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Definition

{xt} is an ARMA(p,q) process if {xt} is stationary and if for every t,

xt − φ1xt−1 − ...− φpxt−p = wt + θ1wt−1 + ...+ θqwt−q

where {wt} is white noise with mean 0 and variance σ2w and the
polynomials 1− φ1z − ...− φpzp and 1 + θ1z + ...+ θqz

q have no
common factors.
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Example. ACF of the ARMA(1,1) Process

Model:

xt = φ1xt−1 − θ1wt−1 + wt

For stationarity, we assume |φ1| < 1, and for invertibility, we require that
|θ1| < 1 .We also assume that E (xt) = 0 and E (wt) = 0.
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Example. ACF of the ARMA(1,1) Process

We showed in class that

γ(0) =
(1 + θ21 − 2φ1θ1)σ2w

1− φ21

γ(1) =
(φ1 − θ1)(1− φ1θ1)σ2w

1− φ21
γ(k) = φ1γ(k − 1) for k ≥ 2.
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Example. ACF of the ARMA(1,1) Process

We showed in class that

ρ(0) = 1

ρ(1) =
(φ1 − θ1)(1− φ1θ1)

1 + θ21 − 2φ1θ1
ρ(k) = φ1ρ(k − 1) for k ≥ 2.

Note that the autocorrelation function of an ARMA(1,1) model combines
characteristics of both AR(1) and MA(1) processes.
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Causality

An ARMA(p, q) process {xt} is causal, or a casual function of {wt}, if
there exist constants {ψj} such that

∑∞
j=0 |ψj | <∞ and

xt =
∞∑
j=0

ψjwt−j for all t.
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Invertibility

An ARMA(p, q) process {xt} is invertible if there exist constants {πj}
such that

∑∞
j=0 |πj | <∞ and

wt =
∞∑
j=0

πjxt−j for all t.
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Definition

The AR and MA polynomials are defined as

φ(z) = 1− φ1z − ...− φpzp, φp 6= 0

and

θ(z) = 1 + θ1z − ...+ θqz
q, θq 6= 0,

respectively, where z is a complex number.
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Example

Consider the process

xt = 0.4xt−1 + 0.45xt−2 + wt + wt−1 + 0.25wt−2

or, in operator form,

(1− 0.4B − 0.45B2)xt = (1 + B + 0.25B2)wt

(it seems to be an ARMA(2, 2) process).
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Example

Note that φ(z) = (1 + 0.5z)(1− 0.9z) and θ(z) = (1 + 0.5z)(1 + 0.5z).
So, the associated polynomials have a common factor (1 + 0.5z) that can
be canceled. After cancellation, the polynomials become

φ(z) = (1− 0.9z)

and

θ(z) = (1 + 0.5z),

so the model is an ARMA(1, 1) process.
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Example

The model is causal because the root of φ(z) is s = 10
9 , which is outside

the unit circle (i. e. |s| > 1).

The model is invertible because the root of θ(z) is s∗ = −2, which is also
outside the unit circle.
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Another example

Let {xt} be the AR(2) process

xt = 0.7xt−1 − 0.1xt−2 + wt ,

or, in operator form,

(1− 0.7B + 0.1B2)xt = wt
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Another example (cont.)

The corresponding polynomial is

φ(z) = 1− 0.7z + 0.1z2 = c + bz + az2.

Its roots can be found using the following formula

s =
−b ±

√
b2 − 4ac

2a
=

0.7± 0.3

0.2
.

So, s1 = 5 and s2 = 2. Since these ”zeros” lie outside the unit circle, we
conclude that {xt} is a causal AR(2) process.
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Quick Review of Complex Numbers

The number i .
Complex numbers can be loosely considered linear combinations of real
and imaginary numbers. The core of imaginary numbers is the quantity
i =
√
−1. Any number of the form a + bi , where a and b are real, is a

complex number.
Note that:

i2 = (
√
−1)2 = −1

i3 = (
√
−1)3 = −i

i4 = (
√
−1)4 = 1

, etc.
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Sums, differences, products, and quotients of complex
numbers are also complex numbers.

