The Moving Average Models MA(1) and MA(2)

Al Nosedal
University of Toronto

February 5, 2019

First-order moving-average models

A first-order moving-average process, written as $\mathrm{MA}(1)$, has the general equation

$$
x_{t}=w_{t}+b w_{t-1}
$$

where w_{t} is a white-noise series distributed with constant variance σ_{w}^{2}.

The Autocovariance for MA(1) Models

We must compute $\gamma(k)$, which is defined as the autocovariance of the process at lag k. For simplicity, assume that the mean has been subtracted from our data, so that x_{t} has zero mean. Then

$$
\gamma(k)=E\left(x_{t} x_{t-k}\right)
$$

The Autocovariance for MA(1) Models

$$
\begin{aligned}
\gamma(k) & =E\left[\left(w_{t}+b w_{t-1}\right)\left(w_{t-k}+b w_{t-k-1}\right)\right] \\
& =E\left(w_{t} w_{t-k}+b w_{t} w_{t-k-1}+b w_{t-1} w_{t-k}+b^{2} w_{t-1} w_{t-k-1}\right) \\
& =E\left(w_{t} w_{t-k}\right)+E\left(b w_{t} w_{t-k-1}\right)+E\left(b w_{t-1} w_{t-k}\right)+E\left(b^{2} w_{t-1} w_{t-k-1}\right)
\end{aligned}
$$

The Autocovariance for MA(1) Models

Now set $k=0$ and recall that $\gamma(0)=\sigma_{M A}^{2}$, the variance of your series.

$$
\begin{gathered}
\gamma(0)=\sigma_{M A}^{2}=E\left(w_{t}^{2}\right)+b E\left(w_{t} w_{t-1}\right)+b E\left(w_{t-1} w_{t}\right)+b^{2} E\left(w_{t-1}^{2}\right) \\
\gamma(0)=\sigma_{M A}^{2}=\sigma_{w}^{2}+0+0+b^{2} \sigma_{w}^{2}=\left(1+b^{2}\right) \sigma_{w}^{2}
\end{gathered}
$$

The Autocovariance for MA(1) Models

Now set $k=1$.
$\gamma(1)=E\left(w_{t} w_{t-1}\right)+b E\left(w_{t} w_{t-2}\right)+b E\left(w_{t-1}^{2} w_{t-1}\right)+b^{2} E\left(w_{t-1} w_{t-2}\right)$
$\gamma(1)=b \sigma_{w}^{2}$.

The Autocovariance for MA(1) Models

For $k>1$, we will obtain $\gamma(k)=0$, since
$E\left[\left(w_{t}+b w_{t-1}\right)\left(w_{t-k}+b w_{t-k-1}\right)\right]$ will contain only terms whose expected value is zero.
Note. For an $M A(1)$, the autocovariance function truncates (i.e., it is zero) after lag 1.

The Autocorrelation for MA(1) Models

$$
\begin{gathered}
\rho(0)=\frac{\gamma(0)}{\gamma(0)}=1 . \\
\rho(1)=\frac{\gamma(1)}{\gamma(0)}=\frac{b}{1+b^{2}} . \\
\rho(k)=0 \text { for all } k>1 .
\end{gathered}
$$

The Autocovariance for MA(q) Models

For the qth-order MA process, we can use a similar derivation to show that the autocovariance function, $\gamma(k)$, truncates after lag q. Once again

$$
\gamma(k)=E\left(x_{t} x_{t-k}\right)
$$

The Autocovariance for MA(q) Models

For $k=0$, we obtain

$$
\gamma(0)=\sigma_{M A}^{2}=\left(b_{0}^{2}+b_{1}^{2}+b_{2}^{2}+\ldots+b_{q}^{2}\right) \sigma_{w}^{2} .
$$

For $k=1$, we obtain

$$
\gamma(1)=\left(b_{1} b_{0}+b_{2} b_{1}+\ldots+b_{q} b_{q-1}\right) \sigma_{w}^{2} .
$$

The Autocovariance for MA(q) Models

In general, we obtain the basic equation

$$
\gamma(k)=\sigma_{w}^{2} \sum_{s=0}^{q} b_{s} b_{s-k} .
$$

Second-order Moving-Average Models

Consider the $\mathrm{MA}(2)$ process, which is given by

$$
x_{t}=w_{t}+b_{1} w_{t-1}+b_{2} w_{t-2}
$$

where w_{t} is again a white-noise process.

MA(2), Autocovariance function

At this point, it should be easy to see that
$\gamma(0)=\sigma_{M A}^{2}=\left(1+b_{1}^{2}+b_{2}^{2}\right) \sigma_{w}^{2}$
$\gamma(1)=\left(b_{1}+b_{1} b_{2}\right) \sigma_{w}^{2}$
$\gamma(2)=b_{2} \sigma_{w}^{2}$
$\gamma(k)=0$ for $k>2$.

MA(2), Autocorrelation function

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=\frac{b_{1}+b_{1} b_{2}}{1+b_{1}^{2}+b_{2}^{2}} \\
& \rho(2)=\frac{b_{2}}{1+b_{1}^{2}+b_{2}^{2}} \\
& \rho(k)=0 \text { for } k>2 .
\end{aligned}
$$

Thus, we see that the autocorrelation function for an $\mathrm{MA}(2)$ process truncates after two lags.

$\mathrm{MA}(1)$ is an $\mathrm{AR}(\infty)$

Suppose that we have an MA(1) model

$$
x_{t}=w_{t}+b w_{t-1} .
$$

Then,

$$
x_{t-1}=w_{t-1}+b w_{t-2}
$$

Solve this equation for w_{t-1} and substitute the result back into $x_{t}=w_{t}+b w_{t-1}$.

