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METHOD OF MOMENTS
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The Method of Moments

The method of moments is frequently one of the easiest. The method
consists of equating sample moments to corresponding theoretical
moments and solving the resulting equations to obtain estimates of any
unknown parameters.
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Example. Autoregressive Models

Consider the AR(2) case. The relationships between the parameters φ1
and φ2 and various moments are given by the Yule-Walker equations.

ρ(1) = φ1 + φ2ρ(1)

ρ(2) = φ1ρ(1) + φ2
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Example. Autoregressive Models (cont.)

The method of moments replaces ρ(1) by r1 and ρ(2) by r2 to obtain

r1 = φ1 + r1φ2

r2 = φ1r1 + φ2
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Example. Autoregressive Models (cont.)

Solving for φ1 and φ2 yields

φ̂1 =
r1(1− r2)

1− r21

φ̂2 =
r2 − r21
1− r21
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Example. ARMA(1,1)

Consider the ARMA(1,1) case.
Yt = φYt−1 − θWt−1 + Wt

γ(0) =
(1− 2φθ + θ2)σ2W

1− φ2

γ(1) = φγ(0)− θσ2W
γ(2) = φγ(1)

Al Nosedal University of Toronto Parameter Estimation (Theory) April 15, 2019 7 / 37



Example. ARMA(1,1) (cont.)

ρ(0) = 1

ρ(1) =
(φ− θ)(1− φθ)

1− 2φθ + θ2

ρ(2) = φρ(1)
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Example. ARMA(1,1) (cont.)

Replacing ρ(1) by r1, ρ(2) by r2, and solving for φ yields

φ̂ =
r2
r1
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Example. ARMA(1,1) (cont.)

To obtain θ̂, the following quadratic equation must be solved (and only
the invertible solution retained)

θ2(r1 − φ̂) + θ(1− 2r1φ̂+ φ2) + (r1 − φ̂) = 0
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Estimates of the Noise Variance

The final parameter to be estimated is the noise variance, σ2W . In all
cases, we can first estimate the process variance γ(0) = Var(Yt), by the
sample variance (s2 = 1

n−1
∑n

t=1(Yt − Ȳ )2) and use known relationships
among γ(0).
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Example. AR(2) process

For an AR(2) process,

γ(0) = φ1γ(1) + φ2γ(2) + σ2W

Dividing by γ(0) and solving for σ2W yields

σ̂2W = s2[1− φ̂r1 − φ̂2r2]
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LEAST SQUARES ESTIMATION
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Autoregressive Models

Consider the first-order case where

Yt − µ = φ(Yt−1 − µ) + Wt

Note that

(Yt − µ)− φ(Yt−1 − µ) = Wt
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Since only Y1,Y2, · · · ,Yn are observed, we can only sum from t = 2 to
t = n. Let

SC (φ, µ) =
n∑

t=2

[(Yt − µ)− φ(Yt−1 − µ)]2

This is usually called the conditional sum-of-squares function.
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Now, consider the equation ∂SC
∂µ = 0

∂SC
∂µ

= 2(φ− 1)
n∑

t=2

[(Yt − µ)− φ(Yt−1 − µ)] = 0

Solving it for µ yields

µ =
1

(n − 1)(1− φ)

[
n∑

t=2

Yt − φ
n∑

t=2

Yt−1

]
Now, for large n,

µ̂ ≈ Ȳ
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Consider now the minimization of SC (φ, Ȳ ) with respect to φ.

∂SC (φ, Ȳ )

∂φ

n∑
t=2

(Yt − Ȳ )(Yt−1 − Ȳ )− φ
n∑

t=2

(Yt−1 − Ȳ )2 = 0

Solving for φ gives

φ̂ =

∑n
t=2(Yt − Ȳ )(Yt−1 − Ȳ )∑n

t=2(Yt−1 − Ȳ )2

Except for one term missing in the denominator, this is the same as r1.
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Entirely analogous results follow for the general stationary AR(p) case: to
an excellent approximation, the conditional least squares estimates of the
φ’s are obtained by solving the sample Yule-Walker equations.
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Moving Average Models

Consider now the least-squares estimation of θ in the MA(1) model

Yt = Wt −Wt−1

Recall that an invertible MA(1) can be expressed as

Yt = Wt − θYt−1 − θ2Yt−2 − θ3Yt−3 − · · ·

an autoregressive model but of infinite order.
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In this case,

SC (θ) =
∑

[Yt + θYt−1 + θ2Yt−2 + θ3Yt−3 + · · · ]2

It is clear from this equation that the least squares problem is nonlinear in
the parameters.
We will not be able to minimize SC (θ) by taking a derivative with respect
to θ, setting it to zero, and solving. We must resort to techniques of
numerical optimization.
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For the simple case of one parameter, we could carry out a grid search over
the invertible range (−1,+1) for θ to find the minimum sum of squares.
For more general MA(q) models, a numerical optimization algorithm, such
as Gauss-Newton will be needed.
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Example. MA(1) simulation

set.seed(19)

