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We have seen that the ACF is an excellent tool in identifying the order of
an MA(q) process, because it is expected to ”cut off” after lag q.
However, we pointed out that the ACF is not as useful in the identification
of the order of an AR(p) process for which it will most likely have a
mixture of exponential decay and damped sinusoid expressions. Hence
such behaviour, while indicating that the process might have an AR
structure, fails to provide further information about the order of such
structure. For that, we will define and employ the partial autocorrelation
function (PACF) of the time series.
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A reminder

Consider an AR(1) process, xt = φxt−1 + wt . Note that
xt−1 = φxt−2 + wt−1, substituting back

xt = φ2xt−2 + φwt−1 + wt .

Again, xt−2 = φxt−3 + wt−2, substituting back

xt = φ3xt−3 + φ2wt−2 + φwt−1 + wt .
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A reminder

Continuing this process, we could rewrite xt as

xt = wt + φwt−1 + φ2wt−2 + φ3wt−3 + ...

(note that xt involves {wt ,wt−1,wt−2,wt−3, ...})
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PACF

To formally define the PACF for mean-zero stationary time series, let x̂t+h,
for h ≥ 2, denote the regression of xt+h on {xt+h−1, xt+h−2, ..., xt+1}
which we write as

x̂t+h = β1xt+h−1 + β2xt+h−2 + ...+ βh−1xt+1.

NO intercept is needed because the mean of xt is zero.
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PACF

In addition, let x̂t denote the regression of xt on {xt+1, xt+2, ..., xt+h−1},
then

x̂t = β1xt+1 + β2xt+2 + ...+ βh−1xt+h−1.
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Definition

The partial autocorrelation function (PACF) of a stationary process, xt ,
denoted φhh (or φhh) , for h = 1, 2, ... is

φ11 = corr(xt+1, xt) = ρ(1)

and

φhh = corr(xt+h − x̂t+h, xt − x̂t), h ≥ 2.
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Example. PACF of an AR(1)

Consider the PACF of the AR(1) process given by xt = φxt−1 + wt , with
|φ| < 1.
By definition, φ11 = ρ(1) = φ (Remember?)
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Example. PACF of an AR(1)

To calculate φ22, consider the regression of xt+2 on xt+1, say
x̂t+2 = βxt+1. We choose β to minimize

E [xt+2− x̂t+2]2 = E [xt+2−βxt+1]2 = E [x2t+2]−2βE [xt+1xt+2]+β2E [x2t+1]

equivalent to

E [xt+2 − x̂t+2]2 = γ(0)− 2βγ(1) + β2γ(0).
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Example. PACF of an AR(1)

Now, we find the derivative w.r.t. β and set it equal to zero.

f (β) = γ(0)− 2βγ(1) + β2γ(0).

f
′
(β) = 2γ(1) + 2βγ(0)

(solving for β)

β = ρ(1) = φ.

(Note that f
′′

(β) > 0, so f (β) attains its minimum at φ).
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Example. PACF of an AR(1)

Next, consider the regression of xt on xt+1, say x̂t = βxt+1. We choose β
to minimize

E [xt − x̂t ]
2 = E [xt − βxt+1]2 = E [x2t ]− 2βE [xtxt+1] + β2E [x2t+1]

equivalent to

E [xt − x̂t ]
2 = γ(0)− 2βγ(1) + β2γ(0).

This is the same equation as before, so β = ρ(1) = φ.
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Example. PACF of an AR(1)

Hence,
cov(xt+2 − x̂t+2, xt − x̂t) = cov(xt+2 − φxt+1, xt − φxt)

= cov(xt+2 − φxt+1, xt − φxt) (note that wt+2 = xt+2 − φxt+1

= cov(wt+2, xt − φxt) (check reminder).
Recall that xt involves {wt ,wt−1,wt−2, ...} and
xt+1 involves {wt+1,wt ,wt−1, ...} which are uncorrelated to wt+2.
Thus, cov(xt+2 − x̂t+2, xt − x̂t) = 0.
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Example. PACF of an AR(1)

Therefore,

φ22 = corr(wt+2, xt − φxt+1) = 0.

