TUTORIAL 8 STA437 WINTER 2015

AL NOSEDAL

Contents

1.	Tests Comparing Covariance Matrices	1
1.1.	Univariate Tests of Equality of Variances	1
1.2.	Multivariate Tests of Equality of Variances	2
1.3.	Testing the Equality of Several Covariance Matrices	5
1.4.	Independence of Two Subvectors	7
2.	Appendix	8

1. Tests Comparing Covariance Matrices

1.1. Univariate Tests of Equality of Variances. From univariate statistics we know the following test for equality of variances. Let s_1 and s_2 denote the standard deviations of a variable in two independent samples of size n_1 and n_2 , respectively. If the null hypothesis of equality of the two population variances holds, the ration

$$F = \frac{s_1^2}{s_2^2}$$

deviates from unity only by sampling error. Under Normality assumptions, the distribution of the F-ratio is F with $n_1 - 1$ degrees of freedom and $n_2 - 1$ degrees of freedom. The hypothesis of equality is rejected if $F < f_l$ or $F > f_u$, where f_l and f_u are the lower and upper $\alpha/2$ -quantiles of the null distribution. We are now going to indicate how this univariate F-ratio can be generalized to the multivariate case. There is a simple argument that allows us to define Fratios also in the multivariate case: if the null hypothesis of equality of the two covariance matrices holds true, then the variance of every linear combination must be identical in both groups; conversely, if for every linear combination the variances are identical in both groups, then the covariance matrices must be the same. Our null hypothesis is therefore equivalent to the condition that for every linear combination the same standard deviation results in both groups, or, in other words, that the ratio of variances of every linear combination for which the empirical ratio

AL NOSEDAL

of variances deviates as strongly as possible from one. Formally, we look at linear combinations

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_p X_p,$$

compute their variances s_1^2 and s_2^2 in both groups and form the ratio

$$F = F(a_1, a_2, ..., a_p) = \frac{s_1^2}{s_2^2}.$$

The particular linear combination for which F becomes maximal is called Y_{max} ; analogously, Y_{min} will be the linear combination with minimal ratio of variances. If, instead of F, we form the reciprocal ratio

$$F' = \frac{1}{F} = \frac{s_2^2}{s_1^2}$$

then we obtain only the linear combinations $Y'_{max} = Y_{min}$ and $Y'_{min} = Y_{max}$. The respective maximal and minimal ratios of variances are $F'_{max} = 1/F_{min}$ and $F'_{min} = 1/F_{max}.$

From this we see that the choice of group identification, i. e. which group is labelled first and which second, leads only to unessential changes in the results.

1.2. Multivariate Tests of Equality of Variances. In order to determine Y_{max} and Y_{min} in the case of $p \geq 2$ variables, one has to compute the p eigenvectors and associated eigenvalues of the so-called multivariate F-matrix (We provide the mathematical details in the appendix).

Each of the p eigenvectors contains the coefficients of a particular linear combination, and the associated eigenvalue gives just the corresponding value of the ratio of variances. We denote the eigenvalues by $\lambda_1, \lambda_2, ..., \lambda_p$ and order them decreasingly, that is

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_p$$

With this notation we have $F_{max} = \lambda_1$ and $F_{min} = \lambda_p$. From now on we will devote our attention mainly to λ_1 and λ_p . The extreme eigenvalues F_{max} and F_{min} can be used to test the hypothesis of equality of the two covariance matrices as follows. Under the null hypothesis, these two extremes differ from 1 only by sampling error, and so λ_1 and λ_p would be expected close to 1. On the other hand, if F_{max} is much larger than 1 or F_{min} much smaller than 1, this indicates that the covariance structures on the two groups are not identical. The test statistic is thus actually a pair of statistics (λ_1, λ_p) or (F_{max}, F_{min}) , and it is most often referred to as Roy's largest and smallest roots criterion. Since F_{max} and F_{min} are the maximum and minimum respectively over all linear combinations of p variables, they cannot be compared with critical values of the familiar F-distribution. What we need instead are quantiles of the so-called multivariate F-distribution; see table at the end. This table gives selected critical values c_{min} and c_{max} such that, under the null hypothesis of equality of both covariance matrices,

$$P(F_{min} \le c_{min}) = 0.025$$

and

$$P(F_{max} \ge c_{max}) = 0.025.$$

At a significance level of approximately $\alpha = 5\%$, the null hypothesis is rejected if F_{min} is smaller than c_{min} , or if F_{max} is larger than c_{max} .

Example. Comparison of the Covariance Matrices of Genuine and Forged Bank Notes

This set of data comes from an inquiry that was conducted into genuine and forged thousand franc bills. For each attribute we introduce the following notation.

 X_1 : length of bill = LENGTH.

 X_2 : width of bill, measured on the left = LEFT.

 X_3 : width of bill, measured on the right = RIGHT.

 X_4 : width of margin at the bottom = BOTTOM.

 X_5 : width of margin at the top = TOP.

 X_6 : length of the image diagonal = DIAGONAL.

All measurements are given in millimetres. Below we show the covariance matrices for all six variables in both groups.

Covariance matrix of 100 genuine bills.

	length	left	right	bottom	top	diagonal
length	0.1502	0.0580	0.0573	0.0571	0.0145	0.0055
left	0.0580	0.1326	0.0859	0.0567	0.0491	-0.0431
right	0.0573	0.0859	0.1263	0.0582	0.0306	-0.0238
bottom	0.0571	0.0567	0.0582	0.4132	-0.2635	-0.0002
top	0.0145	0.0491	0.0306	-0.2635	0.4212	-0.0753
diagonal	0.0055	-0.0431	-0.0238	-0.0002	-0.0753	0.1998

Covariance matrix of 100 forged bills.

