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1. Tests Comparing Covariance Matrices

1.1. Univariate Tests of Equality of Variances. From univariate statistics we
know the following test for equality of variances. Let s1 and s2 denote the standard
deviations of a variable in two independent samples of size n1 and n2, respectively.
If the null hypothesis of equality of the two population variances holds, the ration

F =
s21
s22

deviates from unity only by sampling error. Under Normality assumptions,
the distribution of the F-ratio is F with n1 � 1 degrees of freedom and n2 � 1
degrees of freedom. The hypothesis of equality is rejected if F < fl or F > fu,
where fl and fu are the lower and upper ↵/2-quantiles of the null distribution.
We are now going to indicate how this univariate F -ratio can be generalized to
the multivariate case. There is a simple argument that allows us to define F -
ratios also in the multivariate case: if the null hypothesis of equality of the two
covariance matrices holds true, then the variance of every linear combination must
be identical in both groups; conversely, if for every linear combination the variances
are identical in both groups, then the covariance matrices must be the same.
Our null hypothesis is therefore equivalent to the condition that for every linear
combination the same standard deviation results in both groups, or, in other words,
that the ratio of variances of every linear combination equals unity. This condition
can be checked by determining linear combinations for which the empirical ratio
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of variances deviates as strongly as possible from one. Formally, we look at linear
combinations

Y = a1X1 + a2X2 + ...+ apXp,

compute their variances s21 and s22 in both groups and form the ratio

F = F (a1, a2, ..., ap) =
s21
s22
.

The particular linear combination for which F becomes maximal is called Ymax;
analogously, Ymin will be the linear combination with minimal ratio of variances.
If, instead of F , we form the reciprocal ratio

F
0
=

1

F
=

s22
s21

then we obtain only the linear combinations Y
0
max = Ymin and Y

0
min = Ymax.

The respective maximal and minimal ratios of variances are F
0
max = 1/Fmin and

F
0
min = 1/Fmax.
From this we see that the choice of group identification, i. e. which group is

labelled first and which second, leads only to unessential changes in the results.

1.2. Multivariate Tests of Equality of Variances. In order to determine Ymax

and Ymin in the case of p � 2 variables, one has to compute the p eigenvectors
and associated eigenvalues of the so-called multivariate F -matrix (We provide the
mathematical details in the appendix).

Each of the p eigenvectors contains the coe�cients of a particular linear com-
bination, and the associated eigenvalue gives just the corresponding value of the
ratio of variances. We denote the eigenvalues by �1,�2, ...,�p and order them
decreasingly, that is

�1 � �2 � ... � �p

With this notation we have Fmax = �1 and Fmin = �p. From now on we will
devote our attention mainly to �1 and �p. The extreme eigenvalues Fmax and
Fmin can be used to test the hypothesis of equality of the two covariance matrices
as follows. Under the null hypothesis, these two extremes di↵er from 1 only by
sampling error, and so �1 and �p would be expected close to 1. On the other hand,
if Fmax is much larger than 1 or Fmin much smaller than 1, this indicates that the
covariance structures on the two groups are not identical. The test statistic is thus
actually a pair of statistics (�1,�p) or (Fmax, Fmin), and it is most often referred
to as Roy’s largest and smallest roots criterion. Since Fmax and Fmin are the
maximum and minimum respectively over all linear combinations of p variables,
they cannot be compared with critical values of the familiar F -distribution. What
we need instead are quantiles of the so-called multivariate F -distribution; see table
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at the end. This table gives selected critical values cmin and cmax such that, under
the null hypothesis of equality of both covariance matrices,

P (Fmin  cmin) = 0.025

and

P (Fmax � cmax) = 0.025.

At a significance level of approximately ↵ = 5%, the null hypothesis is rejected
if Fmin is smaller than cmin, or if Fmax is larger than cmax.

Example. Comparison of the Covariance Matrices of Genuine and
Forged Bank Notes

This set of data comes from an inquiry that was conducted into genuine and
forged thousand franc bills. For each attribute we introduce the following notation.

X1: length of bill = LENGTH.
X2: width of bill, measured on the left = LEFT.
X3: width of bill, measured on the right = RIGHT.
X4: width of margin at the bottom = BOTTOM.
X5: width of margin at the top = TOP.
X6: length of the image diagonal = DIAGONAL.
All measurements are given in millimetres. Below we show the covariance ma-

trices for all six variables in both groups.

