
Univariate ARIMA Forecasts
(Theory)

Al Nosedal
University of Toronto

April 16, 2019

Al Nosedal University of Toronto Univariate ARIMA Forecasts (Theory) April 16, 2019 1 / 30



All univariate forecasting methods (including ARIMA methods) are based
on the same logic. First, the expected value of the time series process is
calculated and, second, the expected value is extrapolated into the future.
If the current time series observation is Yt , then we are interested in
predicting the values of Yt+1, Yt+2, . . . , Yt+n. We will denote our
ARIMA forecast of Yt+n by Yt(n). We call Yt(n) the origin-t forecast of
Y with a lead time of n observations.
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As a first step in generating an estimate of Yt(n), we calculate the
expected value of the Yt process. Our calculations will be simplified
considerably if we work in terms of the deviate process, yt . Noting that
the Yt and yt processes are related by

yt = Yt − µ,

(where µ = E (Yt)) we can translate our calculations back into the Yt

process simply by adding a constant to our result.
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Now there are actually two expected values of a time series process which
can be used for univariate forecasts: the unconditional and the conditional
process expectations.
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Example: ARIMA(1,0,0)

To illustrate the differences between these two expectations, consider the
ARIMA(1, 0, 0) process

yt = φ1yt−1 + wt

(where |φ1| < 1), this process can be expressed as a sum of past ”shocks”
(Remember?)

yt = wt + φ1wt−1 + φ21wt−2 + φ31wt−3 + ...
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Example (cont.)

Taking the expected value of this expression,

E [yt ] = E [wt ] + φ1E [wt−1] + φ21E [wt−2] + φ31E [wt−3] + ...

E [yt ] = 0

and thus

E [Yt ] = E [yt ] + µ = µ.
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Example (cont.)

Extrapolating this term into the future,
yt(1) = E [yt+1] = 0
yt(2) = E [yt+2] = 0
. . .
yt(n) = E [yt+n] = 0
When the unconditional expectation of the process is used as a univariate
forecast, the process mean is the forecast regardless of lead time.
(The problem with forecasts based on the unconditional expectation of a
process is that much valuable information is ignored. )

Al Nosedal University of Toronto Univariate ARIMA Forecasts (Theory) April 16, 2019 7 / 30



Example (cont.)

The conditional expectation of yt+1 is:

E [yt+1|yt , yt−1, ..., y2, y1].

The conditional expectation of yt+1 is conditional upon the t preceding
observations of the time series process.
(Recalling that yt+1 = wt+1 + φ1yt and
yt+1 = wt+1 + φ1wt + φ21wt−1 + φ31wt−2 + φ41wt−3 + ...)

E [yt+1|yt , yt−1, ..., y2, y1] = E [wt+1] + φ1yt = φ1yt .
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Example (cont.)

Conditional expectation forecasts of the ARIMA(1,0,0) process are, then,
yt(1) = E [wt+1 + φ1yt ] = φ1yt
. . .
yt(n) = E [wt+n + φ1wt+n−1 + ...+ φn−11 wt+1 + φn1yt ] = φ1yt = φn1yt .

It should be intuitively plausible that the ”best” forecast of a time series
process is the conditional expectation of the process. What we mean by
”best” in this context is that the conditional expectation forecast has the
lowest possible mean-square forecast error (MSFE) of any
expectation-based forecast.
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Example (cont.)

Using this conditional expectation as a forecast of yt+1, the error in
forecasting is:

et+1 = yt+1 − yt(1) = wt+1.

This error will always be equal to the ”random shock”, wt+1, and the
forecast variance is thus

VAR(1) = E [w2
t+1] = σ2w ,

which is the variance of the white noise process.
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Example (cont.)

A 95% interval forecast of yt+1 is thus

yt(1)± 1.96σw .

(We expect yt+1 to lie in this interval 95% of the time).
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Example (cont.)

If we now wish to forecast the next value of the process, we begin with the
expression for yt+2.

yt+2 = wt+2 + φ1yt+1

yt+2 = wt+2 + φ1wt+1 + φ21yt = wt+2 + φ1wt+1 + yt(2).
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Example (cont.)

