ARMA Models

Al Nosedal
University of Toronto

March 11, 2019

Definition

$\left\{x_{t}\right\}$ is an $\operatorname{ARMA}(p, q)$ process if $\left\{x_{t}\right\}$ is stationary and if for every t,

$$
x_{t}-\phi_{1} x_{t-1}-\ldots-\phi_{p} x_{t-p}=w_{t}+\theta_{1} w_{t-1}+\ldots+\theta_{q} w_{t-q}
$$

where $\left\{w_{t}\right\}$ is white noise with mean 0 and variance σ_{w}^{2} and the polynomials $1-\phi_{1} z-\ldots-\phi_{p} z^{p}$ and $1+\theta_{1} z+\ldots+\theta_{q} z^{q}$ have no common factors.

Example. ACF of the ARMA(1,1) Process

Model:

$$
x_{t}=\phi_{1} x_{t-1}-\theta_{1} w_{t-1}+w_{t}
$$

For stationarity, we assume $\left|\phi_{1}\right|<1$, and for invertibility, we require that $\left|\theta_{1}\right|<1$. We also assume that $E\left(x_{t}\right)=0$ and $E\left(w_{t}\right)=0$.

Example. ACF of the ARMA(1,1) Process

We showed in class that

$$
\begin{aligned}
\gamma(0) & =\frac{\left(1+\theta_{1}^{2}-2 \phi_{1} \theta_{1}\right) \sigma_{w}^{2}}{1-\phi_{1}^{2}} \\
\gamma(1) & =\frac{\left(\phi_{1}-\theta_{1}\right)\left(1-\phi_{1} \theta_{1}\right) \sigma_{w}^{2}}{1-\phi_{1}^{2}} \\
\gamma(k) & =\phi_{1} \gamma(k-1) \text { for } k \geq 2
\end{aligned}
$$

Example. ACF of the ARMA(1,1) Process

We showed in class that

$$
\begin{aligned}
& \rho(0)=1 \\
& \rho(1)=\frac{\left(\phi_{1}-\theta_{1}\right)\left(1-\phi_{1} \theta_{1}\right)}{1+\theta_{1}^{2}-2 \phi_{1} \theta_{1}} \\
& \rho(k)=\phi_{1} \rho(k-1) \text { for } k \geq 2
\end{aligned}
$$

Note that the autocorrelation function of an $\operatorname{ARMA}(1,1)$ model combines characteristics of both $\operatorname{AR}(1)$ and $\mathrm{MA}(1)$ processes.

Causality

An $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ process $\left\{x_{t}\right\}$ is causal, or a casual function of $\left\{w_{t}\right\}$, if there exist constants $\left\{\psi_{j}\right\}$ such that $\sum_{j=0}^{\infty}\left|\psi_{j}\right|<\infty$ and

$$
x_{t}=\sum_{j=0}^{\infty} \psi_{j} w_{t-j} \text { for all } t
$$

Invertibility

An $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ process $\left\{x_{t}\right\}$ is invertible if there exist constants $\left\{\pi_{j}\right\}$ such that $\sum_{j=0}^{\infty}\left|\pi_{j}\right|<\infty$ and

$$
w_{t}=\sum_{j=0}^{\infty} \pi_{j} x_{t-j} \text { for all } t
$$

Definition

The AR and MA polynomials are defined as

$$
\phi(z)=1-\phi_{1} z-\ldots-\phi_{p} z^{p}, \quad \phi_{p} \neq 0
$$

and

$$
\theta(z)=1+\theta_{1} z-\ldots+\theta_{q} z^{q}, \quad \theta_{q} \neq 0
$$

respectively, where z is a complex number.

Example

Consider the process

$$
x_{t}=0.4 x_{t-1}+0.45 x_{t-2}+w_{t}+w_{t-1}+0.25 w_{t-2}
$$

or, in operator form,

$$
\left(1-0.4 B-0.45 B^{2}\right) x_{t}=\left(1+B+0.25 B^{2}\right) w_{t}
$$

(it seems to be an $\operatorname{ARMA}(2,2)$ process).

Example

Note that $\phi(z)=(1+0.5 z)(1-0.9 z)$ and $\theta(z)=(1+0.5 z)(1+0.5 z)$. So, the associated polynomials have a common factor $(1+0.5 z)$ that can be canceled. After cancellation, the polynomials become

$$
\phi(z)=(1-0.9 z)
$$

and

$$
\theta(z)=(1+0.5 z)
$$

so the model is an $\operatorname{ARMA}(1,1)$ process.

Example

The model is causal because the root of $\phi(z)$ is $s=\frac{10}{9}$, which is outside the unit circle (i. e. $|s|>1$).

The model is invertible because the root of $\theta(z)$ is $s_{*}=-2$, which is also outside the unit circle.

Another example

Let $\left\{x_{t}\right\}$ be the $\operatorname{AR}(2)$ process

$$
x_{t}=0.7 x_{t-1}-0.1 x_{t-2}+w_{t}
$$

or, in operator form,

$$
\left(1-0.7 B+0.1 B^{2}\right) x_{t}=w_{t}
$$

Another example (cont.)

The corresponding polynomial is

$$
\phi(z)=1-0.7 z+0.1 z^{2}=c+b z+a z^{2}
$$

Its roots can be found using the following formula

$$
s=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{0.7 \pm 0.3}{0.2}
$$

So, $s_{1}=5$ and $s_{2}=2$. Since these "zeros" lie outside the unit circle, we conclude that $\left\{x_{t}\right\}$ is a causal $\operatorname{AR}(2)$ process.