Examples:

(3− 2i) + (3− 7i) = 6− 9i

(3− i) + (7 + 4i) = −4− 5i

(1− 2i)(2− i) = 2− i − 4i + 2i2 = 2− 5i − 2 = −5i
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Sums, differences, products, and quotients of complex
numbers are also complex numbers.

3− 2i

1− 2i
=

(3− 2i)(1 + 2i)

(1− 2i)(1 + 2i)
=

3 + 4i + 4

12 + 22
=

7 + 4i

5

3− 2i

1− 2i
=

7

5
+

4i

5

Notation. Let z = a + bi , then z̄ = a− bi .
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The magnitude of a complex number

Complex conjugates can be used to represent magnitude. Let z = a + bi
and use |z | to represent magnitude. Then |z |2 = zz̄ = a2 + b2 and
|z | =

√
a2 + b2.
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Example

Consider the process defined by the equations

xt − 0.75xt−1 + 0.5625xt−2 = wt + 1.25wt−1

where wt represents white noise with mean 0 and variance σ2w .

Al Nosedal University of Toronto ARMA Models March 11, 2019 18 / 29



Example (cont.)

The AR polynomial:

φ(z) = 1− 0.75z + 0.5625z2.

Its roots are given by:

z∗ =
0.75±

√
(−0.75)2 − 4(0.5625)(1)

2(0.5625)

z∗ =
0.75± 1.2990

1.125
≈ 0.6666± 1.1547i

|z∗| =
√

0.66662 + 1.15472 ≈ 1.3332 > 1,

which lies outside the unit circle. The process is therefore causal.
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Example (cont.)

On the other hand, the MA polynomial is

θ(z) = 1 + 1.25z .

Clearly, z∗ = −0.8 and |z∗| < 1. Hence {xt} is not invertible.
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Simulated Examples of ARMA Models

Example 1. ARMA(2,2):

xt = 0.6xt−1 − 0.25xt−2 + wt + 1.1wt−1 − 0.28wt−2.

Example 2. ARMA(2,2):

xt = 1.1xt−1 − 0.28xt−2 + wt + 0.6wt−1 − 0.25wt−2.

Example 3. ARMA(3,0):

xt = 0.6xt−1 − 0.19xt−2 + 0.084xt−3 + wt .

Example 4. ARMA(0,4):

xt = wt + 2wt−1 − 1.59wt−2 + 0.65wt−3 − 0.125wt−4.
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R Code, example 1

set.seed(9999);

# simulating ARMA(2,2);

arma1.sim<-arima.sim(list(ar=c(0.6,-0.25),

ma = c(1.1,-0.28)), n = 100, sd=2);

plot.ts(arma1.sim, ylim=c(-10,10),main="ARMA(2,2),

example 1, n=100");
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Time Series Plot, example 1

ARMA(2,2), example 1, n=100
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R Code, example 2

set.seed(9999);

# simulating ARMA(2,2);

arma2.sim<-arima.sim(list(ar=c(1.1,-0.28),

ma = c(0.6,-0.25)), n = 100, sd=2);

plot.ts(arma2.sim, ylim=c(-12,10),main="ARMA(2,2),

example 1, n=100");
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Time Series Plot, example 2

ARMA(2,2), example 2, n=100
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R Code, example 3

set.seed(9999);

# simulating AR(3);

arma3.sim<-arima.sim(list(ar=c(0.6,-0.19, 0.084) ),

n = 100, sd=2);

plot.ts(arma3.sim, ylim=c(-10,10),main="ARMA(3,0),

example 3, n=100");
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Time Series Plot, example 3

ARMA(3,0), 
example 3, n=100
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R Code, example 4

set.seed(9999);

# simulating ARMA(0,4);

arma4.sim<-arima.sim(list(ma = c(2,-1.59,0.65,-0.125) ),

n = 100, sd=2);

plot.ts(arma4.sim, ylim=c(-15,15),main="ARMA(0,4),

example 4, n=100");
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Time Series Plot, example 4

ARMA(0,4), 
example 4, n=100
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