AL NOSEDAL

	1 1	1 C	. 1 .	1		1. 1
	length	left	rıght	bottom	top	diagonal
length	0.1240	0.0315	0.0240	-0.1006	0.0194	0.0116
left	0.0315	0.0650	0.0468	-0.0240	-0.0119	-0.0050
right	0.0240	0.0468	0.0889	-0.0186	0.0001	0.0342
bottom	-0.1006	-0.0240	-0.0186	1.2813	-0.4902	0.2385
top	0.0194	-0.0119	0.0001	-0.4902	0.4045	-0.0221
diagonal	0.0116	-0.0050	0.0342	0.2385	-0.0221	0.3112

In this example, maximization and minimization of the ratio s_F^2/s_G^2 yields the eigenvalues

 $F_{max} = 6.223, 1.675, 1.052, 0.900, 0.546, 0.284 = F_{min}.$

From the tables of the multivariate F-distribution we obtain the critical values $c_{min} = 0.43$ and $c_{max} = 2.32$. Since $F_{min} < c_{min}$ as well as $F_{max} > c_{max}$, we conclude (at a significance level of approximately 5%) that the two covariance matrices are different.

 $\mathbf{R} \ \mathbf{code}$

genuine

g1<-c(0.1502,0.0580,0.0573,0.0571,0.0145,0.0055)

g2<-c(0,0.1326,0.0859,0.0567,0.0491,-0.0431)

g3<-c(0,0,0.1263,0.0582,0.0306,-0.0238)

g4<-c(0,0,0,0.4132,-0.2635,-0.0002)

g5<-c(0,0,0,0,0.4212,-0.0753)

g6<-c(0,0,0,0,0,0.1998)

SG<-cbind(g1,g2,g3,g4,g5,g6)

NEW.SG<-SG+t(SG)-diag(diag(SG),6,6)</pre>

NEW.SG

forged

f1<-c(0.1240,0.0315,0.0240,-0.1006,0.0194,0.0116)

f2<-c(0,0.0650,0.0468,-0.0240,-0.0119,-0.0050)

f3<-c(0,0,0.0889,-0.0186,0.0001,0.0342)

f4<-c(0,0,0,1.2813,-0.4902,0.2385)

f5<-c(0,0,0,0,0.4045,-0.0221)

f6<-c(0,0,0,0,0,0.3112)

SF<-cbind(f1,f2,f3,f4,f5,f6)

NEW.SF<-SF+t(SF)-diag(diag(SF),6,6)</pre>

NEW.SF

```
## FINDING EIGENVALUES OF PRODUCT
## PROD 1 = (NEW.SG)^{-1} NEW.SF
```

prod1<-solve(NEW.SG)%*%NEW.SF

eigen(prod1)

FINDING EIGENVALUES OF PRODUCT
PROD 2 = (NEW.SF)^{-1} NEW.SG

prod2<-solve(NEW.SF)%*%NEW.SG

eigen(prod2)

1.3. Testing the Equality of Several Covariance Matrices. The hypothesis

$$H_0: \Sigma_1 = \Sigma_2 = \dots = \Sigma_k$$

of the equality of the covariance matrices of k p-dimensional Multinormal populations can be tested against the alternative of general positive definite matrices by a modified generalized likelihood-ratio statistic. Let \mathbf{S}_i be the unbiased estimate of Σ_i based on ν_i degrees of freedom, where $\nu_i = n_i - 1$ for the usual case of a random sample of n_i observation vectors from the *i*th population. When H_0 is true

$$\mathbf{S} = rac{1}{\sum
u_i} \sum_{i=1}^k
u_i \mathbf{S}_i$$

is the pooled estimate of the common covariance matrix. The test statistic is

$$M = \sum_{i=1}^{k} \nu_i ln |\mathbf{S}| - \sum_{i=1}^{k} \nu_i ln |\mathbf{S}_i|$$

it has been shown that if the scale factor

$$C^{-1} = 1 - \frac{2p^2 + 3p - 1}{6(p+1)(k-1)} \left(\sum_{i=1}^k \frac{1}{\nu_i} - \frac{1}{\sum_{i=1}^k \nu_i} \right)$$

is introduced the quantity MC^{-1} is approximately distributed as a chi-squared variate with degrees of freedom $\frac{1}{2}(k-1)p(p+1)$ as the ν_i become larger. If all the ν_i are equal to n,

$$C^{-1} = 1 - \frac{(2p^2 + 3p - 1)(k + 1)}{6(p + 1)(kn)}$$

Example. In a reaction-time study 32 male and 32 female young normal subjects reacted to visual stimuli preceded by warning intervals of different lengths. The sample covariance matrices of reaction times with preparatory intervals of 0.5 and 15 sec were

$$\mathbf{S}_{M} = \begin{pmatrix} 4.32 & 1.88\\ 1.88 & 9.18 \end{pmatrix},$$
$$\mathbf{S}_{F} = \begin{pmatrix} 2.52 & 1.90\\ 1.90 & 10.06 \end{pmatrix},$$

where the elements are in units of 10^{-4} sec^2 . It is desired to test the hypothesis of a common covariance matrix in both sexes. Use $\alpha = 0.05$.

Solution

 $p = 2, n_1 = n_2 = 32, \nu_1 = \nu_2 = 31$

$$\mathbf{S} = \frac{31}{62}\mathbf{S}_1 + \frac{31}{62}\mathbf{S}_2 = \begin{pmatrix} 3.42 & 1.89\\ 1.89 & 9.62 \end{pmatrix},$$

$$M = 62ln(29.328) - 31[ln(36.123) + ln(21.741)] = 2.82$$

 $C^{-1} = 0.965$, and since $MC^{-1} = 2.72$ is much smaller than the percentage point $\chi^2_{0.05,3} = 7.81$, we conclude that the null hypothesis is indeed tenable.

Exercise Test the hypothesis $H_0: \Sigma_1 = \Sigma_2$ for the psychological data.

