The Duality of MA and AR Processes

Al Nosedal
University of Toronto

February 10, 2019

Because ARMA processes involve linear combinations of the elements of random sequences $\left\{x_{t}\right\}$ and $\left\{w_{t}\right\}$, it is useful to have a shorthand notation for the operation of shifting the time index.
For this, we use the backward shift operator B, where $B x_{t}$ is to be interpreted as x_{t-1}. More usefully, powers of B are to be interpreted as successive applications of B; for example $B^{2} x_{t}=B\left(B x_{t}\right)=B x_{t-1}=x_{t-2}$. Finally, 1 indicates a null operation, $1 x_{t}=x_{t}$, and mathematical functions of B are to be interpreted as their formal series expansions. For example,

$$
\left(1-\frac{B}{2}\right)^{-1} x_{t}=\left(\sum_{k=0}^{\infty}\left(\frac{B}{2}\right)^{k}\right) x_{t}=\sum_{k=0}^{\infty} 2^{-k} B^{k} x_{t}=\sum_{k=0}^{\infty} 2^{-k} x_{t-k}
$$

The Backward-shift Operator

The backward-shift operator, B, operates on a series to move it back one time unit, as follows:

t	x_{t}	$B x_{t}$
1	2.1	\cdot
2	5.6	2.1
3	0.3	5.6
4	10.0	0.3

The Backward-shift Operator

A new time series, $B x_{t}$, is created by this transformation. In mathematical notation the backward shift is

$$
B x_{t}=x_{t-1} .
$$

If we want to go back two time units, we apply B twice. In mathematical notation,

$$
B\left(B x_{t}\right)=B\left(x_{t-1}\right)=x_{t-2}
$$

or

$$
B^{2} x_{t}=x_{t-2} .
$$

In general, to shift back k time units,

$$
B^{k} x_{t}=x_{t-k} .
$$

Example, AR(2)

We can use powers of B to write AR models. For example, the $\operatorname{AR}(2)$ process,

$$
\begin{aligned}
x_{t} & =a_{1} x_{t-1}+a_{2} x_{t-2}+w_{t} \\
& =a_{1} B\left(x_{t}\right)+a_{2} B^{2}\left(x_{t}\right)+w_{t} \\
& =\left(a_{1} B+a_{2} B^{2}\right) x_{t}+w_{t}
\end{aligned}
$$

or
$\left(1-a_{1} B-a_{2} B^{2}\right) x_{t}=w_{t}$.

Example, AR(p)

Another example, the $\operatorname{AR}(\mathrm{p})$ process,

$$
\begin{aligned}
& x_{t}=a_{1} x_{t-1}+a_{2} x_{t-2}+. .+a_{p} x_{t-p}+w_{t} \\
&=a_{1} B\left(x_{t}\right)+a_{2} B^{2}\left(x_{t}\right)+\ldots+a_{p} B^{p}\left(x_{t}\right)+w_{t} \\
&\left(1-a_{1} B-a_{2} B^{2}-\ldots-a_{p} B^{p}\right) x_{t}=w_{t} .
\end{aligned}
$$

Example, MA(2)

The MA(2) model has a similar representation:

$$
\begin{aligned}
x_{t} & =b_{1} w_{t-1}+b_{2} w_{t-2}+w_{t} \\
& =w_{t}+b_{1} B\left(w_{t}\right)+b_{2} B\left(w_{t}\right) \\
x_{t} & =\left(1+b_{1} B+b_{2} B^{2}\right) w_{t}
\end{aligned}
$$

Example, MA(q)

The MA(q) model can be represented as follows:

$$
\begin{aligned}
x_{t} & =b_{1} w_{t-1}+b_{2} w_{t-2}+w_{t}+\ldots+b_{q} w_{t-q} \\
& =w_{t}+b_{1} B\left(w_{t}\right)+b_{2} B\left(w_{t}\right)+\ldots+b_{q} B^{q}\left(w_{t}\right) \\
x_{t} & =\left(1+b_{1} B+b_{2} B^{2}+\ldots+B^{q}\right) w_{t}
\end{aligned}
$$

The AR/MA duality revisited

We will show that the proces

$$
x_{t}=a x_{t-1}+w_{t}
$$

can be rewritten as an infinite moving average.

