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1. Canonical Correlation

In this tutorial, we discuss how the canonical correlation model is developed.
We begin with the population model and then discuss how canonical variates are
extracted from sample data.

1.1. Canonical Correlation Analysis: The Population Model. Let m be
the number of ”predictors” and p the number of ”criterion” variables, and as-
sume that m ≥ p. Denote by X

′
= (X1, X2, ..., Xm) the m dimensional vector

of predictor variables, and by Y
′

= (Y1, Y2, ..., Ym) the p dimensional vector of
criterion measures. Letting µX and µY denote the respective mean vectors as-
sociated with the set variables X and Y , we can define the following population
variance-covariance matrices:

Σxx = E
[
(X− µX)(X− µX)

′
]

Σyy = E
[
(Y − µY )(Y − µY )

′
]

Σxy = E
[
(X− µX)(Y − µY )

′
]

If we define an (m+ p) dimensional variable Z = (X, Y), then we can view the
problem in terms of the partitioned variance-covariance matrix Σzz shown below

Σzz =

(
Σxx Σxy

Σyx Σyy

)
1
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The objective of canonical correlation analysis is to find a linear combination of
the m predictors that maximally correlates with a linear combination of Y ’s. We
will denote the respective linear combinations by

U = a
′
x = a1x1 + a2x2 + ...+ amxm

and

V = b
′
x = b1x1 + b2x2 + ...+ bmxm.

The correlation (as a function of a and b) between U and V is given by

ρ(a,b) =
a

′
Σxyb

((a′(Σxxa)(b′(Σyyb))1/2

where we use the Greek letter ρ for the correlation coefficient in order to empha-
size that we are dealing with the population variance-covariance matrices. Out of
the infinite number of linear combinations between the X’s and the Y ’s, we find
that set of linear combinations which maximizes the correlation ρ(a,b). Since
ρ(a,b) is invariant under scaling of a and b, we can make an arbitrary normal-
ization of a and b. We will show, later, that this problem is equivalent to solving
the following canonical equations:(

Σ−1
xxΣxyΣ

−1
yy Σyx − λI

)
a = 0(

Σ−1
yy ΣyxΣ

−1
xxΣxy − λI

)
a = 0

where Σxx,Σyy,Σxy and Σyx are defined as before, I is the identity matrix, and
λ is the largest eigenvalue for the characteristic equations

det
(
Σ−1

xxΣxyΣ
−1
yy Σyx − λI

)
= 0

and

det
(
Σ−1

yy ΣyxΣ
−1
xxΣxy − λI

)
= 0

The largest eigenvalue of the product matrix

Σ−1
xxΣxyΣ

−1
yy Σyx

or

Σ−1
yy ΣyxΣ

−1
xxΣxy

is the squared canonical correlation coefficient. The eigenvectors associated with
the eigenvalue λ - there are two sets of eigenvectors, one for Σ−1

xxΣxyΣ
−1
yy Σyx and

one for Σ−1
yy ΣyxΣ

−1
xxΣxy - then become the vector of coefficients a and b. It can

be shown that
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a =
Σ−1

xxΣxyb√
λ

and

b =
Σ−1

yy Σyxa√
λ

which means that it is not necessary to solve for both characteristic equations
defined above, since the eigenvectors a and b are themselves defined interchange-
ably.

1.2. Sample-Based Canonical Correlation Analysis. The discussion so far
has been in terms of Σxx, Σxy, Σyx, and Σyy, the population variance-covariance
matrices. In most applications, however, these matrices will not be known. A
canonical correlation analysis usually starts with a sample of n responses on the
(m+ p) dimensional variable Z = (X, Y).

The components of the variance-covariance matrix generated from data are then
used to estimate the coefficients of each pair of canonical variates. That is, the
two product matrices that drive the analysis correspond to

S−1
xxSxyS

−1
yy Syx

and

S−1
yy SyxΣ

−1
xxSxy

where Sxx, Sxy, Syx, and Syy are, respectively, the sample-based estimates of
Σxx, Σxy, Σyx, and Σyy. Given the necessary inverses, the procedures followed here
are precisely the same as those described in the previous subsection. Frequently,
the measurements collected have different properties, which means that they are
not commensurable. In such case the X and Y variables making up the data
matrix are first standardized to have unit variance so that the variance-covariance
matrix is a correlation matrix. Following the previous approach, the two (product)
matrices that become the input to the analysis are

R−1
xxRxyR

−1
yy Ryx

and

R−1
yy RyxΣ

−1
xxRxy.