1.4. Independence of Two Subvectors. Suppose the observation vector is partitioned into two subvectors of interest, which we label \mathbf{y} and \mathbf{x} , where \mathbf{y} is $p \times 1$ and \mathbf{x} is $q \times 1$. The corresponding partitioning of the population covariance matrix is

$$\mathbf{\Sigma} = \left(egin{array}{cc} \mathbf{\Sigma}_{yy} & \mathbf{\Sigma}_{yx} \ \mathbf{\Sigma}_{xy} & \mathbf{\Sigma}_{xx} \end{array}
ight),$$

with analogous partitioning of \mathbf{S} and \mathbf{R}

$$\mathbf{S} = \left(egin{array}{cc} \mathbf{S}_{yy} & \mathbf{S}_{yx} \ \mathbf{S}_{xy} & \mathbf{S}_{xx} \end{array}
ight), \ \mathbf{R} = \left(egin{array}{cc} \mathbf{R}_{yy} & \mathbf{R}_{yx} \ \mathbf{R}_{xy} & \mathbf{R}_{xx} \end{array}
ight),$$

The hypothesis of independence of \mathbf{y} and \mathbf{x} can be expressed as

$$H_0: \mathbf{\Sigma} = \left(\begin{array}{cc} \mathbf{\Sigma}_{yy} & \mathbf{O} \\ \mathbf{O} & \mathbf{\Sigma}_{xx} \end{array}\right),$$

or $H_0: \Sigma_{yx} = \mathbf{O}$.

The likelihood ratio test statistic for $H_0: \Sigma_{yx} = \mathbf{O}$ is given by

$$\Lambda = \frac{|\mathbf{S}|}{|\mathbf{S}_{yy}||\mathbf{S}_{xx}|} = \frac{|\mathbf{R}|}{|\mathbf{R}_{yy}||\mathbf{R}_{xx}|}$$

which is distributed as $\Lambda_{p,q,n-1-q}$. We reject H_0 if $\Lambda \leq \Lambda_{\alpha}$. Critical values for Wilk's Λ are given in Table A.9 using $\nu_H = q$ and $\nu_E = n - 1 - q$.

Example In an investigation of the relation of the Wechsler Adult Intelligence Scale to age. Researchers obtained this matrix of correlations among the digit span and vocabulary subsets, chronological age, and years of formal education:

$$\mathbf{R} = \begin{pmatrix} 1 & 0.45 & -0.19 & 0.43 \\ 0.45 & 1 & -0.02 & 0.62 \\ -0.19 & -0.02 & 1 & -0.29 \\ 0.43 & 0.62 & -0.29 & 1 \end{pmatrix},$$

The sample consisted of N = 933 men and women aged 25 to 64. From these data we wish to test at level $\alpha = 0.05$ the hypothesis that the pair of WAIS subtest variates is distributed independently of the age and education variates.

Solution

 $p = q = 2, \nu_H = 2, \text{ and } \nu_E = 933 - 1 - 2 = 930$ $|\mathbf{R}| = 0.4015025$ $|\mathbf{R}_{xx}| = 0.7975$ $|\mathbf{R}_{yy}| = 0.9159$

AL NOSEDAL

$$\Lambda = \frac{|\mathbf{R}|}{|\mathbf{R}_{yy}||\mathbf{R}_{xx}|} = \frac{0.4015025}{(0.7975)(0.9159)} = 0.5497$$

$\Lambda_{0.05,2,2,930} \approx 0.9955$

Since $\Lambda = 0.5497 < \Lambda_{0.05,2,2,930} \approx 0.9955$, we reject the hypothesis of independence. We must conclude that the subtests are dependent upon age and education.

Exercise Test independence of (y_1, y_2) and (x_1, x_2) for the sons data (sons.dat).

2. Appendix

Let now S_1 and S_2 denote the $p \times p$ covariance matrices of two samples. To find the linear combinations with extreme variance ratios, we form the ratio

$$\frac{a' S_2 a}{a' S_1 a} = \frac{a' S_1^{1/2} S_1^{-1/2} S_2 S_1^{-1/2} S_1^{1/2} a}{a' S_1^{1/2} S_1^{1/2} a}$$

Let $\mathbf{x} = \mathbf{S}_1^{1/2} \mathbf{a}$ and recall that $(\mathbf{S}_1^{1/2})' = \mathbf{S}_1^{1/2}$, then

$$\max_{\mathbf{a}} \frac{\mathbf{a'} \mathbf{S_2} \mathbf{a}}{\mathbf{a'} \mathbf{S_1} \mathbf{a}} = \max_{\mathbf{x}} \frac{\mathbf{x'} \mathbf{S_1^{-1/2}} \mathbf{S_2} \mathbf{S_1^{-1/2}} \mathbf{x}}{\mathbf{x'} \mathbf{x}}$$

Using our result for maximization of quadratic forms from tutorial 4, we have

$$\max_{\mathbf{x}} \frac{\mathbf{x}' \mathbf{S}_1^{-1/2} \mathbf{S}_2 \mathbf{S}_1^{-1/2} \mathbf{x}}{\mathbf{x}' \mathbf{x}} = \lambda_1$$

where λ_1 is the largest eigenvalue of $\mathbf{S}_1^{-1/2} \mathbf{S}_2 \mathbf{S}_1^{-1/2}$. Now, using the definition of similar matrices and the fact that similar matrices have the same eigenvalues, we can show that λ_1 is also the largest eigenvalue of $\mathbf{S}_1^{-1} \mathbf{S}_2$ (again, see tutorial 4).