$\mathrm{MA}(1)$ is an $\operatorname{AR}(\infty)$

This gives

$$
\begin{aligned}
x_{t}= & w_{t}+b\left(x_{t-1}-b w_{t-2}\right) \\
& =b x_{t-1}+w_{t}-b^{2} w_{t-2}
\end{aligned}
$$

(Now, we repeat the process with w_{t-2})

$\mathrm{MA}(1)$ is an $\operatorname{AR}(\infty)$

$$
x_{t-2}=w_{t-2}+b w_{t-3}
$$

Solve this equation for w_{t-2} and substitute the result back into $x_{t}=b x_{t-1}+w_{t}-b^{2} w_{t-2}$.

$$
x_{t}=b x_{t-1}-b^{2} x_{t-2}+w_{t}+b^{3} w_{t-3}
$$

MA(1) is an $\operatorname{AR}(\infty)$

We can continue indefinitely as long as b^{s} goes to zero (i. e., $|b|<1$) to obtain

$$
x_{t}=w_{t}+b x_{t-1}-b^{2} x_{t-2}+b^{3} x_{t-3}-\ldots+\ldots
$$

This is an $\operatorname{AR}(\infty)$ process, but it only holds under the invertibility condition that $|b|<1$.

More about invertibility

Consider the following first-order MA processes:
A: $x_{t}=w_{t}+\theta w_{t-1}$
B: $x_{t}=w_{t}+\frac{1}{\theta} w_{t-1}$

More about invertibility

It can easily be shown that these two different processes have exactly the same autocorrelation function (Right?)

$$
\begin{gathered}
\rho(0)=\frac{\gamma(0)}{\gamma(0)}=1 . \\
\rho(1)=\frac{\gamma(1)}{\gamma(0)}=\frac{\theta}{1+\theta^{2}} . \\
\rho(k)=0 \text { for all } k>1 .
\end{gathered}
$$

More about invertibility

If $|\theta|<1$, the series $(A R(\infty))$ for A converges whereas that for B does not. Thus if $|\theta|<1$, model A is said to be invertible whereas model B is not. The imposition of the invertibility condition ensures that there is a unique MA process for a given autocorrelation function.

Simulated Examples of the MA(1) Model

$$
x_{t}=w_{t}+b_{1} w_{t-1}
$$

There are two cases, positive and negative values.
Case i) $b_{1}=-0.7$
Case ii) $b_{1}=0.3$.

R Code

```
set.seed(9999);
# simulating MA(1);
ma1.sim<-arima.sim(list(ma = c( -0.7)),
n = 100, sd=2);
plot.ts(ma1.sim, ylim=c(-6,8),main="MA(1), b= -0.7, n=100");
```


Scatterplot

$M A(1), b=\mathbf{- 0 . 7}, n=100$

Time

Autocorrelation Function

```
acf(ma1.sim);
```


Autocorrelation Function, case i)

Series ma1.sim

R Code

```
set.seed(9999);
# simulating MA(1);
ma1.sim<-arima.sim(list(ma = c(0.3)),
n = 100, sd=2);
plot.ts(ma1.sim, ylim=c(-6,8),main="MA(1), b= 0.3, n=100");
```


Scatterplot

MA(1), $b=0.3, n=100$

Time

Autocorrelation Function, case ii)

```
acf(ma1.sim);
```


Autocorrelation Function, case ii)

Series ma1.sim

Simulated Examples of the MA(2) Model

$$
x_{t}=w_{t}+b_{1} w_{t-1}+b_{2} w_{t-2}
$$

Case i) $b_{1}=1.50$ and $b_{2}=-0.56$
Case ii) $b_{1}=0.50$ and $b_{2}=0.24$
Case iii) $b_{1}=-0.5$ and $b_{2}=0.24$
Case iv) $b_{1}=1.20$ and $b_{2}=-0.72$

R Code

```
b1<- 1.5;
b2<- -0.56;
set.seed(9999);
# simulating MA(2);
ma2.sim<-arima.sim(list(ma = c(b1,b2)),
n = 100, sd=2);
plot.ts(ma2.sim, ylim=c(-8,10),main="MA(2), case i)");
```


Scatterplot

MA(2), case i)

Time

Autocorrelation Function, case i)

```
acf(ma2.sim);
```


Autocorrelation Function,case i)

Series ma2.sim

R Code

```
b1<- 0.5;
b2<- 0.24;
set.seed(9999);
# simulating MA(2);
ma2.sim<-arima.sim(list(ma = c(b1,b2)),
n = 100, sd=2);
plot.ts(ma2.sim, ylim=c(-8,10),main="MA(2), case ii)");
```


Scatterplot

MA(2), case ii)

Time

Autocorrelation Function, case ii)

```
acf(ma2.sim);
```


Autocorrelation Function, case ii)

Series ma2.sim

R Code

```
b1<- -0.5;
b2<- 0.24;
set.seed(9999);
# simulating MA(2);
ma2.sim<-arima.sim(list(ma = c(b1,b2)),
n = 100, sd=2);
plot.ts(ma2.sim, ylim=c(-8,10),main="MA(2), case ii)");
```


Scatterplot

MA(2), case iii)

Time

Autocorrelation Function, case iii)

```
acf(ma2.sim);
```


Autocorrelation Function, case iii)

Series ma2.sim

R Code

```
b1<- 1.20;
b2<- -0.72;
set.seed(9999);
# simulating MA(2);
ma2.sim<-arima.sim(list(ma = c(b1,b2)),
n = 100, sd=2);
plot.ts(ma2.sim, ylim=c(-8,10),main="MA(2), case ii)");
```


Scatterplot

MA(2), case iv)

Time

Autocorrelation Function, case iv)

```
acf(ma2.sim);
```


Autocorrelation Function

Series ma2.sim

