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First-order moving-average models

A first-order moving-average process, written as MA(1), has the general
equation

xt = wt + bwt−1

where wt is a white-noise series distributed with constant variance σ2w .
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The Autocovariance for MA(1) Models

We must compute γ(k), which is defined as the autocovariance of the
process at lag k. For simplicity, assume that the mean has been subtracted
from our data, so that xt has zero mean. Then

γ(k) = E (xtxt−k)
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The Autocovariance for MA(1) Models

γ(k) = E [(wt + bwt−1)(wt−k + bwt−k−1)]
= E (wtwt−k + bwtwt−k−1 + bwt−1wt−k + b2wt−1wt−k−1)
= E (wtwt−k)+E (bwtwt−k−1)+E (bwt−1wt−k)+E (b2wt−1wt−k−1)
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The Autocovariance for MA(1) Models

Now set k = 0 and recall that γ(0) = σ2MA, the variance of your series.

γ(0) = σ2MA = E (w2
t ) + bE (wtwt−1) + bE (wt−1wt) + b2E (w2

t−1)

γ(0) = σ2MA = σ2w + 0 + 0 + b2σ2w = (1 + b2)σ2w .
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The Autocovariance for MA(1) Models

Now set k = 1.

γ(1) = E (wtwt−1) + bE (wtwt−2) + bE (w2
t−1wt−1) + b2E (wt−1wt−2)

γ(1) = bσ2w .
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The Autocovariance for MA(1) Models

For k > 1, we will obtain γ(k) = 0, since
E [(wt + bwt−1)(wt−k + bwt−k−1)] will contain only terms whose expected
value is zero.
Note. For an MA(1), the autocovariance function truncates (i.e., it
is zero) after lag 1.
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The Autocorrelation for MA(1) Models

ρ(0) =
γ(0)

γ(0)
= 1.

ρ(1) =
γ(1)

γ(0)
=

b

1 + b2
.

ρ(k) = 0 for all k > 1.
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The Autocovariance for MA(q) Models

For the qth-order MA process, we can use a similar derivation to show that
the autocovariance function, γ(k), truncates after lag q. Once again

γ(k) = E (xtxt−k)
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The Autocovariance for MA(q) Models

For k = 0, we obtain

γ(0) = σ2MA = (b20 + b21 + b22 + ...+ b2q)σ2w .

For k = 1, we obtain

γ(1) = (b1b0 + b2b1 + ...+ bqbq−1)σ2w .

Al Nosedal University of Toronto The Moving Average Models MA(1) and MA(2) February 5, 2019 10 / 47



The Autocovariance for MA(q) Models

In general, we obtain the basic equation

γ(k) = σ2w

q∑
s=0

bsbs−k .
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Second-order Moving-Average Models

Consider the MA(2) process, which is given by

xt = wt + b1wt−1 + b2wt−2,

where wt is again a white-noise process.
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MA(2), Autocovariance function

At this point, it should be easy to see that
γ(0) = σ2MA = (1 + b21 + b22)σ2w
γ(1) = (b1 + b1b2)σ2w
γ(2) = b2σ

2
w

γ(k) = 0 for k > 2.
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MA(2), Autocorrelation function

ρ(0) = 1
ρ(1) = b1+b1b2

1+b21+b22

ρ(2) = b2
1+b21+b22

ρ(k) = 0 for k > 2.
Thus, we see that the autocorrelation function for an MA(2) process
truncates after two lags.
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MA(1) is an AR(∞)

Suppose that we have an MA(1) model

xt = wt + bwt−1.

Then,

xt−1 = wt−1 + bwt−2.

Solve this equation for wt−1 and substitute the result back into
xt = wt + bwt−1.
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MA(1) is an AR(∞)

This gives
xt = wt + b(xt−1 − bwt−2)

= bxt−1 + wt − b2wt−2

(Now, we repeat the process with wt−2)
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MA(1) is an AR(∞)

xt−2 = wt−2 + bwt−3.

Solve this equation for wt−2 and substitute the result back into
xt = bxt−1 + wt − b2wt−2.

xt = bxt−1 − b2xt−2 + wt + b3wt−3
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MA(1) is an AR(∞)

We can continue indefinitely as long as bs goes to zero (i. e., |b| < 1) to
obtain

xt = wt + bxt−1 − b2xt−2 + b3xt−3 − ...+ ...