Table 11.3	Upper	2.5%	quantiles	of the	largest	characteristic roo	t of	the	multivariate	F-matrix
------------	-------	------	-----------	--------	---------	--------------------	------	-----	--------------	----------

P=2															
v_2/v_1	43	53	63	73	83	103	123	143	173	203	243	283	343	403	603
43 53 63 73 83 103 143 173 203 243 343 403 603 P=3 	2.245 2.124 2.043 1.985 1.942 1.881 1.881 1.781 1.759 1.739 1.739 1.724 1.709 1.698 1.677	2.188 2.065 1.983 1.924 1.880 1.777 1.747 1.747 1.746 1.693 1.657 1.642 1.630 1.609	2.147 2.023 1.940 1.881 1.836 1.773 1.771 1.701 1.689 1.646 1.624 1.609 1.592 1.581 1.559	$\begin{array}{c} 2.117\\ 1.992\\ 1.908\\ 1.848\\ 1.803\\ 1.6739\\ 1.696\\ 1.666\\ 1.633\\ 1.609\\ 1.587\\ 1.555\\ 1.543\\ 1.520\end{array}$	2.094 1.968 1.884 1.823 1.777 1.713 1.669 1.638 1.604 1.581 1.558 1.525 1.513 1.439	2.060 1.933 1.847 1.786 1.739 1.629 1.597 1.562 1.538 1.515 1.498 1.480 1.467 1.443	2.036 1.908 1.822 1.760 1.713 1.646 1.601 1.568 1.532 1.507 1.483 1.468 1.448 1.434 1.409	2.019 1.891 1.804 1.741 1.693 1.626 1.579 1.546 1.510 1.484 1.460 1.442 1.423 1.410 1.384	2.001 1.871 1.784 1.720 1.672 1.603 1.556 1.552 1.485 1.459 1.445 1.459 1.435 1.382 1.355	1.988 1.857 1.769 1.705 1.656 1.539 1.505 1.467 1.440 1.414 1.396 1.375 1.361	1.975 1.844 1.755 1.691 1.571 1.523 1.488 1.449 1.422 1.395 1.376 1.376 1.350 1.340 1.311	1.966 1.834 1.745 1.680 1.631 1.5511 1.475 1.436 1.408 1.381 1.361 1.340 1.325 1.295	1.956 1.824 1.734 1.669 1.619 1.547 1.498 1.461 1.422 1.393 1.366 1.345 1.323 1.307 1.276	1.949 1.817 1.727 1.661 1.538 1.488 1.452 1.412 1.383 1.354 1.334 1.334 1.334 1.295 1.263	1.936 1.803 1.712 1.645 1.594 1.521 1.470 1.433 1.391 1.361 1.332 1.310 1.287 1.269 1.235
v_2/v_1	44	54	64	74	84	104	124	144	174	204	244	284	344	404	604
44 54 64 74 104 124 144 204 244 284 344 404 604	2.588 2.418 2.306 2.226 2.167 2.084 2.030 1.990 1.949 1.920 1.893 1.873 1.853 1.811	2.516 2.345 2.232 2.152 2.092 2.008 1.953 1.913 1.871 1.871 1.841 1.814 1.773 1.758 1.730	2.465 2.293 2.180 2.099 2.038 1.954 1.857 1.814 1.784 1.756 1.735 1.714 1.699 1.670	2.427 2.255 2.140 2.059 1.998 1.912 1.855 1.814 1.771 1.740 1.711 1.691 1.689 1.653 1.624	2.398 2.225 2.110 2.028 1.966 1.880 1.822 1.781 1.737 1.706 1.676 1.655 1.633 1.617 1.587	2.356 2.181 2.065 1.982 1.920 1.832 1.773 1.731 1.686 1.654 1.624 1.624 1.602 1.579 1.563 1.531	$\begin{array}{c} 2.326\\ 2.151\\ 2.034\\ 1.950\\ 1.887\\ 1.798\\ 1.739\\ 1.696\\ 1.650\\ 1.617\\ 1.586\\ 1.564\\ 1.564\\ 1.523\\ 1.491 \end{array}$	$\begin{array}{c} 2.305\\ 2.128\\ 2.011\\ 1.927\\ 1.863\\ 1.713\\ 1.669\\ 1.622\\ 1.589\\ 1.558\\ 1.535\\ 1.510\\ 1.493\\ 1.460\\ \end{array}$	2.281 2.104 1.986 1.901 1.837 1.746 1.684 1.640 1.592 1.558 1.526 1.503 1.477 1.459 1.425	2.265 2.087 1.968 1.882 1.818 1.726 1.664 1.619 1.570 1.536 1.503 1.479 1.453 1.434 1.399	2.248 2.070 1.950 1.864 1.799 1.707 1.644 1.598 1.549 1.514 1.480 1.455 1.428 1.410 1.373	2.237 2.058 1.938 1.851 1.786 1.692 1.583 1.533 1.497 1.462 1.437 1.410 1.391 1.353	2.224 2.045 1.924 1.837 1.771 1.613 1.566 1.515 1.479 1.444 1.418 1.390 1.370 1.331	$\begin{array}{c} 2.216\\ 2.036\\ 1.915\\ 1.827\\ 1.761\\ 1.686\\ 1.601\\ 1.554\\ 1.503\\ 1.466\\ 1.430\\ 1.404\\ 1.375\\ 1.355\\ 1.315\end{array}$	2.199 2.018 1.896 1.808 1.741 1.645 1.579 1.531 1.478 1.440 1.440 1.376 1.324 1.324
