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METHOD OF MOMENTS
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The Method of Moments

The method of moments is frequently one of the easiest. The method
consists of equating sample moments to corresponding theoretical

moments and solving the resulting equations to obtain estimates of any
unknown parameters.
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Example. Autoregressive Models

Consider the AR(2) case. The relationships between the parameters ¢y
and ¢, and various moments are given by the Yule-Walker equations.

p(l) = ¢1+ ¢g2p(1)
r(2) $1p(1) + b2
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Example. Autoregressive Models (cont.)

The method of moments replaces p(1) by r; and p(2) by r» to obtain

n = ¢1+ne
rn = ¢1n+ @2
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Example. Autoregressive Models (cont.)

Solving for ¢1 and ¢7 yields

A1 . r1(1—r2)
1—r12
(lg r2—r12
2
1—r12
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Example. ARMA(1,1)

Consider the ARMA(1,1) case.
Yi=0Y1—O0Wi 1+ W

(1—2¢0 + 02)o3,

7(0) =
Y1) = ¢v(0) - bopy
7(2) = #(1)
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Example. ARMA(1,1) (cont.)

p(0) = 1

(¢ —O)(1 - ¢0)
(1) = 1— 200 + 62
p(2) = ¢p(1)
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Example. ARMA(1,1) (cont.)

Replacing p(1) by r1, p(2) by r», and solving for ¢ yields

~ r
b=2

rn
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Example. ARMA(1,1) (cont.)

To obtain 6, the following quadratic equation must be solved (and only
the invertible solution retained)

0%(r1 — @) +0(1 —2nd+ ¢*) +(n—d) =0
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Estimates of the Noise Variance

The final parameter to be estimated is the noise variance, J%V. In all
cases, we can first estimate the process variance v(0) = Var(Y;), by the
sample variance (s> = —2- 37, (Y; — Y)?) and use known relationships

among 7(0).
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Example. AR(2) process

For an AR(2) process,

7(0) = ¢17(1) + ¢27(2) + oy
Dividing by 7(0) and solving for o2, yields

6%y = $°[1 — ér1 — dor)]
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LEAST SQUARES ESTIMATION
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Autoregressive Models

Consider the first-order case where

Ye—p=¢(Yee1 — p) + Wy
Note that

(Ye—p) = o(Yecr —p) = Wy
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Since only Y1, Yo, -+, Y, are observed, we can only sum from t = 2 to
t =n. Let

Sl ) =D [(Ye— 1) — ¢(Ye1 — )P

t=2

This is usually called the conditional sum-of-squares function.

Al Nosedal University of Toronto April 15, 2019 15 / 37



Now, consider the equation % =
”w

0S 4
Se =29 = 1) Y [(Ye— 1) = ¢(Yerr — )] =0
H t=2
Solving it for p yields
1 n n
(n—1)(1-9¢) ; t ; o
Now, for large n,
i~ Y
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Consider now the minimization of Sc(¢, Y) with respect to ¢.

35c§§;,\7) Zn:(Yt = Y)(Yee1 = Y) - ¢Zn:(yt*1 —Yy=o
t=2

=2
Solving for ¢ gives

5 TialYe=V)(Yi1—Y)
Egzz(yt—l - Y)2

Except for one term missing in the denominator, this is the same as r;.
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Entirely analogous results follow for the general stationary AR(p) case: to
an excellent approximation, the conditional least squares estimates of the
¢'s are obtained by solving the sample Yule-Walker equations.
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Moving Average Models

Consider now the least-squares estimation of € in the MA(1) model

Ye= Wi — Wi

Recall that an invertible MA(1) can be expressed as

Yi=W: —0Y: 1 —0*Ye0—03Y, 3 —---

an autoregressive model but of infinite order.
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In this case,

Sc(0) = E[Yt +0Ye 1 +60°Ye 0 +03Y 3+ -]