The AR/MA duality revisited

Using the new notation, consider the moving average
$x_{t}^{*}=w_{t}+a w_{t-1}+a^{2} w_{t-2}+\ldots$
$=\left[1+a B+(a B)^{2}+\ldots\right] w_{t}$
$x_{t}^{*}=\left[\sum_{i=0}^{\infty}(a B)^{i}\right] w_{t}$
(It is not so difficult to show that $\left[\sum_{i=0}^{\infty}(a B)^{i}\right]=\frac{1}{1-a B}$, provided that $|a|<1$. Remember? We did it in class).
Therefore,
$x_{t}^{*}=\left(\frac{1}{1-a B}\right) w_{t}$ (provided that $|a|<1$.

The AR/MA duality revisited

Our last equation can be written as
$(1-a B) x_{t}^{*}=w_{t}$
$x_{t}^{*}-a B x_{t}^{*}=w_{t}$
$x_{t}^{*}-a x_{t-1}^{*}=w_{t}$
$x_{t}^{*}=a x_{t-1}^{*}+w_{t}$
Here we see that polynomial operators have inverses and that infinite moving-average processes are finite autoregressive processes.

The AR/MA duality revisited (another example)

Consider a first-order moving -average process
$x_{t}=w_{t}-b_{1} w_{t-1}$
In operator notation,
$x_{t}=\left(1-b_{1} B\right) w_{t}$
or equivalently,
$\left(\frac{1}{1-b_{1} B}\right) x_{t}=w_{t}$

The AR/MA duality revisited (another example)

$$
\begin{aligned}
& \left(1+b_{1} B+b_{1}^{2} B^{2}+\ldots\right) x_{t}=w_{t} \\
& x_{t}+b_{1} B x_{t}+b_{1}^{2} B^{2} x_{t}+\ldots=w_{t} \\
& x_{t}+b_{1} x_{t-1}+b_{1}^{2} x_{t-2}+\ldots=w_{t} \\
& x_{t}=-b_{1} x_{t-1}-b_{1}^{2} x_{t-2}-\ldots+w_{t}
\end{aligned}
$$

The reverse is also true; finite moving-average processes are infinite autoregressive processes.

ARMA or " mixed" processes

Suppose that we have a set of data, x_{t}, that we fit an $\operatorname{AR}(1)$ and obtain a residual η_{t}

$$
x_{t}=a x_{t-1}+\eta_{t}
$$

Suppose further that the ACF of the residual had only one nonzero value, so that we suspected that the residual was an MA(1) process, with parameter b.

ARMA or " mixed" processes

Then we could write

$$
x_{t}=a x_{t-1}+w_{t}+b w_{t-1}
$$

where w_{t} is white noise Alternatively, we can write this as

$$
x_{t}-a x_{t-1}=w_{t}+b w_{t-1}
$$

or

$$
(1-a B) x_{t}=(1+b B) w_{t}
$$

This is called a mixed or autoregressive moving-average (ARMA) process.

ARMA or " mixed" processes

Because the $M A(1)$ process can also be written as an infinite AR process (if $|b|<1$), our last equation can be rewritten as follows:

$$
(1-a B)\left(\frac{1}{1+b B}\right) x_{t}=w_{t}
$$

or

$$
(1-a B)\left(1-b B+b^{2} B^{2}-b^{3} B^{3}+\ldots\right) x_{t}=w_{t}
$$

ARMA or " mixed" processes

$$
\left(1-(a+b) B+\left(a b+b^{2}\right) B^{2}+\ldots\right) x_{t}=w_{t}
$$

This is an infinite-order AR process. Eventually, the powers of a and b will become small, so it will be reasonable to approximate this process with a finite-order AR of reasonably low order.