Covariance matrix of 100 genuine bills.

length left right bottom top diagonal
length 0.1502 0.0580 0.0573 0.0571 0.0145 0.0055
left 0.0580 0.1326 0.0859 0.0567 0.0491 -0.0431
right 0.0573 0.0859 0.1263 0.0582 0.0306 -0.0238

bottom 0.0571 0.0567 0.0582 0.4132 -0.2635 -0.0002
top 0.0145 0.0491 0.0306 -0.2635 0.4212 -0.0753

diagonal 0.0055 -0.0431 -0.0238 -0.0002 -0.0753 0.1998

Covariance matrix of 100 forged bills.
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length left right bottom top diagonal
length 0.1240 0.0315 0.0240 -0.1006 0.0194 0.0116
left 0.0315 0.0650 0.0468 -0.0240 -0.0119 -0.0050
right 0.0240 0.0468 0.0889 -0.0186 0.0001 0.0342

bottom -0.1006 -0.0240 -0.0186 1.2813 -0.4902 0.2385
top 0.0194 -0.0119 0.0001 -0.4902 0.4045 -0.0221

diagonal 0.0116 -0.0050 0.0342 0.2385 -0.0221 0.3112

In this example, maximization and minimization of the ratio s2F/s
2
G yields the

eigenvalues

Fmax = 6.223, 1.675, 1.052, 0.900, 0.546, 0.284 = Fmin.

From the tables of the multivariate F -distribution we obtain the critical values
cmin = 0.43 and cmax = 2.32. Since Fmin < cmin as well as Fmax > cmax, we
conclude (at a significance level of approximately 5%) that the two covariance
matrices are di↵erent.

R code

## genuine

g1<-c(0.1502,0.0580,0.0573,0.0571,0.0145,0.0055)

g2<-c(0,0.1326,0.0859,0.0567,0.0491,-0.0431)

g3<-c(0,0,0.1263,0.0582,0.0306,-0.0238)

g4<-c(0,0,0,0.4132,-0.2635,-0.0002)

g5<-c(0,0,0,0,0.4212,-0.0753)

g6<-c(0,0,0,0,0,0.1998)

SG<-cbind(g1,g2,g3,g4,g5,g6)

NEW.SG<-SG+t(SG)-diag(diag(SG),6,6)

NEW.SG

## forged

f1<-c(0.1240,0.0315,0.0240,-0.1006,0.0194,0.0116)

f2<-c(0,0.0650,0.0468,-0.0240,-0.0119,-0.0050)
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f3<-c(0,0,0.0889,-0.0186,0.0001,0.0342)

f4<-c(0,0,0,1.2813,-0.4902,0.2385)

f5<-c(0,0,0,0,0.4045,-0.0221)

f6<-c(0,0,0,0,0,0.3112)

SF<-cbind(f1,f2,f3,f4,f5,f6)

NEW.SF<-SF+t(SF)-diag(diag(SF),6,6)

NEW.SF

## FINDING EIGENVALUES OF PRODUCT

## PROD 1 = (NEW.SG)^{-1} NEW.SF

prod1<-solve(NEW.SG)%*%NEW.SF

eigen(prod1)

## FINDING EIGENVALUES OF PRODUCT

## PROD 2 = (NEW.SF)^{-1} NEW.SG

prod2<-solve(NEW.SF)%*%NEW.SG

eigen(prod2)

1.3. Testing the Equality of Several Covariance Matrices. The hypothesis

H0 : ⌃1

= ⌃
2

= ... = ⌃
k

of the equality of the covariance matrices of k p-dimensional Multinormal popu-
lations can be tested against the alternative of general positive definite matrices by
a modified generalized likelihood-ratio statistic. Let S

i

be the unbiased estimate
of ⌃

i

based on ⌫i degrees of freedom, where ⌫i = ni � 1 for the usual case of a
random sample of ni observation vectors from the ith population. When H0 is
true
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S =
1P
⌫i

kX

i=1

⌫iSi

is the pooled estimate of the common covariance matrix. The test statistic is

M =
kX

i=1

⌫iln|S|�
kX

i=1

⌫iln|Si|

it has been shown that if the scale factor

C�1 = 1� 2p2 + 3p� 1

6(p+ 1)(k � 1)

 
kX

i=1

1

⌫i
� 1
Pk

i=1 ⌫i

!

is introduced the quantity MC�1 is approximately distributed as a chi-squared
variate with degrees of freedom 1

2(k� 1)p(p+1) as the ⌫i become larger. If all the
⌫i are equal to n,

C�1 = 1� (2p2 + 3p� 1)(k + 1)

6(p+ 1)(kn)
Example. In a reaction-time study 32 male and 32 female young normal sub-

jects reacted to visual stimuli preceded by warning intervals of di↵erent lengths.
The sample covariance matrices of reaction times with preparatory intervals of 0.5
and 15 sec were

SM =

✓
4.32 1.88
1.88 9.18

◆
,

SF =

✓
2.52 1.90
1.90 10.06

◆
,

where the elements are in units of 10�4 sec2. It is desired to test the hypothesis
of a common covariance matrix in both sexes. Use ↵ = 0.05.