This is an AR(∞) process, but it only holds under the invertibility
condition that |b| < 1.
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More about invertibility

Consider the following first-order MA processes:
A: xt = wt + θwt−1

B: xt = wt + 1
θwt−1
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More about invertibility

It can easily be shown that these two different processes have exactly the
same autocorrelation function (Right?)

ρ(0) =
γ(0)

γ(0)
= 1.

ρ(1) =
γ(1)

γ(0)
=

θ

1 + θ2
.

ρ(k) = 0 for all k > 1.
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More about invertibility

If |θ| < 1, the series (AR(∞)) for A converges whereas that for B does
not. Thus if |θ| < 1, model A is said to be invertible whereas model B is
not. The imposition of the invertibility condition ensures that there
is a unique MA process for a given autocorrelation function.
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Simulated Examples of the MA(1) Model

xt = wt + b1wt−1

There are two cases, positive and negative values.
Case i) b1 = −0.7
Case ii) b1 = 0.3.
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R Code

set.seed(9999);

# simulating MA(1);

ma1.sim<-arima.sim(list(ma = c( -0.7)),

n = 100, sd=2);

plot.ts(ma1.sim, ylim=c(-6,8),main="MA(1), b= -0.7, n=100");
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Scatterplot

MA(1), b= −0.7, n=100
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Autocorrelation Function

acf(ma1.sim);
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Autocorrelation Function, case i)
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R Code

set.seed(9999);

# simulating MA(1);

ma1.sim<-arima.sim(list(ma = c(0.3)),

n = 100, sd=2);

plot.ts(ma1.sim, ylim=c(-6,8),main="MA(1), b= 0.3, n=100");
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Scatterplot

MA(1), b= 0.3, n=100
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Autocorrelation Function, case ii)

acf(ma1.sim);

Al Nosedal University of Toronto The Moving Average Models MA(1) and MA(2) February 5, 2019 29 / 47



Autocorrelation Function, case ii)
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Simulated Examples of the MA(2) Model

xt = wt + b1wt−1 + b2wt−2.

Case i) b1 = 1.50 and b2 = −0.56
Case ii) b1 = 0.50 and b2 = 0.24
Case iii) b1 = −0.5 and b2 = 0.24
Case iv) b1 = 1.20 and b2 = −0.72
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R Code

b1<- 1.5;

b2<- -0.56;

set.seed(9999);

# simulating MA(2);

ma2.sim<-arima.sim(list(ma = c(b1,b2)),

n = 100, sd=2);

plot.ts(ma2.sim, ylim=c(-8,10),main="MA(2), case i)");
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Scatterplot

MA(2), case i)
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Autocorrelation Function, case i)

acf(ma2.sim);
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Autocorrelation Function,case i)
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R Code

b1<- 0.5;

b2<- 0.24;

set.seed(9999);

# simulating MA(2);

ma2.sim<-arima.sim(list(ma = c(b1,b2)),

n = 100, sd=2);

plot.ts(ma2.sim, ylim=c(-8,10),main="MA(2), case ii)");
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Scatterplot

MA(2), case ii)
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Autocorrelation Function, case ii)

acf(ma2.sim);
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Autocorrelation Function, case ii)
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R Code

b1<- -0.5;

b2<- 0.24;

set.seed(9999);

# simulating MA(2);

ma2.sim<-arima.sim(list(ma = c(b1,b2)),

n = 100, sd=2);

plot.ts(ma2.sim, ylim=c(-8,10),main="MA(2), case ii)");
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Scatterplot

MA(2), case iii)
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Autocorrelation Function, case iii)

acf(ma2.sim);
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Autocorrelation Function, case iii)
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R Code

b1<- 1.20;

b2<- -0.72;

set.seed(9999);

# simulating MA(2);

ma2.sim<-arima.sim(list(ma = c(b1,b2)),

n = 100, sd=2);

plot.ts(ma2.sim, ylim=c(-8,10),main="MA(2), case ii)");
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Scatterplot

MA(2), case iv)
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Autocorrelation Function, case iv)

acf(ma2.sim);
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Autocorrelation Function
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