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Forecasting Methods: An Overview

There are many forecasting methods available, these methods can
generally be divided into three groups:

1. Judgemental methods.

2. Extrapolation (or Time Series) methods, and

3. Econometric (or causal) methods.
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Extrapolation Methods

Extrapolation methods are quantitative methods that use past data of a
time series variable-and nothing else, except possibly time itself-to forecast
future values of the variable. The idea is that we can use past movements
of a variable, such as a company sales to forecast its future values.
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Random Series

The simplest time series model is the random model. A random
model can be written as

Y (t) = µ+ ε(t) (1)

Here, µ is a constant, the average of the Y (t)′s, and ε(t) is the
residual (or error) term. We assume that the residuals have mean 0,
variance σ2, and are probabilistically independent of one another.
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Random Series (1)

The first is when the original time series is random. For example, when
studying the time pattern of diameters of individual parts from a
manufacturing process, we might discover that the successive diameters
behave like a random time series.
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Random Series (2)

The second situation where a random series occurs is more common. This
is when we fit a model to a time series to obtain an equation of the form

Y (t) = fitted part + residual . (2)

Although the fitted part varies from model to model, its essential feature is
that it describes any underlying time series pattern in the original data.
The residual is then whatever is left, and we hope that the series of
residuals is random with mean µ = 0.
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Runs test

For each observation Y (t) we associate a 1 if Y (t) ≥ ȳ and 0 if Y (t) < ȳ .
A run is a consecutive sequence of 0’s or 1’s. Let T be the number of
observations, let Ta above the mean, and let Tb the number below the
mean. Also let R be the observed number of runs. Then it can be show
that for a random series

E (R) =
T + 2TaTb

T
(3)

Stdev(R) =

√
2TaTb(2TaTb − T )

T 2(T − 1)
(4)

When T > 20, the distribution of R is roughly Normal.
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Example: Runs test

Suppose that the successive observations are 87, 69, 53, 57, 94, 81, 44,
68, and 77, with mean Ȳ = 70. It is possible that this series is random.
Does the runs test support this conjecture?
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Example: Runs test (solution)

The preceding sequence has five runs: 1; 0 0 0; 1 1; 0 0; and 1. Then, we
have T = 9,Ta = 4,Tb = 5 and R = 5. Under a randomness hypothesis,

E (R) = 5.44 (5)

Stdev(R) = 1.38 (6)

Z =
R − E (R)

Stdev(R)
= −0.32 (7)
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Exercise

Write a function in R that performs a run test. My version of this function
will be posted on our website tomorrow.

Al Nosedal University of Toronto Forecasting March 8, 2016 10 / 80



runs<-function(y){
T<-length(y);

y.bar<-mean(y);

y[y<y.bar]<-0; # if y is less than y.bar then 0;

y[y>=y.bar]<-1; # if is greater or equal than y.bar then 1;

sign<-y;

Ta<-sum(sign);

Tb<-T-Ta;

R<- sum(abs(sign[-T]-sign[-1]))+1; #runs;

E.R<-(T+2*Ta*Tb)/T;

Stdev<-sqrt((2*Ta*Tb*(2*Ta*Tb-T ) )/( T^2*(T-1) ) );

Z<- (R-E.R)/Stdev;

P.value<-2*(1-pnorm(abs(Z)));

list('T'=T,'Ta'=Ta,'Tb'=Tb,'R'=R,'Z'=Z,

'E(R)'=E.R,'P value'=P.value)

}
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Example: Demand

The dollar demand for a certain class of parts at a local retail store has
been recorded for 82 consecutive days. (See the file demand.txt) A time
series plot of these demands appears in the next slide. The store manager
wants to forecast future demands. In particular, he wants to know whether
is any significant time pattern to the historical demands or whether the
series is essentially random.
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Reading data

demand<-read.table(file="demand.txt",header=TRUE);

names(demand);

## [1] "Day" "Demand"
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Solution

A visual inspection of the time series graph in the previous slide shows that
demands vary randomly around the sample mean of $247.54 (shown as the
horizontal centerline). The variance appears to be constant through time,
and there are no obvious time series patterns. To check formally whether
this apparent randomness holds, we perform the runs test and calculate
the first 10 autocorrelations. (The associated correlogram appears in the
next slide). The p-value for the runs test is relatively large 0.118 and none
of the autocorrelations is significantly large. These findings are consistent
with randomness.
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Time Series Plot
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Conclusion