It can be shown that φhh = 0 for all h > 1.
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What is the PACF

Suppose that we consider the ”memory” in an AR(1) process. We know
that its autocorrelation function is given by ρ(k) = φk . Consider the
dependency of observations one lag apart; they are correlated ρ(1) = φ for
the AR(1) model. Now consider observations two lags apart. You will be
prone to answer that they are correlated ρ(2) = φ2. Hence, observations
xt are correlated with observations xt+2 to the extent φ2. But is xt+2

dependent on xt after considering the intermediate link with xt+1?
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What is the PACF

The question can be answered by partial correlation. If the terms are
denoted 1, 2, and 3 (for xt , xt+1, and xt+2, respectively), we want to
know if ρ13.2 is zero, where ρ13.2 is the correlation of xt and xt+2 given
(conditional on) xt+1. The standard equation for partial correlation is

ρ13.2 =
ρ13 − ρ12ρ32√

1− ρ212
√

1− ρ232

We know that for the AR(1), ρ13 = ρ(2) = φ2 and ρ12 = ρ32 = φ. Hence,
the numerator is φ2 − φφ = 0. So the answer is: NO, there is no
relationship between xt+2 and xt after removing the intermediate
association with xt+1. All higher-order partials will also vanish. To
summarize, if the process is AR(1), once we get to lag 2, all partial
correlations are zero.
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Example: Applying the Yule-Walker Equations

Suppose we suspect that p = 2; that is, we suspect that we are dealing
with an AR(2) process. The Yule-Walker equations are:
E [YtYt−1] = a1E [Y 2

t−1] + a2E [Yt−2Yt−1] + E [WtYt−1]
γ(1) = a1γ(0) + a2γ(1)
γ(1)
γ(0) = a1 + a2

γ(1)
γ(0)

ρ(1) = a1 + a2ρ(1) (1)
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Example: Applying the Yule-Walker Equations (cont.)

E [YtYt−2] = a1E [Y 2
t−2] + a2E [Yt−2Yt−2] + E [WtYt−2]

γ(2) = a1γ(1) + a2γ(0)
γ(2)
γ(0) = a1

γ(1)
γ(0) + a2

ρ(2) = a1ρ(1) + a2 (2)
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Example: Applying the Yule-Walker Equations (cont.)

Or, in matrix form,(
ρ(1)
ρ(2)

)
=

(
1 ρ(1)
ρ(1) 1

)(
a1
a2

)
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Example: Applying the Yule-Walker Equations (cont.)

The second-order partial autocorrelation coefficient is a2, written φ22,
which can be found using Cramer’s rule,

a2 = φ22 =

det

(
1 ρ(1)
ρ(1) ρ(2)

)
det

(
1 ρ(1)
ρ(1) 1

) =
ρ(2)− ρ2(1)

1− ρ2(1)
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Example

Consider the quarterly growth rate of U.S. real gross national product
(GNP), seasonally adjusted, from the second quarter of 1947 to the first
quarter of 1991. We shall try fitting an AR process to this series.
Data set is available at

gnp_url = "https://mcs.utm.utoronto.ca/~nosedal/data/q-gnp.txt"
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R Code

#Step 1. Reading data;

# url of gnp;

gnp_url =

"https://mcs.utm.utoronto.ca/~nosedal/data/q-gnp.txt"

# import data in R;

gnp= read.table(gnp_url, header = FALSE);

head(gnp);
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R Code

## V1

## 1 0.00632

## 2 0.00366

## 3 0.01202

## 4 0.00627

## 5 0.01761

## 6 0.00918
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Time Series Plot

# creating time series object;

gnp.ts=ts(gnp,frequency=4,start=c(1947,2));

plot(gnp.ts,main="Growth rate of US quarterly GNP",

ylab="Growth");
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Time Series Plot
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ACF

acf(gnp.ts,main="Growth rate of US quarterly GNP");
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ACF
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Autocorrelations (values)

rhos=acf(gnp.ts,plot=FALSE)$acf;

rhos[1];

rhos[2];

rhos[3];

rhos[4];
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Autocorrelations (values)