P=6															
 v. /v	45	55	65	75	8 E	105	125	145	175	205	245	285	745	60E	605
45 55 65 75 85 105 125 145 175 245 245 245 245 345 605	2.908 2.689 2.545 2.444 2.369 2.264 2.195 2.146 2.094 2.058 2.024 2.024 2.024 2.000 1.974 1.957 1.923	2.825 2.605 2.460 2.359 2.283 2.178 2.108 2.006 1.969 1.969 1.935 1.910 1.884 1.866 1.831	2.765 2.545 2.400 2.227 2.221 2.115 2.044 1.941 1.941 1.941 1.941 1.869 1.869 1.864 1.817 1.799 1.764	2.721 2.499 2.354 2.251 2.174 2.067 1.996 1.995 1.852 1.854 1.818 1.793 1.766 1.747 1.711	2.686 2.464 2.318 2.215 2.138 2.030 1.958 1.907 1.852 1.814 1.778 1.753 1.725 1.706 1.669	2.636 2.413 2.266 2.162 2.084 1.974 1.972 1.850 1.794 1.755 1.718 1.692 1.664 1.644 1.606	2.601 2.377 2.229 2.124 2.046 1.935 1.862 1.809 1.753 1.718 1.675 1.648 1.675 1.648 1.619 1.599 1.560	2.575 2.351 2.202 2.097 2.018 1.906 1.832 1.779 1.721 1.681 1.643 1.645 1.586 1.565 1.525	2.547 2.322 2.173 2.067 1.987 1.875 1.799 1.745 1.687 1.646 1.548 1.548 1.548 1.548 1.526 1.485	2.527 2.301 2.152 2.045 1.965 1.851 1.775 1.661 1.620 1.551 1.551 1.551 1.551 1.498 1.456	2.508 2.281 2.131 2.024 1.943 1.829 1.752 1.696 1.553 1.554 1.553 1.554 1.469 1.426	2.494 2.267 2.116 2.008 1.927 1.812 1.735 1.618 1.575 1.534 1.554 1.547 1.448 1.403	2.479 2.251 2.100 1.992 1.910 1.795 1.716 1.659 1.554 1.554 1.552 1.481 1.448 1.424 1.378	2.468 2.240 2.089 1.980 1.980 1.898 1.782 1.703 1.646 1.584 1.539 1.496 1.465 1.465 1.465 1.407 1.359	2.448 2.219 2.067 1.957 1.875 1.757 1.677 1.619 1.555 1.510 1.465 1.445 1.398 1.372 1.322
P=5															
v_2/v_2	46	56	66	76	86	106	126	146	176	206	246	286	346	406	606
46 56 66 106 126 146 176 206 246 286 346	3.220 2.949 2.772 2.649 2.557 2.430 2.347 2.288 2.226 2.182 2.142 2.142 2.142 2.142 2.142	3.125 2.854 2.678 2.554 2.334 2.250 2.191 2.128 2.084 2.043 2.014 1.983	3.058 2.786 2.609 2.485 2.393 2.265 2.180 2.120 2.057 2.013 1.971 1.941 1.910	3.007 2.735 2.558 2.433 2.340 2.213 2.126 2.066 2.002 1.957 1.915 1.885 1.885	2.967 2.695 2.517 2.392 2.299 2.170 2.084 2.023 1.959 1.913 1.871 1.840 1.808	2.909 2.636 2.458 2.332 2.238 2.108 2.021 1.959 1.894 1.848 1.804 1.773 1.760	2.869 2.596 2.417 2.290 2.196 2.064 1.976 1.914 1.847 1.801 1.756 1.725	2.839 2.565 2.386 2.259 2.164 2.031 1.943 1.880 1.813 1.765 1.720 1.688	2.807 2.533 2.352 2.224 2.129 1.995 1.995 1.842 1.774 1.726 1.680 1.6647	2.784 2.509 2.328 2.200 2.104 1.969 1.815 1.745 1.697 1.650 1.617	2.762 2.486 2.305 2.176 2.079 1.944 1.853 1.788 1.718 1.668 1.621 1.586	2.746 2.470 2.288 2.158 2.061 1.925 1.834 1.768 1.697 1.647 1.599 1.564 1.526	2.728 2.452 2.269 2.139 2.042 1.905 1.813 1.746 1.674 1.674 1.624 1.575 1.539	2.716 2.439 2.256 2.126 2.028 1.891 1.798 1.731 1.658 1.607 1.557 1.557 1.521	2.693 2.415 2.231 2.100 2.002 1.863 1.768 1.700 1.626 1.574 1.522 1.485 1.485

