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Signal and Noise

In general, most data can be understood as observations of the form:
signal + noise. This model envisions the observations as produced by a
deterministic “signal” contaminated with random “noise”. In data
analysis, a model is fitted to the data, producing an “estimated signal”, an
the resulting residuals become the “estimated noise”. The residuals, aka
the estimated noise, are the basis for modeling uncertainty in the model.
In most courses in data analysis, the focus is on white noise (independent,
Normal errors, with zero mean and constant variance). The Time Series
Analysis undertaken in this course will differ from Regression in that the
noise has a complex structure that must be identified. A substantial part of
the course will involve actually developing these more complex structures
for the noise and then learning how to identify their presence in data.
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Time Series Data

Following a long tradition, a set of observations collected over equally
spaced points in time are called a time series. It should be noted that time
series only require the special methods discussed in this course when the
observations are serially correlated. So what is serial correlation? Serial
correlation occurs when nearby observations are expected to be more
similar than observations far apart (technically, serial correlation also
occurs when nearby observations are more dissimilar than expected.)
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White Noise (flavor 1)

A simple kind of generated series might be a collection of uncorrelated
random variables, wt , with mean 0 and finite variance σ2w . The time
series generated from uncorrelated variables is used as a model for noise in
engineering applications where it is called white noise; we shall sometimes
denote this process as wt ∼ wn(0, σ2w ).
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White Noise (flavor 2)

We will, at times, also require the noise to be independent and identically
distributed (iid) random variables with mean 0 and variance σ2w . We will
distinguish this by saying white independent noise, or by writing
w ∼ iid(0, σ2w ).
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White Noise (flavor 3)

A particularly useful white noise series is Gaussian white noise, wherein
the wt are independent Normal random variables, with mean 0 and
variance σ2w ; or more succinctly, wt ∼ iid N(0, σ2w ).
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R Code

set.seed(2016);

w=rnorm(500,0,1);

plot.ts(w, main="white noise");
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Moving Averages and Filtering

We might replace the white noise series wt by a moving average that
smooths the series. For example, consider replacing wt in our previous
example by an average of its current value and its immediate neighbors in
the past and future. That is,

vt =
1

3
(wt−1 + wt + wt+1).

(Note. A linear combination of values in a time series such as in
1
3(wt−1 + wt + wt+1) is referred to as a filtered series.)
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R Code

set.seed(2016);

w=rnorm(500,0,1);

v = filter(w, sides=2, filter=rep(1/3,3));

# v = moving average;

plot.ts(v, ylim=c(-3,3),main="moving average");

Al Nosedal University of Toronto Characteristics of Time Series January 8, 2019 10 / 37



Graph

moving average

Time

v

0 100 200 300 400 500

−
3

−
1

1
3

Al Nosedal University of Toronto Characteristics of Time Series January 8, 2019 11 / 37



Autoregressions

Suppose we consider the white noise series wt as input and calculate the
output using the first-order equation

xt = 0.7xt−1 + wt

successively for t = 1, 2, ..., 500. The above equation represents a
regression of the current value xt of a time series as a function of the last
value of the series, and, hence, the term autoregression is suggested for
this model.
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R Code

set.seed(2016);

w = rnorm(500,0,1);

x = filter(w,filter=(0.7),method="recursive",init=0);

# method ="recursive" an autoregression is used;

# init = specifies initial values;

plot.ts(x,main="autoregression");
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Random Walk with Drift

The random walk with drift model is given by

xt = δ + xt−1 + wt

for t = 1, 2, ..., with initial condition x0 = 0, and where wt is white noise.
The constant δ is called the drift. Note that we may rewrite xt as a
cumulative sum of white noise variates. That is, xt = δt +

∑t
j=1 wj for

t = 1, 2, ...
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R Code

set.seed(2016);

w = rnorm(300,0,1);

x = cumsum(w);

# cumsum = cumulative sum;

plot.ts(x, main="random walk");

abline(h=0,lty=2);

# abline adds a horizontal line at zero;

# lty = 2, tells R to draw a dashed line;
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Definition

The mean function is defined as

µxt = E (xt)

provided it exists, where E denotes the usual expected value operator.
When no confusion exists about which time series we are referring to, we
will drop a subscript and write µxt as µt .
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Mean Function of a Moving Average Series

If wt denotes a white noise series, then µwt = E (wt) = 0 for all t.
Smoothing the series does not change the mean because we can write

µvt = E (vt) =
1

3
[E (wt−1) + E (wt) + E (wt+1)] = 0.
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Mean function of a Random Walk with Drift

Consider the random walk with drift model

xt = δt +
t∑

j=1

wj , t = 1, 2, ...