The same canonical correlations will be obtained from R−1
xxRxyR

−1
yy Ryx and

R−1
yy RyxΣ

−1
xxRxy as from S−1

xxSxyS
−1
yy Syx and S−1

yy SyxΣ
−1
xxSxy. The sample-based

estimates of the canonical weights will be denoted by â and b̂.
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1.3. Example 1. Consider the sample correlation matrix given by

R =

(
R11 R12

R21 R22

)
where

R11 =

 1 0.4 0.3
0.4 1.0 0.4
0.3 0.4 1.0


R12 =

 0.3 0.4
0.2 0.5
0.4 0.1


R21 =

(
0.3 0.2 0.4
0.4 0.5 0.1

)
R22 =

(
1.0 0.3
0.3 1.0

)
a) Calculate the canonical correlations r1 and r2.
b) Determine the canonical variate pairs (U1, V1) and (U2, V2).
Solution

## Entering matrices

R11<-matrix(c(1,0.4,0.3,0.4,1,0.4,0.3,0.4,1),nrow=3,ncol=3)

R22<-matrix(c(1,0.3,0.3,1),nrow=2,ncol=2)

R12<-matrix(c(0.3,0.2,0.4,0.4,0.5,0.1),nrow=3,ncol=2)

R21<-t(R12)

## Product 1

prod1<-solve(R11)%*%R12%*%solve(R22)%*%R21

prod1

## Note. By hand, you would need to find the solution of

## det(prod1 - lambda*I ) = 0

## Finding eigenvalues and eigenvectors
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e.vec.val.1<-eigen(prod1)

e.vec.val.1

#####################################

## first canonical correlation

#####################################

r1<-sqrt(e.vec.val.1$val[1])

## u1 = first canonical variate for first set of variables

## a1 = coefficients that define u1

a1<-e.vec.val.1$vec[ ,1]

r1

a1

a1<-a1/max(a1)

a1<-matrix(a1,ncol=1)

## Product 2

prod2<-solve(R22)%*%R21%*%solve(R11)%*%R12

prod2

## Note. By hand, you would need to find the solution of

## det(prod2 - lambda*I ) = 0

## Finding eigenvalues and eigenvectors

e.vec.val.2<-eigen(prod2)

e.vec.val.2

## first canonical correlation

r1.star<-sqrt(e.vec.val.2$val[1])
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## v1 = first canonical variate for second set of variables

## b1 = coefficients that define v1

b1<-e.vec.val.2$vec[ ,1]

r1.star

b1

b1<-(-1)*b1

b1<-matrix(b1,ncol=1)

b1<-b1/max(b1)

b1

## What is the correlation between u1 and v1?

t(a1)%*%R12%*%b1/sqrt( t(a1)%*%R11%*%a1*t(b1)%*%R22%*%b1 )

#####################################

## second canonical correlation

#####################################

## second eigenvalue

r2<-sqrt(e.vec.val.1$val[2])

## u2 = second canonical variate for first set of variables

## a2 = coefficients that define u2

a2<-e.vec.val.1$vec[ ,2]

r2

a2

a2<-a2/max(a2)

a2<-matrix(a2,ncol=1)
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a2

## Finding eigenvalues and eigenvectors

e.vec.val.2<-eigen(prod2)

e.vec.val.2

## second canonical correlation

r2.star<-sqrt(e.vec.val.2$val[2])

## v2 = second canonical variate for second set of variables

b2<-e.vec.val.2$vec[ ,2]

r2.star

b2

b2<-(-1)*b2

b2<-b2/max(b2)

b2<-matrix(b2,ncol=1)

b2

## What is the correlation between u2 and v2?

t(a2)%*%R12%*%b2/sqrt( t(a2)%*%R11%*%a2*t(b2)%*%R22%*%b2 )

###########################

### Can we get a from b?

###########################

####################

## first pair

####################

## a1
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solve(R11)%*%R12%*%b1

solve(R11)%*%R12%*%b1/max(solve(R11)%*%R12%*%b1)

a1

## b1

solve(R22)%*%R21%*%a1

solve(R22)%*%R21%*%a1/max(solve(R22)%*%R21%*%a1)

b1

####################

## second pair

####################

## a2

solve(R11)%*%R12%*%b2

solve(R11)%*%R12%*%b2/max(solve(R11)%*%R12%*%b2)

a2

## b2

solve(R22)%*%R21%*%a2

solve(R22)%*%R21%*%a2/max(solve(R22)%*%R21%*%a2)

b2

1.4. Exercise. In an investigation of the relation of the Wechsler Adult Intelli-
gence Scale to age. Researchers obtained this matrix of correlations among the
digit span and vocabulary subsets, chronological age, and years of formal educa-
tion:
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R =


1 0.45 −0.19 0.43

0.45 1 −0.02 0.62
−0.19 −0.02 1 −0.29

0.43 0.62 −0.29 1

 ,

The sample consisted of N = 933 men and women aged 25 to 64. Let us find
the canonical correlations and covariates for the pair of WAIS subtest variates and
age and education variates.