Table 11.3 (Continued)

P=6															
v_2/v_1	47	57	67	77	87	107	127	147	177	207	247	287	347	407	607
47 57 67 107 127 147 147 207 247 287 347 407	3.527 3.202 2.992 2.845 2.737 2.587 2.489 2.420 2.347 2.297 2.249 2.216 2.180 2.155	3.422 3.098 2.888 2.741 2.633 2.483 2.385 2.315 2.242 2.191 2.144 2.110 2.074 2.074	3.347 3.023 2.813 2.666 2.557 2.407 2.308 2.238 2.165 2.114 2.065 2.031 1.995 1.969	3.290 2.966 2.756 2.609 2.500 2.349 2.250 2.179 2.105 2.054 2.054 2.005 1.970 1.934 1.908	3.246 2.922 2.711 2.564 2.455 2.303 2.204 2.133 2.058 2.006 1.957 1.922 1.885	3.181 2.856 2.646 2.497 2.388 2.235 2.134 2.063 1.987 1.934 1.884 1.884 1.811 1.784	3.136 2.811 2.599 2.451 2.340 2.187 2.085 2.013 1.937 1.883 1.832 1.796 1.757 1.730	3.102 2.777 2.565 2.416 2.305 2.151 2.049 1.976 1.898 1.844 1.793 1.756 1.717 1.689	3.066 2.740 2.528 2.378 2.266 2.111 2.008 1.934 1.856 1.801 1.749 1.711 1.671 1.643	3.040 2.714 2.501 2.350 2.238 2.082 1.978 1.904 1.825 1.769 1.716 1.678 1.637	3.015 2.688 2.474 2.324 2.211 2.054 1.949 1.874 1.794 1.738 1.684 1.645 1.663	2.996 2.669 2.455 2.304 2.191 2.034 1.928 1.722 1.714 1.660 1.620 1.578	2.977 2.649 2.435 2.283 2.170 2.011 1.905 1.829 1.633 1.593 1.550	2.963 2.635 2.420 2.268 2.154 1.995 1.888 1.811 1.729 1.670 1.614 1.573 1.529	2.936 2.607 2.392 2.239 2.125 1.964 1.856 1.778 1.694 1.634 1.576 1.534 1.534 1.488
607	2.109	2.002	1.922	1.860	1.810	1.734	1.679	1.637	1.589	1.553	1.517	1.490	1.459	1.437	1.391
P = 7															
v_2/v_1	48	58	68	78	88	108	128	148	178	208	248	288	348	408	608
48 58 68 78 88 108 128 148 148 248 248 248 248 348	3.833 3.451 3.206 3.036 2.910 2.738 2.625 2.545 2.462 2.404 2.350 2.311 2.271 2.271	3.719 3.339 3.095 2.924 2.799 2.626 2.513 2.434 2.350 2.292 2.237 2.199 2.158 2.129	3.636 3.257 3.013 2.843 2.717 2.545 2.431 2.351 2.267 2.209 2.154 2.115 2.074 2.074 2.045	3.574 3.195 2.951 2.781 2.655 2.482 2.368 2.288 2.203 2.145 2.090 2.050 2.009 1.980	3.525 3.147 2.902 2.732 2.606 2.432 2.318 2.238 2.153 2.094 2.038 1.998 1.927	3.453 3.075 2.830 2.659 2.533 2.359 2.244 2.162 2.076 2.017 1.960 1.920 1.877 1.847	3.407 3.025 2.780 2.608 2.482 2.306 2.191 2.108 2.022 1.961 1.904 1.863 1.820 1.790	3.366 2.987 2.742 2.570 2.443 2.267 2.151 2.068 1.981 1.919 1.861 1.820 1.776 1.745	3.326 2.946 2.701 2.529 2.401 2.224 2.107 2.023 1.935 1.873 1.814 1.772 1.727 1.695	3.297 2.917 2.671 2.498 2.370 2.192 2.074 1.990 1.901 1.838 1.779 1.736 1.690 1.658	3.268 2.889 2.642 2.469 2.340 2.162 2.043 1.958 1.868 1.804 1.744 1.744 1.700 1.654 1.654	3.248 2.868 2.621 2.447 2.318 2.139 2.020 1.934 1.843 1.779 1.718 1.674 1.626 1.593	3.226 2.845 2.598 2.424 2.295 2.114 1.994 1.908 1.816 1.751 1.689 1.644 1.596 1.562	3.210 2.830 2.582 2.408 2.278 2.097 1.976 1.889 1.797 1.731 1.668 1.623 1.574 1.539	3.180 2.799 2.551 2.376 2.245 2.063 1.941 1.853 1.758 1.691 1.627 1.589 1.529 1.529 1.493
408	2.243	2.076	1.991	1.925	1.872	1.791	1.732	1.687	1.635	1.597	1.538	1.529	1.496	1.472	1.422
408 608 P=8	2.243	2.076	1.991	1.925	1.872	1.791	1.732	1.687	1.635	1.597	1.538	1.529	1.496	1.472	1.422
P=8 v_2/v_1	2.243 2.190	2.076	69	79	89	1.791	1.732	1.687	1.635	200	1.558	1.529	1.496	1.472	1.422
$P=8 v_2/v_1$ 49 59 69 79 89 109 129 149 179 209 249 249 249 249 609 609	49 4.139 3.699 3.418 3.223 2.755 2.665 2.571 2.505 2.444 2.401 2.355 2.354 2.264	59 4.016 3.579 3.298 3.104 2.765 2.637 2.547 2.547 2.387 2.326 2.283 2.237 2.205 2.145	69 3.927 3.491 3.211 3.017 2.874 2.678 2.550 2.460 2.365 2.300 2.238 2.195 2.149 2.117 2.056	79 3.859 3.424 3.145 2.950 2.808 2.611 2.483 2.393 2.298 2.232 2.170 2.126 2.080 2.080 1.987	89 3.806 3.371 3.092 2.898 2.755 2.558 2.430 2.339 2.244 2.177 2.115 2.071 2.024 1.992 1.930	1.791 109 3.728 3.293 3.014 2.820 2.676 2.479 2.350 2.258 2.162 2.095 2.033 1.988 1.940 1.907 1.845	1.732 129 3.673 3.238 2.959 2.764 2.621 2.423 2.293 2.201 2.104 2.036 1.973 1.927 