w t)]$

$$
=\sin (2 \pi w t) E(A)+\cos (2 \pi w t) E(B)=0
$$

Solution ii)

Let us recall a result that will allow us to find the autocovariance function, more easily. Let X and Y be to independent random variables. Now we define $U_{1}=a X+b Y$ and $U_{2}=c X+d Y$, where a, b, c, and d are constants.

$$
\begin{aligned}
& \operatorname{cov}\left(U_{1}, U_{2}\right)=\operatorname{cov}[a X+b Y, c X+d Y] \\
& \quad=a c \operatorname{cov}(X, X)+a d \operatorname{cov}(X, Y)+b c \operatorname{cov}(Y, X)+b d \operatorname{cov}(Y, Y) \\
& \text { (since } X \text { and } Y \text { are independent, } \operatorname{cov}(X, Y)=0) \\
& \operatorname{cov}\left(U_{1}, U_{2}\right)=a c \operatorname{cov}(X, X)+b d \operatorname{cov}(Y, Y)=a c \operatorname{Var}(X)+b d \operatorname{Var}(Y) .
\end{aligned}
$$

Solution ii)

Letting $X=A, Y=B, a=\cos (2 \pi w t), b=\sin (2 \pi w t)$, $c=\cos [2 \pi w(t-k)], d=\sin [2 \pi w(t-k)]$, we have that $\operatorname{cov}\left(X_{t}, X_{t-k}\right)=\cos (2 \pi w t) \cos [2 \pi w(t-k)]+\sin (2 \pi w t) \sin [2 \pi w(t-k)]$ $\operatorname{cov}\left(X_{t}, X_{t-k}\right)=\cos \{2 \pi[w t-(w t-w k)]\}=\cos [2 \pi(w t-w t+w k)]=$ $\cos [2 \pi w k]$.
Thus,
$\gamma(k)=\cos [2 \pi w k]$.

Solution iii)

Since $\gamma(0)=\cos (0)=1$, we have that $\rho(k)=\frac{\gamma(k)}{\gamma(0)}=\cos [2 \pi w k]$.

Homework?

If $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are uncorrelated stationary sequences, i.e., if X_{r} and Y_{s} are uncorrelated for every r and s, show that $\left\{X_{t}+Y_{t}\right\}$ is stationary with autocovariance function equal to the sum of the autocovariance functions of $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$.

The autocovariance of the sum of two uncorrelated time series is the sum of their autocovariances. Thus, the autocovariance of a sum of random sinusoids is a sum of sinusoids with the corresponding frequencies:
$X_{t}=\sum_{j=1}^{m}\left[A_{j} \sin \left(2 \pi w_{j} t\right)+B_{j} \cos \left(2 \pi w_{j} t\right)\right]$
$\gamma(h)=\sum_{j=1}^{m} \sigma_{j}^{2} \cos \left(2 \pi w_{j} h\right)$,
where A_{j}, B_{j} are uncorrelated, mean zero, and $\operatorname{Var}\left(A_{j}\right)=\operatorname{Var}\left(B_{j}\right)=\sigma_{j}^{2}$.

Spectrum of a stationary random process

Consider a stationary random sequence $\left\{Y_{t}\right\}$ with autocovariance function $\gamma(k)=\operatorname{cov}\left(Y_{t}, Y_{t-k}\right)$. The corresponding autocovariance generating function is the function

$$
G(z)=\sum_{k=-\infty}^{\infty} \gamma(k) z^{k}
$$

whose argument, z, is a complex variable.

Spectrum of a stationary random process

If we choose $z=e^{-i(2 \pi w)}$ where w is a real variable, we obtain the spectrum of $\left\{Y_{t}\right\}$ (a.k.a. spectral density)

$$
f(w)=G\left(e^{-i(2 \pi w)}\right)=\sum_{k=-\infty}^{\infty} \gamma(k) e^{-2 \pi w_{i} k}
$$

Spectrum of a stationary random process

Because $\gamma(k)=\gamma(-k)$ and $e^{i w_{*}}+e^{-i w_{*}}=2 \cos \left(w_{*}\right)$ (we will justify this later) we can also write $f(w)$ as

$$
f(w)=\gamma(0)+\sum_{k=1}^{\infty} \gamma(k) e^{-2 \pi w_{i} k}+\sum_{k=1}^{\infty} \gamma(k) e^{2 \pi w_{i} k}
$$

or

$$
f(w)=\gamma(0)+2 \sum_{k=1}^{\infty} \gamma(k) \cos (2 \pi k w)
$$

Spectrum of a stationary random process

If σ^{2} denotes the variance of Y_{t} we can similarly define a normalized spectrum (a.k.a. normalized spectral density function),

$$
f^{*}(w)=\sum_{k=-\infty}^{\infty} \rho(k) e^{-2 \pi w_{i} k}
$$

or

$$
f^{*}(w)=\frac{f(w)}{\sigma^{2}}=1+2 \sum_{k=1}^{\infty} \rho(k) \cos (2 \pi k w)
$$

Example: White noise

Let Y_{t} be the process defined by $Y_{t}=W_{t}$ where W_{t} is white noise with mean 0 and variance σ_{w}^{2}. Compute the spectral density and normalized spectral density of Y_{t}.