## [1] 1

## [1] 0.3768704

## [1] 0.253912

## [1] 0.01252511
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Levinson-Durbin Method

For a given lag k, it can be shown that the φkk satisfy the Yule-Walker
equations:

ρj = φk1ρj−1 + φk2ρj−2 + φk3ρj−3 + · · ·+ φkkρj−k

for j = 1, 2, · · · , k .
Here we are treating ρ1, ρ2, · · · , ρk as given and wish to solve for
φk1, φk2, · · · , φkk .
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Levinson-Durbin Method (cont.)

Levinson and Durbin gave an efficient method for obtaining the solutions
to equations given on previous slide, for either theoretical or sample
autocorrelations. They showed that these equations can be solved
recursively as follows:

φkk =
ρk −

∑k−1
j=1 φk−1,jρk−j

1−
∑k−1

j=1 φk−1,jρj

where

φk,j = φk−1,j − φkkφk−1,k−j

for j = 1, 2, · · · , k − 1
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Partial Autocorrelations (values)

phis=pacf(gnp.ts,plot=FALSE);

phis;
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Partial Autocorrelations (values)

##

## Partial autocorrelations of series 'gnp.ts', by lag

##

## 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

## 0.377 0.130 -0.142 -0.099 -0.020 0.033 0.012 -0.111 -0.042 0.098

## 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

## -0.037 -0.153 -0.051 -0.013 0.010 0.058 -0.011 0.032 -0.017 -0.016

## 5.25 5.50

## -0.057 0.018
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PACF

pacf(gnp.ts,main="Growth rate of US quarterly GNP");
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PACF
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PACF (another way)

Another way to introduce PACF is to consider the following AR models in
consecutive orders:

yt = φ0,1 + φ1,1yt−1 + w1t ,

yt = φ0,2 + φ1,2yt−1 + φ2,2yt−2 + w2t ,

yt = φ0,3 + φ1,3yt−1 + φ2,3yt−2 + φ3,3yt−3 + w3t ,

yt = φ0,4 + φ1,4yt−1 + φ2,4yt−2 + φ3,4yt−3 + φ4,4yt−3 + w4t ,

...

Al Nosedal University of Toronto Partial Autocorrelation Function, PACF March 5, 2019 35 / 39



PACF (another way)

where φ0,j , φi ,j , and {wjt} are, respectively, the constant term, the
coefficient of yt−i , and the error term of an AR(j) model. These models
are in the form of a multiple linear regression and can be estimated by the
least-squares method. The estimate φ̂1,1 of the first equation is called the
lag-1 sample PACF of yt . The estimate φ̂2,2 of the second equation is
called the lag-2 sample PACF of yt . The estimate φ̂3,3 of the third
equation is called the lag-3 sample PACF of yt , an so on.
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PACF (another way)

mod1=ar(gnp.ts,order.max=1);

mod2=ar(gnp.ts,order.max=2);

mod3=ar(gnp.ts,order.max=3);

mod1$ar;

mod2$ar;

mod3$ar;
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PACF (another way)

## [1] 0.3768704

## [1] 0.3277258 0.1304018

## [1] 0.3462541 0.1769673 -0.1420867
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For a stationary Gaussian AR(p) model, it can be shown that the sample
PACF has the following properties:

φ̂p,p converges to φp as the sample size T goes to infinity.

φ̂l ,l converges to zero for all l > p.

The asymptotic variance of φ̂l ,l is 1
T for l > p.

These results say that, for an AR(p) series, the sample PACF cuts off at
lag p.
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