For all practical purposes there is no time series pattern to these demand
data. It is as if every day’s demand is an independent draw from a
distribution with mean $247.54 and standard deviation $47.78. Therefore,
the manager might as well forecast that demand for any day in the future
will be $247.54. If he does so, about 95% of his forecasts should be within
two standard deviations (about $95) of the actual demands.
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Random Walk Model

Random series are sometimes building blocks for other time series models.
The model we now discuss, the random walk model, is an example of this.
This type of behavior is typical of stock price data. For example, the graph
in the next slide shows monthly Dow Jones averages from January 1988
through March 1992. (See the file dow.txt)
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Reading data

dow<-read.table(file="dow.txt",header=TRUE);

names(dow);

## [1] "Date" "Dow"
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Time Series Plot
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More about Dow Jones

This series is not random, as can be seen from its gradual upward trend
(Although the runs test and autocorrelations are not shown here, they
confirm that the series is not random.)
If we were standing in March 1992 and were asked to forecast the Dow
Jones average for the next few months, it is intuitive that we would not
use the average of the historical values as our forecast. This forecast
would probably be too low because the series has an upward trend.
Instead, we would base our forecast on the most recent observation. This
is exactly what the random walk model does.
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Random walk (equation)

An equation for the random walk model is

Yt = Yt−1 + µ+ εt (8)

where µ is a constant and εt is a random series with mean 0 and some
standard deviation σ. If we let DYt = Yt − Yt−1, the change in the series
from time t to time t − 1, then we can write the random walk model as

DYt = µ+ εt (9)

This implies that the differences form a random series with mean µ and
standard deviation σ.
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Random walk (cont.)

An estimate of µ is the average of the differences, labeled ȲD , and an
estimate of σ is the sample standard deviation of the differences , labeled
sD . In words, a series that behaves according to this random walk model
has random differences, and the series tends to trend upward (if µ > 0) or
downward (if µ < 0) by an amount µ each period. If we are standing in
period t and want to make a forecast Ft+1 of Yt+1, then a reasonable
forecast is

Ft+1 = Yt + ȲD (10)

That is, we add the estimated trend to the current observation to forecast
the next observation.
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Example: Dow Jones revisited

Given the monthly Dow Jones data in the file dow.txt, check that it
satisfies the assumptions of a random walk, and use the random walk
model to forecast the value for April 1992.
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Solution

We have already seen that the Dow Jones series itself is not random noise,
due to the upward trend, so we form the differences

index<-dow$Dow;

diff.dow<-diff(index);

plot.ts(diff.dow,col='blue',

ylab='first difference', main='Time Series

Plot of Differences')

abline(h=mean(diff.dow),col="red");
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Dow Differences (cont.)

our.test<-runs(diff.dow);

names(our.test);

## [1] "T" "Ta" "Tb" "R" "Z" "E(R)" "P value"
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Dow Differences (cont.)

our.test$R;

## [1] 26

our.test$Z;

## [1] 0.01144965

our.test$"E(R)"

## [1] 25.96

our.test$"P value";

## [1] 0.9908647
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Dow Differences (cont.)

It appears to be a much more random series, varying around the mean
difference 26. The runs test shows that there is absolutely no evidence of
nonrandom differences.
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Forecast of April 1992

Assuming the random walk model is adequate, the forecast of April 1992
made in March 1992 is the observed March value, 3247.42, plus the mean
difference, 26, or 3273.42. A measure of the forecast accuracy is provided
by the standard deviation, sD=84.65, of the differences. Provided that our
assumptions hold, we can be 95 % confident that our forecast is off by no
more than 2sD , or about 170.
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Exercise

Write a function in R that gives you a one-step-ahead forecast for a
Random Walk Model.

Al Nosedal University of Toronto Forecasting March 8, 2016 31 / 80



One solution

forecast<-function(y){

diff<-diff(y)

y.diff.bar<-mean(diff); #average difference;

last<-length(y); #last observation;

F.next<-y[last]+y.diff.bar;

new.y<-c(y,F.next);

list('Y(t)'=y,'Y(t+1)'=new.y,'F(t+1)'=F.next)

}
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Exercise

Using your one-step-ahead forecast function, write another function in R
that computes forecast for times: t+1,t+2,...,t+N, where t represents the
length of your original time series.
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One solution

forecast.N<-function(y,N){

original<-y; #original time series;

for (i in 1:N){
new<-forecast(original)$'Y(t+1)' ;

original<-new;

}

list('Y(t)'=y,'N'=N,'Y(t+N)'=original)

}
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Autoregression Models

A regression-based extrapolation method is to regress the current value of
the time series on past (lagged) values.
This is called autoregression, where the ”auto” means that the explanatory
variables in the equation are lagged values of the response variable, so that
we are regressing the response variable on lagged versions of itself. Some
trial and error is generally required to see how many lags are useful in the
regression equation. The following exercise illustrates the procedure.
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Exercise: Hammers

A retailer has recorded its weekly sales of hammers (units purchased) for
the past 42 weeks. (See the file hammers.txt) How useful is autoregression
for modeling these data and how would it be used for forecasting?