Solution
p = 2, n1 = n2 = 32, ⌫1 = ⌫2 = 31

S =
31

62
S1 +

31

62
S2 =

✓
3.42 1.89
1.89 9.62

◆
,

M = 62ln(29.328)� 31[ln(36.123) + ln(21.741)] = 2.82

C�1 = 0.965, and since MC�1 = 2.72 is much smaller than the percentage point
�2
0.05,3 = 7.81, we conclude that the null hypothesis is indeed tenable.

Exercise Test the hypothesis H0 : ⌃1

= ⌃
2

for the psychological data.
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1.4. Independence of Two Subvectors. Suppose the observation vector is par-
titioned into two subvectors of interest, which we label y and x, where y is p⇥ 1
and x is q⇥1. The corresponding partitioning of the population covariance matrix
is

⌃ =

✓
⌃yy ⌃yx

⌃xy ⌃xx

◆
,

with analogous partitioning of S and R

S =

✓
Syy Syx

Sxy Sxx

◆
,

R =

✓
Ryy Ryx

Rxy Rxx

◆
,

The hypothesis of independence of y and x can be expressed as

H0 : ⌃ =

✓
⌃yy O
O ⌃xx

◆
,

or H0 : ⌃yx = O.
The likelihood ratio test statistic for H0 : ⌃yx = O is given by

⇤ =
|S|

|Syy||Sxx|
=

|R|
|Ryy||Rxx|

which is distributed as ⇤p,q,n�1�q. We reject H0 if ⇤  ⇤↵. Critical values for
Wilk’s ⇤ are given in Table A.9 using ⌫H = q and ⌫E = n� 1� q.

Example In an investigation of the relation of the Wechsler Adult Intelligence
Scale to age. Researchers obtained this matrix of correlations among the digit
span and vocabulary subsets, chronological age, and years of formal education:

R =

0

BB@

1 0.45 �0.19 0.43
0.45 1 �0.02 0.62

�0.19 �0.02 1 �0.29
0.43 0.62 �0.29 1

1

CCA ,

The sample consisted of N = 933 men and women aged 25 to 64. From these
data we wish to test at level ↵ = 0.05 the hypothesis that the pair of WAIS subtest
variates is distributed independently of the age and education variates.

Solution
p = q = 2, ⌫H = 2, and ⌫E = 933� 1� 2 = 930
|R| = 0.4015025
|Rxx| = 0.7975
|Ryy| = 0.9159
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⇤ =
|R|

|Ryy||Rxx|
=

0.4015025

(0.7975)(0.9159)
= 0.5497

⇤0.05,2,2,930 ⇡ 0.9955

Since ⇤ = 0.5497 < ⇤0.05,2,2,930 ⇡ 0.9955, we reject the hypothesis of indepen-
dence. We must conclude that the subtests are dependent upon age and education.

Exercise Test independence of (y1, y2) and (x1, x2) for the sons data (sons.dat).

2. Appendix

Let now S1 and S2 denote the p⇥ p covariance matrices of two samples. To find
the linear combinations with extreme variance ratios, we form the ratio

a
0
S
2

a

a0S
1

a
=

a
0
S
1/2
1

S
�1/2
1

S
2

S
�1/2
1

S
1/2
1

a

a0S
1/2
1

S
1/2
1

a

Let x = S
1/2
1

a and recall that (S1/2
1

)
0
= S

1/2
1

, then

max
a

a
0
S
2

a

a0S
1

a
= max

x

x
0
S
�1/2
1

S
2

S
�1/2
1

x

x0x
Using our result for maximization of quadratic forms from tutorial 4, we have

max
x

x
0
S
�1/2
1

S
2

S
�1/2
1

x

x0x
= �1

where �1 is the largest eigenvalue of S
�1/2
1

S
2

S
�1/2
1

. Now, using the definition of
similar matrices and the fact that similar matrices have the same eigenvalues, we
can show that �1 is also the largest eigenvalue of S�1

1

S
2

(again, see tutorial 4).






