It is clear from this equation that the least squares problem is nonlinear in

the parameters.
We will not be able to minimize Sc(#) by taking a derivative with respect
to 6, setting it to zero, and solving. We must resort to techniques of

numerical optimization.
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For the simple case of one parameter, we could carry out a grid search over
the invertible range (—1,+1) for 6 to find the minimum sum of squares.
For more general MA(q) models, a numerical optimization algorithm, such

as Gauss-Newton will be needed.
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Example. MA(1) simulation

set.seed(19)

mal.sim<-arima.sim(list (ma

n = 1000, sd=0.1);
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Example. MA(1) time series plot

MA(1), b= —0.2, n=1000
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SC<-function(y,theta){
n<-length(y);
error<-numeric(n);
error[1]<-y[1];

for (i in 2:n){
error[i]<-y[i]-theta*error[i-1]

}

SSE<-sum(error~2)

return(SSE)

}
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SC.VEC<-function(y,theta){

N<-length(theta);
SSE.VEC<-numeric(N) ;

for (j in 1:N){
SSE.VEC[j]<-SC(y,thetalj])

}

return(SSE.VEC)
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## Testing function SC
theta=seq(-1,1, by=0.001)
sc.values=SC.VEC(mal.sim,theta);
plot(theta,log(sc.values),type="1")
index=seq(1,length(sc.values) ,by=1);
theta.hat.one=thetal[index[sc.values==min(sc.values)]];

theta.hat.one
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## [1] -0.228
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EXACT LIKELIHOOD FUNCTIONS
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To illustrate the derivation of the exact likelihood function for a time series
model, consider the AR(1) process

(1-B)Y; = W,
or

Y: = QZ)Yt—l + W
where Y; = Y;: — u, |¢| < 1 and the W; are iid N(0,0%,).
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Rewriting the process in the moving average representation, we have

Yt = Z quWt*j
j=0
E[Y] =0
VY] = W

Clearly, Y, will be distributed as N (o, i ¢2)
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To derive the joint pdf of (Yl, Yo, -+, Y») and hence the likelihood
function for the parameters, we consider

o0

er = Z(bjwl—j =Y

=0
Wo = Yo—oY
W3 = Y3—-0¢Y

W, = Yn_ﬁbyn—l
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Note that e; follows the Normal distribution N (0, %)

W;, for 2 < t < n, follows the Normal distribution N(O,JZW) and they are
all independent of one another. Hence, the joint probability density of
(elu W27 W37 Ty Wn) is

[1 B ¢2]1/2 oo [_ e2(1— ¢2)] § [ 1 ](nl)/2 oo [_21 Zn: WE]

2 2 2
2oy, 200, 2roy,
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Now consider the following transformation

Yi = e
Yo = oY1+ Ws
Y3 = ¢Ya+ Wi

Yn = ¢Ynfl+Wn

(Note that the Jacobian of this transformation and its inverse is one).
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It follows that the joint probability density of (Y1, Y2, Ya,- -, Yp) is

_p211/2 V2(1— 2
] e[

{ 1 }(n—l)/2 exp [—ﬁ Z:zz(yt _ ¢Yt—1)2

2
2oy,
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Hence for a given series (Yl, Yo, Ys, o, Y,,) we have the following exact
log-likelihood function:

S(¢, 1)

2
20’W

1
N(@: 1, 0%y) = =3 n(27) + SIn(1 = %) = Zinor, -
where

S(d, 1) = (Y1 — 0)*(1 = 6%) + X0,[(Ye — 1) — ¢(Yeer — )] =
(Y1 = 1)*(1 = ¢%) + Sc(¢, n)

Al Nosedal University of Toronto April 15, 2019 35 /37



For given values of ¢ and g, A(¢, i, 0%,) can be maximized analytically

with respect to U%v in terms of yet to be determined estimators of ¢ and p.

-

S

(Just find %, set it equal to zero, and solve for O'%V.)
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Starting with the most precise method and continuing in decreasing order
of precision, we can summarize the various methods of estimating an
AR(1) model as follows:

© Exact likelihood method. Find parameters ¢, uu such that A(¢, 1, 0%,)

is maximized. This is usually nonlinear and requires numerical
routines.

@ Unconditional least squares. Find parameters such that S(¢, i) is
minimized. Again, nonlinearity dictates the use of numerical routines.

© Conditional least squares. Find ¢ such that Sc(¢, i) is minimized.
This is the simplest case since ¢ can be solved analytically.
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