1.879 1.846 1.782	1.687 149 3.632 3.198 2.918 2.723 2.579 2.381 2.250 2.157 2.060 1.992 1.927 1.881 1.833 1.799 1.734	1.635 179 3.588 3.153 2.678 2.533 2.334 2.203 2.109 2.011 1.942 1.876 1.830 1.780 1.745 1.679	209 3.555 3.121 2.841 2.645 2.500 2.168 2.074 1.974 1.975 1.839 1.791 1.741 1.706 1.638	249 3.524 3.090 2.809 2.613 2.468 2.267 2.134 2.039 1.939 1.868 1.801 1.753 1.702 1.666 1.597	289 3.502 3.067 2.786 2.590 2.444 2.242 2.109 2.013 1.912 1.841 1.773 1.725 1.673 1.636 1.566	349 3.477 3.042 2.761 2.564 2.216 2.081 1.985 1.883 1.811 1.743 1.693 1.640 1.603 1.531	409 3.460 3.025 2.743 2.546 2.400 2.197 2.062 1.965 1.862 1.790 1.627 1.617 1.578 1.505	609 3.427 2.991 2.709 2.511 2.364 2.160 2.023 1.926 1.821 1.747 1.676 1.625 1.569 1.529 1.452
$\begin{array}{c} v_{10} \\ v_{10} \\ v_{2} \\ v_{1} \\ v_{2} \\ v_{1} \\ v_{1} \\ v_{2} \\ v_{2} \\ v_{1} \\ v_{2} \\ v_{2} \\ v_{1} \\ v_{2} \\ v_{1} \\ v_{2} \\ v_{2} \\ v_{2} \\ v_{1} \\ v_{2} \\ v_{2}$	49 4.139 3.699 3.418 3.223 2.755 2.665 2.571 2.505 2.444 2.401 2.355 2.324 2.264	59 4.016 3.579 3.298 3.104 2.961 2.765 2.637 2.547 2.547 2.326 2.283 2.237 2.205 2.145	69 3.927 3.491 3.211 3.017 2.874 2.678 2.550 2.460 2.365 2.300 2.238 2.195 2.149 2.117 2.056	79 3.859 3.424 3.145 2.950 2.808 2.611 2.483 2.298 2.232 2.170 2.126 2.080 2.047 1.987	89 3.806 3.371 3.092 2.898 2.755 2.558 2.430 2.339 2.244 2.177 2.115 2.071 2.024 1.992 1.930	1.791 109 3.728 3.293 3.014 2.820 2.676 2.479 2.350 2.258 2.162 2.095 2.033 1.988 1.940 1.907 1.845	1.732 129 3.673 3.238 2.959 2.764 2.621 2.423 2.293 2.201 2.104 2.036 1.973 1.879 1.879 1.846 1.782	1.687 149 3.632 3.193 2.918 2.723 2.579 2.381 2.250 2.157 2.060 1.992 1.927 1.881 1.833 1.799 1.734	1.635 179 3.588 3.153 2.873 2.678 2.533 2.334 2.203 2.109 2.011 1.942 1.876 1.830 1.780 1.745 1.679	209 3.555 3.121 2.841 2.645 2.500 2.300 2.300 2.300 2.168 2.074 1.974 1.905 1.839 1.791 1.741 1.706 1.638	249 3.524 3.090 2.613 2.468 2.267 2.134 2.039 1.939 1.868 1.801 1.753 1.702 1.666 1.597	289 3.502 3.067 2.786 2.590 2.444 2.242 2.109 2.013 1.912 1.841 1.773 1.636 1.566	349 3.477 3.042 2.761 2.564 2.216 2.081 1.985 1.883 1.811 1.743 1.693 1.640 1.603 1.531	409 3.460 3.025 2.743 2.546 2.400 2.197 2.062 1.965 1.862 1.790 1.720 1.617 1.578 1.505	609 3.427 2.991 2.709 2.511 2.364 2.160 2.023 1.926 1.821 1.747 1.676 1.625 1.529 1.452
$\begin{array}{c} P=8 \\ \hline v_2/v_1 \\ 49 \\ 59 \\ 69 \\ 79 \\ 89 \\ 109 \\ 129 \\ 149 \\ 179 \\ 209 \\ 240 \\ 240 $	49 49 4.139 3.699 3.418 3.223 3.079 2.883 2.755 2.665 2.571 2.505 2.444 2.401 2.355 2.324 2.264	59 4.016 3.579 3.298 3.104 2.765 2.637 2.547 2.453 2.387 2.326 2.283 2.237 2.205 2.145	69 3.927 3.491 3.491 3.017 2.874 2.678 2.365 2.365 2.300 2.238 2.195 2.149 2.117 2.056	79 3.859 3.424 3.145 2.950 2.808 2.611 2.483 2.393 2.298 2.232 2.170 2.126 2.080 2.047 1.987 80	89 3.806 3.371 3.092 2.898 2.755 2.558 2.430 2.339 2.244 2.177 2.115 2.071 2.024 1.992 1.930	1.791 109 3.728 3.293 3.014 2.820 2.676 2.479 2.350 2.258 2.162 2.095 2.033 1.988 1.940 1.907 1.845	1.732 129 3.673 3.238 2.959 2.764 2.621 2.423 2.293 2.201 2.104 2.036 1.973 1.927 1.879 1.846 1.782 130	1.687 149 3.632 3.193 2.918 2.723 2.579 2.381 2.250 1.992 1.927 1.881 1.833 1.799 1.734	1.635 179 3.588 3.153 2.678 2.533 2.334 2.203 2.011 1.942 1.876 1.830 1.745 1.679 180	209 3.555 3.121 2.841 2.645 2.500 2.300 2.168 2.074 1.974 1.905 1.839 1.791 1.741 1.706 1.638	249 3.524 3.090 2.809 2.613 2.468 2.267 2.134 2.039 1.939 1.868 1.801 1.753 1.702 1.666 1.597 250	289 3.502 3.067 2.786 2.590 2.444 2.242 2.109 2.013 1.912 1.841 1.773 1.725 1.673 1.636 1.566	349 3.477 3.042 2.761 2.564 2.418 2.216 2.081 1.985 1.883 1.811 1.743 1.693 1.603 1.531	409 3.460 3.025 2.743 2.546 2.400 2.197 2.062 1.965 1.862 1.790 1.720 1.617 1.578 1.505	609 3.427 2.991 2.709 2.511 2.364 2.160 2.023 1.926 1.821 1.747 1.676 1.625 1.529 1.452 610