Because E (wt) = 0 for all t, and δ is a constant, we have

µxt = E (xt) = δt +
t∑

j=1

E (wj) = δt

which is a straight line with slope δ.
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Definition

The autocovariance function is defined as the second moment product

γx(s, t) = cov(xs , xt) = E [(xs − µs)(xt − µt)],

for all s and t. When no possible confusion exists about which time series
we are referring to, we will drop the subscript and write γx(s, t) as γ(s, t).
It is clear that, for s = t, the autocovariance reduces to the variance,
because

γx(t, t) = E [(xt − µt)2] = var(xt).
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Autocovariance of White Noise

The white noise series wt has E (wt) = 0 and

γw (s, t) = cov(ws ,wt) =

{
σ2w s = t,
0 s 6= t.
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Proposition

If the random variables
U =

∑m
j=1 ajXj and V =

∑r
k=1 bkYk

are linear filters of random variables {Xj} and {Yk}, respectively, then

cov(U,V ) =
m∑
j=1

r∑
k=1

ajbkcov(Xj ,Yk).

Furthermore, var(U) = cov(U,U).
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Autocovariance of a Moving Average

Consider applying a three-point moving average to the white noise series
wt of the previous example. In this case,

γv (s, t) = cov(vs , vt) = cov

[
1

3
(ws−1 + ws + ws+1),

1

3
(wt−1 + wt + wt+1)

]
.
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Autocovariance of a Moving Average

When s = t we have

γv (t, t) = cov

[
1

3
(wt−1 + wt + wt+1),

1

3
(wt−1 + wt + wt+1)

]
=

1

9
[cov(wt−1,wt−1) + cov(wt ,wt) + cov(wt+1,wt+1)]

=
3

9
σ2w .
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Autocovariance of a Moving Average

When s = t + 1 we have

γv (t + 1, t) =
1

9
cov [(wt + wt+1 + wt+2), (wt−1 + wt + wt+1)]

=
1

9
[cov(wt ,wt) + cov(wt+1,wt+1)]

=
2

9
σ2w .
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Autocovariance of a Moving Average

Similar computations give γv (t − 1, t), γv (t + 2, t), γv (t − 2, t), and 0
when |t − s| > 2. We summarize the values for all s and t as

γv (s, t) =


3
9σ

2
w s = t,

2
9σ

2
w |s − t| = 1,

1
9σ

2
w |s − t| = 2,

0 |s − t| > 2.
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Autocovariance of a Random Walk

For the random walk model, xt =
∑

j=1 wj , we have

γx(s, t) = cov(xs , xt) = cov

 s∑
j=1

wj ,

t∑
k=1

wk

 = min{s, t}σ2w ,

because the wt are uncorrelated random variables.
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Definition

The autocorrelation function (ACF) is defined as

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
.
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Definition

A weakly stationary time series is a finite variance process where
i) the mean value function, µt , is constant and does not depend on time t,
and
ii) the autocovariance function, γ(s, t), depends on s and t only through
their difference |s − t|.
Henceforth, we will use the term stationary to mean weakly stationary.
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Random Walk (again...)

A random walk is not stationary because its covariance function
γ(s, t) = min{s, t}σ2w , depends on time. Also, the random walk with drift
violates both conditions of the definition of a weakly stationary time series
because the mean function, µx t = δt, is also a function of time t.
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Definition

The autocovariance function of a stationary time series will be
written as

γ(h) = cov(xt+h, xt) = E [(xt+h − µ)(xt − µ)].
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Definition

The autocorrelation function (ACF) of a stationary time series will
be written as

ρ(h) =
γ(h)

γ(0)
.
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White Noise (again...)

The mean and autocovariance functions of the white noise series discussed
above are easily evaluated as µwt = 0 and

γw (h) = cov(wt+h,wt) =

{
σ2w h = 0,
0 h 6= 0.

Thus, white noise is weakly stationary or stationary.
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A Moving Average (again...)

The three-point moving average process presented above is stationary
because the mean and autocovariance functions µvt = 0, and

γv (h) =


3
9σ

2
w h = 0,

2
9σ

2
w h = ±1,

1
9σ

2
w h = ±2,

0 |h| > 2.

are independent of time t, satisfying the conditions of a weakly stationary
time series.
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Moving Average (ACF)

ρv (h) =


1 h = 0,
2
3 h = ±1,
1
3 h = ±2,
0 |h| > 2.
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Trend Stationarity

If xt = α + βt + wt , then the mean function is µx ,t = E (xt) = α + βt,
which is not independent of time. Therefore, the process is not stationary.
The autocovariance function, however, is independent of time, because
γw (h) = cov(xt+h, xt) = E [(xt+h − µx ,t+h)(xt − µx ,t)] = E (wt+hwt) =
γw (h).
Thus, the model may be considered as having stationary behavior around a
linear trend; this behavior is sometimes called trend stationarity.
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