Al Nosedal University of Toronto Forecasting March 8, 2016 36 / 80



Exercise: Hammers (cont.)

Plot your time series

Make a correlogram

Fit an autoregressive model of order p (p suggested by your
correlogram, pacf and/or aic)

Determine if your model is adequate

Fit another model if necessary
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R Code

hammers<-read.table(file='hammers.txt',header=TRUE)

sales<-hammers$Sales

new.sales<-ts(sales)

acf(new.sales)
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R Code

y<-new.sales;

m<-length(y)-3;

y.lag1<-y[-1][1:m];

y.lag2<-y[-c(m-1,m)][1:m];

y.lag3<-y[-c(m-2,m-1,m)][1:m];

response<-y[-c(1,2,3)];

mod.ar3<-lm(response~y.lag1+y.lag2+y.lag3);

summary(mod.ar3);
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R Code

##

## Call:

## lm(formula = response ~ y.lag1 + y.lag2 + y.lag3)

##

## Residuals:

## Min 1Q Median 3Q Max

## -37.095 -9.759 2.334 10.755 33.934

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 24.1770 7.9834 3.028 0.0046 **

## y.lag1 0.4417 0.1839 2.402 0.0217 *

## y.lag2 -1.7073 0.7961 -2.144 0.0390 *

## y.lag3 1.8523 0.7585 2.442 0.0198 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 16.95 on 35 degrees of freedom

## Multiple R-squared: 0.504, Adjusted R-squared: 0.4615

## F-statistic: 11.86 on 3 and 35 DF, p-value: 1.644e-05
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R Code

mod<-ar(new.sales,method="ols",order.max=3);

mod;

##

## Call:

## ar(x = new.sales, order.max = 3, method = "ols")

##

## Coefficients:

## 1

## 0.7932

##

## Intercept: -0.3897 (2.355)

##

## Order selected 1 sigma^2 estimated as 227
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Regression-Based Trend Models

Many time series follow a long-term trend except for random variation.
This trend can be upward or downward. A straightforward way to model
this trend is to estimate a regression equation for Yt , using time t as the
single explanatory variable. In this ”section” we will discuss the two most
frequently used trend models, linear trend and exponential trend.
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Linear Trend

A linear trend means that the time series variable changes by a constant
amount each time period. The relevant equation is

Yt = α + βt + εt (11)

where, as in previous regression equations, α is the intercept, β is the
slope, and εt is an error term.
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Exercise: Reebok

The file reebok.txt includes quarterly sales data for Reebok from the first
quarter 1986 through second quarter 1996. Sales increase from $ 174.52
million in the first quarter to $ 817.57 million in the final quarter. How well
does a linear trend fit these data? Are the residuals from this fit random?
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Exercise: Reebok (cont.)

Plot your time series

Fit a linear regression model and interpret your results

Find the residuals

Determine if the residuals are random
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R Code

reebok<-read.table(file="reebok.txt",header=TRUE)

sales<-reebok$Sales

time<-reebok$Time

new.sales<-ts(sales,start=c(1986,1),end=c(1996,2),freq=4)

### Time Series Chart

plot(new.sales,ylab='sales')
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R Code
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Fitting Linear Model

mod<-lm(sales~time)

summary(mod)

##

## Call:

## lm(formula = sales ~ time)

##

## Residuals:

## Min 1Q Median 3Q Max

## -171.218 -68.592 4.722 65.386 172.074

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 244.816 28.399 8.621 1.16e-10 ***

## time 16.530 1.151 14.366 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 90.38 on 40 degrees of freedom

## Multiple R-squared: 0.8377, Adjusted R-squared: 0.8336

## F-statistic: 206.4 on 1 and 40 DF, p-value: < 2.2e-16
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Time Series Plot with Linear Trend Superimposed

plot(predict(mod),type='l',col='blue',xlab='time',ylab='sales',lty=2);

lines(time,sales,col='red');

legend(0,900,c('pred','obs'),col=c('blue','red'),lty=c(2,1));
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Time Series Plot with Linear Trend Superimposed
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Residuals

res<-mod$residuals;