The error in forecasting is:

et+2 = yt+2 − yt(2) = wt+2 + φ1wt+1.

The forecast variance is thus

VAR(2) = E [(wt+2 + φ1wt+1)2] = σ2w (1 + φ21).
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Example (cont.)

A 95% interval forecast of yt+2 is thus

yt(2)± 1.96
√
σ2w (1 + φ21).

(We expect yt+2 to lie in this interval 95% of the time).
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Example (cont.)

It can be shown that
VAR(1) = σ2w
VAR(2) = (1 + φ21)σ2w
. . .
VAR(n) = (1 + φ21 + ...+ φ2n−21 )σ2w .
Noting that the expression for VAR(n) is a geometric progression, forecast
variance approaches a limit of

limn→∞VAR(n) =
σ2w

1− φ21
which is the variance of the yt autoregressive process.
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Example: Moving averages

An ARIMA(0, 0, 1) process written as

yt = wt + θ1wt−1
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Example (cont.)

Point forecasts for the ARIMA(0, 0, 1) are:
yt(1) = θ1wt

yt(2) = 0
. . .
yt(n) = 0
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Example (cont.)

Forecast variance is given by:
VAR(1) = σ2w
VAR(2) = (1 + θ21)σ2w
. . .
VAR(n) = (1 + θ21)σ2w
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Example (cont.)

After the second step into the future, forecast variance is constant. The
limit of VAR(n) is thus

limn→∞VAR(n) = (1 + θ21)σ2w ,

which is the variance of the ARIMA(0, 0, 1) process.
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Example: Integrated Processes

An ARIMA(0, 1, 0) process, or random walk, written as

yt = yt−1 + wt
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Example (cont.)

Point forecasts for the ARIMA(0, 1, 0) are:
yt(1) = yt
yt(2) = yt
. . .
yt(n) = yt
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Example (cont.)

Forecast variance is given by:
VAR(1) = σ2w
VAR(2) = 2σ2w
. . .
VAR(n) = nσ2w
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Example (cont.)

After two or three steps into the future, the confidence intervals become
so large as to render the interval forecast meaningless.
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APPENDIX
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Definition

If X and Y are any two random variables, the conditional expectation of
g(Y ), given that X = x , is defined to be

E [g(Y )|X = x ] =

∫ ∞
−∞

g(y)f (y |x)dy

if X and Y are jointly continuous and

E [g(Y )|X = x ] =
∑
all y

g(y)p(y |x)

if X and Y are jointly discrete.
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Theorem

Let X and Y denote random variables. Then

E [Y ] = EX [E (Y |X )]
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Properties

E [aY + bZ + c |X = x ] = aE [Y |X = x ] + bE [Z |X = x ] + c .

E [h(X )|X = x ] = h(x).

If X and Y are independent, then E [Y |X ] = E [Y ].
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Minimum Square Error Prediction (1)

Suppose Y is a random variable with mean µY and variance σ2Y . If our
object is to predict Y using only a constant c , what is the best choice for
c? A common criterion is to choose c to minimize the mean square error
of prediction, that is, to minimize

g(c) = E [(Y − c)2]

It turns out that the optimal c is c = E (Y ) = µ.
(Remember? we showed this together).
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Minimum Square Error Prediction (2)

Now consider the situation where a second random variable X is available
and we wish to use the observed value of X to help predict Y . Let
ρ = corr(X ,Y ). Suppose that only linear functions a + bX can be used for
the prediction. The mean square error is then given by

g(a, b) = E [(Y − a− bX )2]

It turns out that the optimal b and a are given by

b =
Cov(X ,Y )

Var(X )
= ρ

σY
σX

a = E (Y )− bE (X ) = µY − ρ
σY
σX

µX

(HW?).
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Minimum Square Error Prediction (3)

Let us now consider the more general problem of predicting Y with an
arbitrary function of X . Once more our criterion will be to minimize the
mean square error of prediction. We need to choose the function h(X ),
that minimizes

E [Y − h(X )]2

Using properties of conditional expectation and what we proved in
Minimum Square Error Prediction (1), we showed that the best choice of
h(X ) is

h(X ) = E [Y |X ]
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