Quick Review of Complex Numbers

The number i.
Complex numbers can be loosely considered linear combinations of real and imaginary numbers. The core of imaginary numbers is the quantity $i=\sqrt{-1}$. Any number of the form $a+b i$, where a and b are real, is a complex number.
Note that:

$$
\begin{aligned}
& i^{2}=(\sqrt{-1})^{2}=-1 \\
& i^{3}=(\sqrt{-1})^{3}=-i \\
& i^{4}=(\sqrt{-1})^{4}=1
\end{aligned}
$$

, etc.

Sums, differences, products, and quotients of complex numbers are also complex numbers.

Examples:

$$
\begin{gathered}
(3-2 i)+(3-7 i)=6-9 i \\
(3-i)+(7+4 i)=-4-5 i \\
(1-2 i)(2-i)=2-i-4 i+2 i^{2}=2-5 i-2=-5 i
\end{gathered}
$$

Sums, differences, products, and quotients of complex numbers are also complex numbers.

$$
\begin{gathered}
\frac{3-2 i}{1-2 i}=\frac{(3-2 i)(1+2 i)}{(1-2 i)(1+2 i)}=\frac{3+4 i+4}{1^{2}+2^{2}}=\frac{7+4 i}{5} \\
\frac{3-2 i}{1-2 i}=\frac{7}{5}+\frac{4 i}{5}
\end{gathered}
$$

Notation. Let $z=a+b i$, then $\bar{z}=a-b i$.

The magnitude of a complex number

Complex conjugates can be used to represent magnitude. Let $z=a+b i$ and use $|z|$ to represent magnitude. Then $|z|^{2}=z \bar{z}=a^{2}+b^{2}$ and $|z|=\sqrt{a^{2}+b^{2}}$.

Example

Consider the process defined by the equations

$$
x_{t}-0.75 x_{t-1}+0.5625 x_{t-2}=w_{t}+1.25 w_{t-1}
$$

where w_{t} represents white noise with mean 0 and variance σ_{w}^{2}.

Example (cont.)

The AR polynomial:

$$
\phi(z)=1-0.75 z+0.5625 z^{2}
$$

Its roots are given by:

$$
\begin{aligned}
z^{*} & =\frac{0.75 \pm \sqrt{(-0.75)^{2}-4(0.5625)(1)}}{2(0.5625)} \\
z^{*} & =\frac{0.75 \pm 1.2990}{1.125} \approx 0.6666 \pm 1.1547 i \\
\left|z^{*}\right| & =\sqrt{0.6666^{2}+1.1547^{2}} \approx 1.3332>1
\end{aligned}
$$

which lies outside the unit circle. The process is therefore causal.

Example (cont.)

On the other hand, the MA polynomial is

$$
\theta(z)=1+1.25 z
$$

Clearly, $z^{*}=-0.8$ and $\left|z^{*}\right|<1$. Hence $\left\{x_{t}\right\}$ is not invertible.

Simulated Examples of ARMA Models

Example 1. $\operatorname{ARMA}(2,2)$:

$$
x_{t}=0.6 x_{t-1}-0.25 x_{t-2}+w_{t}+1.1 w_{t-1}-0.28 w_{t-2}
$$

Example 2. ARMA $(2,2)$:

$$
x_{t}=1.1 x_{t-1}-0.28 x_{t-2}+w_{t}+0.6 w_{t-1}-0.25 w_{t-2}
$$

Example 3. ARMA $(3,0)$:

$$
x_{t}=0.6 x_{t-1}-0.19 x_{t-2}+0.084 x_{t-3}+w_{t}
$$

Example 4. $\operatorname{ARMA}(0,4)$:

$$
x_{t}=w_{t}+2 w_{t-1}-1.59 w_{t-2}+0.65 w_{t-3}-0.125 w_{t-4}
$$

R Code, example 1

```
set.seed(9999);
# simulating ARMA(2,2);
arma1.sim<-arima.sim(list(ar=c(0.6,-0.25),
ma = c(1.1,-0.28)), n = 100, sd=2);
plot.ts(arma1.sim, ylim=c(-10,10),main="ARMA (2, 2),
example 1, n=100");
```


Time Series Plot, example 1

ARMA(2,2), example 1, $\mathrm{n}=100$

Time

R Code, example 2

```
set.seed(9999);
# simulating ARMA(2,2);
arma2.sim<-arima.sim(list(ar=c(1.1,-0.28),
ma = c(0.6,-0.25)), n = 100, sd=2);
plot.ts(arma2.sim, ylim=c(-12,10),main="ARMA (2,2),
example 1, n=100");
```


Time Series Plot, example 2

ARMA(2,2), example 2, $\mathrm{n}=100$

Time

R Code, example 3

```
set.seed(9999);
# simulating AR(3);
arma3.sim<-arima.sim(list(ar=c(0.6,-0.19, 0.084) ),
n = 100, sd=2);
plot.ts(arma3.sim, ylim=c(-10,10),main="ARMA (3,0),
example 3, n=100");
```


Time Series Plot, example 3

ARMA(3,0), example 3, $\mathrm{n}=100$

Time

R Code, example 4

```
set.seed(9999);
# simulating ARMA(0,4);
arma4.sim<-arima.sim(list(ma = c(2,-1.59,0.65,-0.125) ),
n = 100, sd=2);
plot.ts(arma4.sim, ylim=c(-15,15),main="ARMA (0,4),
example 4, n=100");
```


Time Series Plot, example 4

ARMA(0,4), example 4, $n=100$

Time