# residuals from our model;

res<-ts(res);

plot(res,xlab='time',ylab='residual',main='Time Series Plot of Forecast Errors');
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Residuals
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ACF

acf(res);
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Exponential Trend

In contrast to a linear trend, an exponential trend is appropriate when the
time series changes by a constant percentage (as opposed to a constant
dollar amount) each period. Then the appropriate regression equation is

Yt = c exp(bt)ut (12)

where c and b are constants, and ut represents a multiplicative error term.
By taking logarithms of both sides, and letting a = ln(c) and εt = ln(ut),
we obtain a linear equation that can be estimated by the usual linear
regression method. However, note that the response variable is now the
logarithm of Yt :

ln(Yt) = a + bt + εt (13)
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Exercise: Intel

The file intel.txt contains quarterly sales data for the chip manufacturing
firm Intel from the beginning of 1986 through the second quarter of 1996.
Each sales value is expressed in millions of dollars. Check that an
exponential trend fits these sales data fairly well. Then estimate the
relationship and interpret it.
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Exercise: Intel (cont)

Plot your time series

If your original time series shows an exponential trend, apply ln to the
series

Use the transformed series to estimate the relationship

Express the estimated relationship in the original scale

Find an estimate of the standard deviation
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Moving Averages

Perhaps the simplest and one of the most frequently used extrapolation
methods is the method of moving averages. To implement the moving
averages method, we first choose a span, the number of terms in each
moving average. Let’s say the data are monthly and we choose a span of 6
months. Then the forecast of next month’s value is the average of the
most recent 6 month’s values. For example, we average January-June to
forecast July, we average February-July to forecast August, and so on.
This procedure is the reason for the term moving averages.
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Exponential Smoothing

There are two possible criticisms of the moving averages method. First, it
puts equal weight on each value in a typical moving average when making
a forecast. Many people would argue that if next month’s forecast is to be
based on the previous 12 months’ observations, then more weight ought to
be placed on the more recent observations. The second criticism is that
moving averages method requires a lot of data storage. This is particularly
true for companies that routinely make forecasts of hundreds or even
thousands of items. If 12-month moving averages are used for 1000 items,
then 12000 values are needed for next month’s forecasts. This may or may
not be a concern considering today’s relatively inexpensive computer
storage capabilities.
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Exponential Smoothing (cont.)

Exponential smoothing is a method that addresses both of these
criticisms. It bases its forecasts on a weighted average of past
observations, with more weight put on the more recent observations, and
it requires very little data storage.
There are many versions of exponential smoothing. The simplest is called
simple exponential smoothing. It is relevant when there is no pronounced
trend or seasonality in the series. If there is a trend but no seasonality,
then Holt’s method is applicable. If, in addition, there is seasonality, then
Winter’s method can be used.
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Simple Exponential Smoothing

We now examine simple exponential smoothing in some detail. We first
introduce two new terms. Every exponential model has at least one
smoothing constant, which is always between 0 and 1. Simple exponential
smoothing has a single smoothing constant denoted by α. The second
new term is Lt , called the level of the series at time t. This value is not
observable but can only be estimated. Essentially, it is where we think the
series would be at time t if there were no random noise.
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Simple Exponential Smoothing (cont.)

Then the simple exponential smoothing method is defined by the following
two equations, where Ft+k is the forecast of Yt+k made at time t:

Lt = αYt + (1− α)Lt−1 (14)

Ft+k = Lt (15)
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Example:Exxon

The file exxon.txt contains data on quarterly sales (in millions of dollars)
for the period from 1986 through the second quarter of 1996. Does a
simple exponential smoothing model track these data well? How do the
forecasts depend on the smoothing constant α?
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Example: Exxon (R code)

exxon<-read.table(file="exxon.txt",

header=TRUE);

sales<-exxon$Sales;

new.sales<-ts(sales,start=c(1986,1),

end=c(1996,2),freq=4);

mod1<-HoltWinters(new.sales,alpha=0.1,

beta=FALSE,gamma=FALSE);

plot(mod1,xlim=c(1986,1998));

lines(predict(mod1,n.ahead=6),col="red");

legend(1992,20000,c("obs","forecasts"),

col=c("black","red"),lty=c(1,1),bty="n");
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Example: Exxon (R code)
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Exxon (changing α)

The following lines of code produce a ”movie” that illustrates the effect of
changing α.

n<-100

for (i in 1:n){
mod1<-HoltWinters(new.sales,

alpha=(1/n)*i,beta=FALSE,gamma=FALSE)

plot(mod1,xlim=c(1986,1997))

Sys.sleep(0.3)

}
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Choosing α.