These results are true more generally under some appropriate conditions. If we have two polynomials in $B, M A(B)$ and $A R(B)$, and an ARMA model

$$
A R(B) x_{t}=M A(B) w_{t}
$$

It is possible to write the model as an infinite AR process,

$$
\left[\frac{A R(B)}{M A(B)}\right] x_{t}=w_{t}
$$

or and infinite MA process,

$$
x_{t}=\left[\frac{M A(B)}{A R(B)}\right] w_{t}
$$

and approximate either by finite processes.

The condition necessary for "dividing" by $\operatorname{AR}(B)$ is that the $A R$ process be stationary. However, since all finite MA processes are stationary, this condition will not be adequate for dividing by $\mathrm{MA}(\mathrm{B})$. The condition necessary for dividing by $\mathrm{MA}(\mathrm{B})$ is that the MA process be "invertible". Both conditions can be expressed in terms of roots of the polynomials $A R(B)$ and $M A(B)$.

Roots of polynomials: stationarity and invertibility

The polynomial $x^{2}-x-2$ can also be written $(x-2)(x-1)$, and, in general, any polynomial of order n can be rewritten as a product

$$
\left(x-s_{1}\right)\left(x-s_{2}\right) \ldots\left(x-s_{n}\right)
$$

where the s_{k} are, in general, complex numbers. When x equals any of these numbers, the polynomial is zero, and the numbers s_{k} are called the roots of the polynomial.

Roots of polynomials: stationarity and invertibility

The polynomials $A R(B)$ and $M A(B)$ also have roots determined entirely by their parameters. In general, every root s_{k} of the generating polynomials $A R(B)$ or $M A(B)$ will be a complex number

$$
s_{k}=u_{k}+i v_{k}
$$

where u_{k} and v_{k} are real numbers and $i=\sqrt{-1}$.
The modulus of a complete number s_{k} is written $\left|s_{k}\right|$ and defined as

$$
\left|s_{k}\right|=\sqrt{u_{k}^{2}+v_{k}^{2}}
$$

AR(1)...Again

In general, and AR process will be stationary if all roots of $A R(B)$ have modulus greater than 1 . For the $\operatorname{AR}(1)$ case, $\operatorname{AR}(B)=1-a B$, and the root of the polynomial, $1-a z$ is $s_{1}=\frac{1}{a}$.
The condition $\left|s_{1}\right|>1$ is the same as $|a|<1$.
(The condition we are familiar with for the $\operatorname{AR}(1)$ process to be stationary!)

We can divide by the $\operatorname{AR}(B)$ polynomial to get equation

$$
x_{t}=\left[\frac{M A(B)}{A R(B)}\right] w_{t}
$$

whenever the roots of $A R(B)$ have modulus greater than 1 .

Similarly, we can divide by the $\operatorname{MA}(B)$ polynomial to get equation

$$
\left[\frac{A R(B)}{M A(B)}\right] x_{t}=w_{t}
$$

whenever the roots of the $\mathrm{MA}(\mathrm{B})$ polynomial have modulus greater than 1 ; in this case the $\mathrm{MA}(\mathrm{B})$ operator is called invertible, and the conditions on its roots are called invertibility conditions.

MA(1)...Again

The basic model for $\mathrm{MA}(1)$ is

$$
x_{t}=w_{t}+b_{1} w_{t-1}=\left(1+b_{1} B\right) w_{t}
$$

and the root of the polynomial, $1+b_{1} z$ is $s_{1}=\frac{-1}{b_{1}}$. The condition $\left|s_{1}\right|>1$ is the same as $\left|b_{1}\right|<1$.
$\mathrm{MA}(1)$ is invertible when $\left|b_{1}\right|<1$.

Example

Consider the MA(2) process

$$
x_{t}=w_{t}-0.1 w_{t-1}+0.21 w_{t-2}
$$

Is this model invertible? Why?