# simulating MA(1);

ma1.sim<-arima.sim(list(ma = c( -0.2)),

n = 1000, sd=0.1);
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Example. MA(1) time series plot

MA(1), b= −0.2, n=1000
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## SC = conditional sum of squares function for MA(1)

SC<-function(y,theta){
n<-length(y);

error<-numeric(n);

error[1]<-y[1];

for (i in 2:n){
error[i]<-y[i]-theta*error[i-1]

}

SSE<-sum(error^2)

return(SSE)

}
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SC.VEC<-function(y,theta){

N<-length(theta);

SSE.VEC<-numeric(N);

for (j in 1:N){

SSE.VEC[j]<-SC(y,theta[j])

}

return(SSE.VEC)

}
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## Testing function SC

theta=seq(-1,1, by=0.001)

sc.values=SC.VEC(ma1.sim,theta);

plot(theta,log(sc.values),type="l")

index=seq(1,length(sc.values),by=1);

theta.hat.one=theta[index[sc.values==min(sc.values)]];

theta.hat.one
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## [1] -0.228
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EXACT LIKELIHOOD FUNCTIONS
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To illustrate the derivation of the exact likelihood function for a time series
model, consider the AR(1) process

(1− φB)Ẏt = Wt

or

Ẏt = φẎt−1 + Wt

where Ẏt = Yt − µ, |φ| < 1 and the Wt are iid N(0, σ2W ).
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Rewriting the process in the moving average representation, we have

Ẏt =
∞∑
j=0

φjWt−j

E [Ẏt ] = 0

V [Ẏt ] =
σ2W

1− φ2

Clearly, Ẏt will be distributed as N
(

0,
σ2
W

1−φ2

)
.
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To derive the joint pdf of (Ẏ1, Ẏ2, · · · , Ẏn) and hence the likelihood
function for the parameters, we consider

e1 =
∞∑
j=0

φjW1−j = Ẏ1

W2 = Ẏ2 − φẎ1

W3 = Ẏ3 − φẎ2

...

Wn = Ẏn − φẎn−1
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Note that e1 follows the Normal distribution N
(

0,
σ2
W

1−φ2

)
.

Wt , for 2 ≤ t ≤ n, follows the Normal distribution N(0, σ2W ) and they are
all independent of one another. Hence, the joint probability density of
(e1,W2,W3, · · · ,Wn) is

[
1− φ2

2πσ2W

]1/2
exp

[
−e21(1− φ2)

2σ2W

]
×
[

1

2πσ2W

](n−1)/2
exp

[
− 1

2σ2W

n∑
t=2

W 2
t

]
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Now consider the following transformation

Ẏ1 = e1

Ẏ2 = φẎ1 + W2

Ẏ3 = φẎ2 + W3

...

Ẏn = φẎn−1 + Wn

(Note that the Jacobian of this transformation and its inverse is one).
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It follows that the joint probability density of (Ẏ1, Ẏ2, Ẏ3, · · · , Ẏn) is[
1−φ2
2πσ2

W

]1/2
exp

[
− Ẏ 2

1 (1−φ2)
2σ2

W

]
×[

1
2πσ2

W

](n−1)/2
exp

[
− 1

2σ2
W

∑n
t=2(Ẏt − φẎt−1)2

]
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Hence for a given series (Ẏ1, Ẏ2, Ẏ3, · · · , Ẏn) we have the following exact
log-likelihood function:

λ(φ, µ, σ2W ) = −n

2
ln(2π) +

1

2
ln(1− φ2)− n

2
lnσ2W −

S(φ, µ)

2σ2W

where
S(φ, µ) = (Y1 − µ)2(1− φ2) +

∑n
t=2[(Yt − µ)− φ(Yt−1 − µ)]2 =

(Y1 − µ)2(1− φ2) + SC (φ, µ)
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For given values of φ and µ, λ(φ, µ, σ2W ) can be maximized analytically
with respect to σ2W in terms of yet to be determined estimators of φ and µ.

σ̂2W =
S(φ̂, µ̂)

n

(Just find ∂λ
∂σ2 , set it equal to zero, and solve for σ2W .)
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Summary

Starting with the most precise method and continuing in decreasing order
of precision, we can summarize the various methods of estimating an
AR(1) model as follows:

1 Exact likelihood method. Find parameters φ, µ such that λ(φ, µ, σ2W )
is maximized. This is usually nonlinear and requires numerical
routines.

2 Unconditional least squares. Find parameters such that S(φ, µ) is
minimized. Again, nonlinearity dictates the use of numerical routines.

3 Conditional least squares. Find φ such that SC (φ, µ) is minimized.
This is the simplest case since φ̂ can be solved analytically.
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