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”essentially, all models are wrong, but some are useful”

George E. P. Box

(one of the great statistical minds of the 20th century).
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Description of data

The data in sunspots shows yearly numbers of sunspots from 1771 to
1870.
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Reading data

sunspots<-read.table(file="sunspots.DAT",header=FALSE);

sunspots<-ts(sunspots,start=1771);
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Exercise

1. Make the time series plot of the sunspots.DAT.
2. Make the correlogram (ACF) of the series.
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Time Series Plot
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Correlogram of 11-year differences for sunspot data
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Before attempting to model the series, the cyclical component needs to be
removed. A simple procedure which is useful here is to take appropriate
differences of the series. Here, assuming an 11 year cycle, differences
between points 11 years apart are used

Yt = Xt − Xt−11

(The resulting series should contain no obvious periodic component).
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Exercise

1. Find Yt = Xt − Xt−11 using R.
2. Make the time series plot of Yt .
3. Make the correlogram (ACF) of Yt .
4. Fit AR model using ar.yw.
5. Plot residuals from your model.
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New Series (sunspots)

newsun<-sunspots[12:100] - sunspots[1:89]
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Time Series Plot (newsun)
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Correlogram
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Fitting Model

sun.ar<-ar.yw(newsun);

sun.ar

##

## Call:

## ar.yw.default(x = newsun)

##

## Coefficients:

## 1 2 3 4 5

## 1.5009 -1.1516 0.6555 -0.4361 0.2092

##

## Order selected 5 sigma^2 estimated as 311.5
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Plot of Akaike’s criterion

plot.ts(sun.ar$aic, xlab="Order",

ylab="Akaike's criterion");
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Plot of Akaike’s criterion
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Plot of Residuals

plot.ts(sun.ar$resid, xlab="Year",

ylab="Residual from AR Model");

abline(h=0, col="red");
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Plot of Residuals
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ACF of Residuals

acf(sun.ar$resid);
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ACF of Residuals
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All the correlations (apart from the one corresponding to lag 11) are small
and lie within the horizontal bands, indicating that they do not differ
significantly from zero. This suggests that the fitted autoregressive model
is a reasonable fit for the data.
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Spectral Density

If a time series {Yt} has autocovariance γ(k) satisfying∑∞
k=−∞ |γ(k)| <∞, then we define its spectral density as

f (w) =
∞∑

k=−∞
γ(k)e−2πiwk for −∞ < w <∞.

We define its normalized spectral density as

f ∗(w) =
∞∑

k=−∞
ρ(k)e−2πiwk for −∞ < w <∞

(where ρ(k) represents its autocorrelation function).
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Periodogram

The periodogram is the sample estimate of the power spectrum (or
spectral density). It is given by

f̂ (w) = Ĉ (0) + 2
n−1∑
k=1

Ĉ (k)cos(2πkw).
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Why is the periodogram useful?

The periodogram is ideal for identifying periodicity in data and estimating
the frequency of the period. Consider a very simple periodic pattern with
no noise producing the Figure shown below (see R code on next slide).

Al Nosedal University of Toronto Spectral Analysis Winter 2019 23 / 71



n<-200;

x<-c(1:n);

y<-5+4*cos(2*pi*x/10 + 2.5);

plot(x,y,type="l");

title("Pure periodic series");
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Periodogram (R code)

z<-spec.pgram(y,fast=FALSE, taper =0.0);
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Periodogram (Graph)
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Noisy version

n<-200;

x<-c(1:n);

y<-5+4*cos(2*pi*x/10 + 2.5);

err<-rnorm(n,0,0.25);

y_err<-y + err;

plot(x,y_err,type="l");

title("Periodic series with noise");
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Periodogram (R code)

z_err<-spec.pgram(y_err,fast=FALSE, taper =0.0);
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Periodogram (Graph)
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The Sunspot Data (R Code)

sunspots<-read.table(file="sunspots.DAT",header=FALSE);

sunspots<-ts(sunspots,start=1771);

z_sun<-spec.pgram(sunspots,fast=FALSE, taper =0.0);
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The Sunspot Data (Graph)
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The Sunspot Data (R Code...again)

names(z_sun);

plot(z_sun$freq,z_sun$spec,type="l");
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The Sunspot Data (Graph)
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The Sunspot Data (R Code...again)

names(z_sun);

plot(z_sun$freq,log(z_sun$spec),type="l");
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The Sunspot Data (Graph)
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A General Approach to Time Series Modeling

Plot the series and examine the main features of the graph, checking
in particular whether there is
a) a trend,
b) a seasonal component,
c) any apparent sharp changes in behavior,
d) any outlying observations.
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A General Approach to Time Series Modeling

Remove the trend and seasonal components to get stationary
residuals. To achieve this goal it may sometimes be necessary to
apply a preliminary transformation to the data. For example, if the
magnitude of the fluctuations appears to grow roughly linearly with
the level of the series, then the transformed series ln(Xt) will have
fluctuations of more constant magnitude. There are several ways in
which trend and seasonality can be removed, some involving
estimating components and subtracting them from the data, and
others depending on differencing the data, i.e., replacing the original
series Xt by Yt = Xt − Xt−d for some positive integer d . Whichever
method is used, the aim is to produce a stationary series, whose
values we shall refer to as residuals.
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A General Approach to Time Series Modeling

Choose a model to fit the residuals.