Solution

First, we check that Y_{t} is stationary.

$$
E\left(Y_{t}\right)=0
$$

Let $t \neq s$
$\operatorname{cov}\left(Y_{t}, Y_{s}\right)=E\left[Y_{t} Y_{s}\right]=E\left[W_{t} W_{s}\right]$ (since W_{s} and W_{t} are independent)
$\operatorname{cov}\left(Y_{t}, Y_{s}\right)=(0)(0)=0$.
If $t=s$
$\operatorname{cov}\left(Y_{t}, Y_{t}\right)=E\left[Y_{t}^{2}\right]=E\left[W_{t}^{2}\right]=\sigma_{w}^{2}$

Solution

$$
\gamma(k)=\left\{\begin{array}{lc}
\sigma_{w}^{2}, & \text { if } k=0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Solution

We know that the spectral density of Y_{t} is given by

$$
f(w)=\sum_{k=-\infty}^{\infty} \gamma(k) e^{-2 \pi w_{i} k} .
$$

In this case,

$$
f(w)=\gamma(0) e^{-0}+0=\gamma(0)=\sigma_{w}^{2}
$$

Solution

Then, we have that the normalized spectral density of Y_{t} is

$$
f^{*}(w)=\sum_{k=-\infty}^{\infty} \rho(k) e^{-2 \pi w_{i} k}=\rho(0) e^{-0}+0=\rho(0)=1
$$

This is the origin of the name white noise: it is like white light, which is a uniform mixture of all frequencies in the visible spectrum.

Example. AR(1)

Let Y_{t} be the process defined by $Y_{t}=\phi Y_{t-1}+W_{t}$ (where $W_{t}|\phi|<1$ is white noise with mean 0 and variance σ_{W}^{2}). Compute the spectral density and normalized spectral density of Y_{t}.

Solution

Since we have an $\operatorname{AR}(1)$ process with $|\phi|<1$, we know it is stationary. It can be shown that
$\gamma(0)=\frac{\sigma_{u}^{2}}{1-\phi^{2}}$
$\gamma(1)=\frac{\phi \sigma_{w}^{2}}{1-\phi^{2}}$
$\dot{\gamma(k)}=\frac{\phi^{k} \sigma_{w}^{2}}{1-\phi^{2}}$
(actually, we have done it a couple of times together, in class)

Solution

Thus

$$
\begin{aligned}
f(w) & =\sum_{k=-\infty}^{\infty} \gamma(k) e^{-2 \pi w_{i} k} \\
& =\frac{\sigma_{w}^{2}}{1-\phi^{2}}\left[1+\sum_{k=1}^{\infty} \phi^{k} e^{-2 \pi i w k}+\sum_{k=1}^{\infty} \phi^{k} e^{2 \pi i w k}\right] \\
& =\frac{\sigma_{w}^{2}}{1-\phi^{2}}\left[1+\sum_{k=1}^{\infty}\left(\phi e^{-2 \pi i w}\right)^{k}+\sum_{k=1}^{\infty}\left(\phi e^{2 \pi i w)}\right)^{k}\right] \\
& =\frac{\sigma_{v}^{2}}{1-\phi^{2}}\left[1+\frac{\phi e^{-2 \pi i w}}{1-\phi e^{-2 \pi i w}}+\frac{\phi e^{2 \pi i w}}{1-\phi e^{2 \pi i v}}\right]
\end{aligned}
$$

Solution

(After a little bit of algebra... Remember? We did it together)

$$
\begin{aligned}
& =\frac{\sigma_{w}^{2}}{1-\phi^{2}}\left[\frac{1-\phi^{2}}{\left(1-\phi e^{-2 \pi i w}\right)\left(1-\phi e^{2 \pi i v}\right)}\right] \\
& =\frac{\sigma_{w}^{2}}{1-\phi\left[e^{2 \pi i w}+e^{-2 \pi i v}\right]+\phi^{2}}
\end{aligned}
$$

(next, I am going to remind you something that you know from Calc, that will allow us to simplify the last expression)

Solution

Recalling that

$$
\begin{aligned}
& \sin (x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{2 k-1}}{(2 k-1)!} \\
& \cos (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!} \text { and } \\
& \exp (x)=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \exp (i x)=\sum_{k=0}^{\infty} \frac{(i x)^{k}}{k!} \\
&= {\left[1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots\right] } \\
& \quad+i\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots\right]
\end{aligned}
$$

Thus,

$$
\exp (i x)=\cos (x)+i \sin (x)
$$

Euler's Formula.

Solution(spectral density)

Using Euler's Formula

$\exp (2 \pi i w)=\cos (2 \pi w)+i \sin (2 \pi w)$
$\exp (-2 \pi i w)=\cos (2 \pi w)-i \sin (2 \pi w)$.
So, $\exp (2 \pi i w)+\exp (-2 \pi i w)=2 \cos (2 \pi w)$
Finally!!,

$$
f(w)=\frac{\sigma_{w}^{2}}{1-2 \phi \cos (2 \pi w)+\phi^{2}}
$$

Solution(normalized spectral density)

We know that

$$
f^{*}(w)=\sum_{k=-\infty}^{\infty} \rho(k) e^{-2 \pi w_{i} k}
$$

So ... Homework? (It should be easy, Right? Just use $\rho(k)$ instead of $\gamma(k))$.

Homework Problem

Let Y_{t} be the process defined by

$$
Y_{t}=W_{t}+\beta W_{t-1}
$$

(where $W_{t} \sim W N\left(0, \sigma_{W}^{2}\right)$). Compute the spectral density and normalized spectral density of Y_{t}.