What value of α should we use? There is no universally accepted answer
to this question. Some practitioners recommend always using a value
around 0.1 or 0.2. Others recommend experimenting with different values
of α until a measure such as the Mean Square Error (MSE) is minimized.
R can find this optimal value of α as follows:

mod2<-HoltWinters(new.sales,

beta=FALSE,gamma=FALSE);
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Holt’s Model for Trend

The simple exponential smoothing model generally works well if there is no
obvious trend in the series. But if there is a trend, then this method
consistently lags behind it. Holt’s method rectifies this by dealing with
trend explicitly. In addition to the level of the series, Lt , Holt’s method
includes a trend term, Tt , and a corresponding smoothing constant β.
The interpretation of Lt is exactly as before.
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Holt’s Model for Trend (cont.)

The interpretation of Tt is that it represents an estimate of the change in
the series from one period to the next. The equations for Holt’s model are
as follows:

Lt = αYt + (1− α)(Lt−1 + Tt−1) (16)

Tt = β(Lt − Lt−1) + (1− β)Tt−1 (17)

Ft+k = Lt + kTt (18)
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Example: Dow Jones revisited

We return to the Dow Jones data (see file dow.txt). Again, these are
average monthly closing prices from January 1988 through March 1992.
Recall that there is a definite upward trend in this series. In this example
we investigate whether simple exponential smoothing can capture the
upward trend. Then we see whether Holt’s exponential smoothing method
can make an improvement.
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Example: Dow Jones (R code)

dow<-read.table(file="dow.txt",header=TRUE);

index<-dow$Dow;

DJI<-ts(index,start=c(1988,1),end=c(1992,3),

freq=12);

mod1<-HoltWinters(DJI,beta=FALSE,gamma=FALSE);

### predictions

plot(mod1,xlim=c(1988,1994),

ylim=c(1800,3700));

preds<-predict(mod1,n.ahead=12);

lines(preds,col="red");
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Simple Exponential Smoothing with optimal α
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R code (Holt’s Model)

mod2<-HoltWinters(DJI,gamma=FALSE);

#Fitting Holt's model;

### predictions;

plot(mod2,xlim=c(1988,1994),

ylim=c(1800,3700));

preds<-predict(mod2,n.ahead=12);

lines(preds,col='red');
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Holt’s Model with optimal α and β.

Holt−Winters filtering
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Winter’s Model

So far we have said practically nothing about seasonality. Seasonality is
defined as the consistent month-to-month (or quarter-to-quarter)
differences that occur each year. For example, there is seasonality in beer
sales - high in the summer months, lower in other months.
How do we know whether there is seasonality in a time series? The easiest
way is to check whether a plot of the time series has a regular pattern of
ups and /or downs in particular months or quarters.
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Winter’s Model (cont.)

Winter’s exponential smoothing model is very similar to Holt’s model- it
again has a level and a trend terms and corresponding smoothing constants
α and β- but it also has seasonal indexes and a corresponding smoothing
constant γ. This new smoothing constant γ controls how quickly the
method reacts to perceived changes in the pattern of seasonality.
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Example: Coke

The data in the coke.txt file represent quarterly sales (in millions of
dollars) for Coca Cola from quarter 1 of 1986 through quarter 2 of 1996.
As we might expect, there has been an upward trend in sales during this
period, and there is also a fairly regular seasonal pattern, as shown in the
next slide. Sales in the warmer quarters, 2 and 3, are consistently higher
than in colder quarters, 1 and 4. How well can Winter’s method track this
upward trend and seasonal pattern?
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R code

coke<-read.table(file="coke.txt",header=TRUE);

sales<-coke$Sales;

new.sales<-ts(sales,start=c(1986,1),end=c(1996,2),freq=4)

mod.coke<-HoltWinters(new.sales)

# Holt-Winter's model

### predictions

plot(mod.coke,ylim=c(1000,6000),

xlim=c(1986,1998))

preds<-predict(mod.coke,n.ahead=6)

lines(preds,col='red')
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Coke sales with forecasts

Holt−Winters filtering
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