Forecasting will be achieved by forecasting the residuals and then
inverting the transformations described above to arrive at forecasts of
the original series Xt .
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Example: Accidental deaths

The file deaths.DAT contains monthly accidental death figures in the U. S.
A. from 1973 to 1978.

Al Nosedal University of Toronto Spectral Analysis Winter 2019 41 / 71



Reading data

deaths<-read.table(file="deaths.DAT",header=FALSE);

deaths<-unlist(deaths);

deaths.ts<-ts(deaths,start=1973, freq=12);
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Time Series Plot

Accidental deaths
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This time series plot shows a strong seasonal pattern. We shall consider
the problem of representing the data as the sum of a trend, a seasonal
component, and a residual term.
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Periodogram (R Code)

z_deaths<-spec.pgram(deaths.ts,fast=FALSE,

taper =0.0,log="no");
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Periodogram (Graph)
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Fitting Seasonal Component

deaths_mean<-deaths-mean(deaths.ts);

# mean corrected series;

n<-length(deaths.ts);

time<-c(1:n);

col_1<-rep(1,n);

col_c<-cos(2*pi*time/12);

col_s<-sin(2*pi*time/12);

X<-cbind(col_1,col_c,col_s);

fit_deaths<-lm(deaths_mean~ -1 + X);

# no intercept needed;

# it is included in X;
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Fitting Seasonal Component

summary(fit_deaths)[4]
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Fitting Seasonal Component

## $coefficients

## Estimate Std. Error t value Pr(>|t|)

## Xcol_1 -1.594540e-13 74.50627 -2.140142e-15 1.000000e+00

## Xcol_c -7.340397e+02 105.36778 -6.966453e+00 1.529930e-09

## Xcol_s -7.116420e+02 105.36778 -6.753886e+00 3.703885e-09
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Predictions vs Observations

preds_ts<-ts(fit_deaths$fit,start=1973,freq=12);

# turning predictions from linear

#model into a time series object;

plot.ts(deaths.ts,ylab="thousands");

lines(preds_ts+mean(deaths.ts),lty=2, col="blue");

legend("topright",c("obs", "pred"),

lty=c(1,2), col=c("black","blue"),bty="n" );
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Graph of deseasonalized data

deaths_deseason<-fit_deaths$res;

plot.ts(deaths_deseason);
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Some comments

The graph of deseasonalized data suggests the presence of an additional
quadratic trend function.
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Fitting Quadratic Trend

n<-length(deaths_deseason);

time<-c(1:n);

col_1<-rep(1,n);

time2<-time^2;

T<-cbind(col_1,time,time2);

fit_trend<-lm(deaths_deseason~ -1+T);

# no intercept needed;

# it is included in T;
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Fitting Quadratic Trend

summary(fit_trend)[4]
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Fitting Quadratic Trend

## $coefficients

## Estimate Std. Error t value Pr(>|t|)

## Tcol_1 1138.8686110 178.3411517 6.385899 1.692203e-08

## Ttime -71.3667762 11.2743491 -6.330013 2.128145e-08

## Ttime2 0.8309979 0.1496698 5.552210 4.892800e-07
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Plot of Residuals

Res<-fit_trend$res

plot.ts(Res);
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Plot of Residuals
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ACF of Residuals

acf(Res);
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ACF of Residuals
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Some comments

From our plots, it is clear that there is substantial dependence in the series
of residuals.

Al Nosedal University of Toronto Spectral Analysis Winter 2019 62 / 71



Modeling Residuals

library(forecast);

auto.arima(Res);
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Modeling Residuals

## Series: Res

## ARIMA(1,0,1) with zero mean

##

## Coefficients:

## ar1 ma1

## -0.6626 0.9264

## s.e. 0.1164 0.0518

##

## sigma^2 estimated as 210888: log likelihood=-542.79

## AIC=1091.58 AICc=1091.93 BIC=1098.41
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The classical decomposition model

Xt = mt + st + Yt

where mt is a slowly changing function known as a trend component, st
is a function with known period d referred to as the seasonal
component, and Yt is a random noise component that is stationary.
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The classical decomposition model

For our example, we have that

Xt ≈ 8787.7361111− 734.0397113cos(2πt12 )− 711.6419859sin(2πt12 )
+1138.868611 +−71.3667762t + 0.8309979t2

−0.6625909Yt−1 − 0.6625909Wt−1 + Wt
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Another way

auto.arima(deaths.ts);
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Another way

## Series: deaths.ts

## ARIMA(0,1,1)(0,1,1)[12]

##

## Coefficients:

## ma1 sma1

## -0.4264 -0.5584

## s.e. 0.1226 0.1787

##

## sigma^2 estimated as 102999: log likelihood=-425.53

## AIC=857.06 AICc=857.5 BIC=863.3
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Forecasts

sarima<-auto.arima(deaths.ts);

fcast<-forecast(sarima);

plot(fcast);
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Forecasts
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Some final comments

The corresponding fitted model for {Xt} is thus the SARIMA
(0, 1, 1)× (0, 1, 1)12 process

(1− 0.4264B)(1− 0.5584B12)Wt ,

where {Wt} ∼WN(0, σ2W = 99480).
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