Table A.9. Lower Critical Values of Wilks $\Lambda, \alpha = .05$

$$\Lambda = \frac{|\mathbf{E}|}{|\mathbf{E} + \mathbf{H}|} = \prod_{i=1}^{s} \frac{1}{1 + \lambda_i},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_s$ are eigenvalues of $\mathbf{E}^{-1}\mathbf{H}$. Reject H_0 if $\Lambda \leq$ table value. ^{*a*} Multiply entry by 10^{-3} .

						v _I	H					
v_E	1	2	3	4	5	6	7	8	9	10	11	12
						p = 1						
1	6.16 ^a	2.50 ^a	1.54 ^a	1.11 ^a	.868 ^a	.712 ^a	.603 ^a	.523 ^a	.462 ^a	.413 ^a	.374 ^a	.341 ^a
2	.098	.050	.034	.025	.020	.017	.015	.013	.011	.010	9.28 ^{<i>a</i>}	8.51 ^a
3	.229	.136	.097	.076	.062	.053	.046	.041	.036	.033	.030	.028
4	.342	.224	.168	.135	.113	.098	.086	.076	.069	.063	.058	.053
5	.431	.302	.236	.194	.165	.144	.128	.115	.104	.096	.088	.082
6	.501	.368	.296	.249	.215	.189	.169	.153	.140	.129	.119	.111
7	.556	.425	.349	.298	.261	.232	.209	.190	.175	.161	.150	.140
8	.601	.473	.396	.343	.303	.271	.246	.225	.208	.193	.180	.169
9	.638	.514	.437	.382	.341	.308	.281	.258	.239	.223	.209	.196
10	.668	.549	.473	.418	.376	.341	.313	.289	.269	.251	.236	.222
11	.694	.580	.505	.450	.407	.372	.343	.318	.297	.278	.262	.247
12	.717	.607	.534	.479	.436	.400	.370	.345	.323	.304	.286	.271
13	.736	.631	.560	.506	.462	.426	.396	.370	.347	.327	.310	.294
14	.753	.652	.583	.529	.486	.450	.420	.393	.370	.350	.332	.315
15	.768	.671	.603	.551	.508	.473	.442	.415	.392	.371	.352	.336
16	.781	.688	.622	.571	.529	.493	.462	.436	.412	.391	.372	.355
17	.792	.703	.639	.589	.548	.512	.482	.455	.431	.410	.390	.373
18	.803	.717	.655	.606	.565	.530	.499	.473	.449	.427	.408	.390
19	.813	.730	.669	.621	.581	.546	.516	.490	.466	.444	.425	.407
20	.821	.741	.683	.636	.596	.562	.532	.505	.482	.460	.440	.423
21	.829	.752	.695	.649	.610	.576	.547	.520	.497	.475	.455	.437
22	.836	.762	.706	.661	.623	.590	.561	.534	.511	.489	.470	.452
23	.843	.771	.717	.673	.635	.603	.574	.548	.524	.503	.483	.465
24	.849	.779	.727	.684	.647	.615	.586	.560	.537	.516	.496	.478
25	.855	.787	.736	.694	.658	.626	.598	.572	.549	.528	.508	.490
26	.860	.794	.744	.703	.668	.637	.609	.583	.560	.539	.520	.502
27	.865	.801	.752	.712	.677	.647	.619	.594	.571	.551	.531	.513
28	.870	.807	.760	.721	.686	.656	.629	.604	.582	.561	.542	.524
29	.874	.813	.767	.729	.695	.665	.638	.614	.592	.571	.552	.535
30	.878	.819	.774	.736	.703	.674	.647	.623	.601	.581	.562	.544
40	.907	.861	.824	.793	.766	.741	.718	.696	.677	.658	.641	.625
60	.938	.905	.879	.856	.835	.816	.798	.781	.766	.751	.736	.723
80	.953	.928	.907	.889	.873	.858	.843	.829	.816	.804	.792	.780
100	.962	.942	.925	.910	.897	.884	.872	.860	.849	.838	.828	.818
120	.968	.951	.937	.925	.913	.902	.891	.882	.872	.863	.854	.845
140	.973	.958	.946	.935	.925	.915	.906	.897	.889	.881	.873	.865
170	.978	.965	.955	.946	.937	.929	.922	.914	.907	.900	.893	.887
200	.981	.970	.962	.954	.947	.940	.933	.926	.920	.914	.908	.902
240	.984	.975	.968	.961	.955	.949	.944	.938	.933	.928	.923	.918
320	.988	.981	.976	.971	.966	.962	.957	.953	.949	.945	.941	.937
440	.991	.986	.982	.979	.975	.972	.969	.966	.963	.960	.957	.954
600	.994	.990	.987	.984	.982	.979	.977	.975	.972	.970	.968	.966
800	.995	.993	.990	.988	.986	.984	.983	.981	.979	.977	.976	.974
1000	.996	.994	.992	.991	.989	.988	.986	.985	.983	.982	.981	.979
											(cor	tinued)

							v_H					
ν_E	1	2	3	4	5	6	7	8	9	10	11	12
						p =	2					
1	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2	2.50 ^a	.641 ^a	.287 ^a	.162 ^a	.104 ^a	.072 ^a	.053 ^a	.041 ^a	.032 ^a	.026 ^a	.022 ^a	.018 ^a
3	.050	.018	9.53 ^a	5.84 ^a	3.95 ^a	2.85 ^a	2.15 ^a	1.68 ^a	1.35 ^a	1.11 ^a	.928 ^a	.787 ^a
4	.136	.062	.036	.023	.017	.012	9.56 ^a	7.62 ^{<i>a</i>}	6.21 ^{<i>a</i>}	5.17 ^a	4.36 ^a	3.73 ^a
5	.224	.117	.074	.051	.037	.028	.023	.018	.015	.013	.011	.009
6	.302	.175	.116	.084	.063	.049	.040	.033	.027	.023	.020	.017
7	.368	.230	.160	.119	.092	.074	.060	.050	.042	.036	.032	.028
8	.4256	.280	.203	.155	.122	.099	.082	.069	.059	.051	.045	.040
10	.4/3	.326	.243	.190	.153	.126	.106	.090	.078	.068	.060	.053
10	.514	.367	.281	.223	.183	.152	.129	.111	.097	.085	.075	.067
11	.549	.404	.310	.200	.212	.179	.153	.133	.110	.102	.091	.082
12	.500	.457	.340	.200	.240	.204	.170	.154	.150	.120	.108	.097
13	631	.407	.576	340	.200	.229	.199	.175	.155	.138	.124	.112
15	652	510	.405	365	315	275	242	215	103	174	157	.120
16	671	542	454	389	337	296	263	235	211	101	174	150
17	.688	562	476	410	359	317	282	254	229	208	190	174
18	.703	.581	.496	.431	379	337	301	272	246	225	206	189
19	.717	.598	.515	.450	.398	.355	.320	.289	.263	.241	221	.204
20	.730	.614	.532	.468	.416	.373	.337	.306	.279	.256	.236	.218
21	.741	.629	.548	.485	.433	.390	.354	.322	.295	.271	.251	.232
22	.752	.643	.564	.501	.449	.406	.370	.338	.310	.286	.265	.246
23	.762	.656	.578	.516	.465	.422	.385	.353	.325	.300	.279	.259
24	.771	.668	.591	.530	.479	.436	.399	.367	.339	.314	.292	.272
25	.779	.679	.604	.544	.493	.450	.413	.381	.353	.328	.305	.285
26	.787	.689	.616	.556	.506	.464	.427	.395	.366	.341	.318	.297
27	.794	.699	.627	.568	.519	.477	.440	.407	.379	.353	.330	.309
28	.801	.708	.638	.580	.531	.489	.452	.420	.391	.365	.342	.321
29	.807	.717	.648	.591	.542	.501	.464	.432	.403	.377	.354	.332
30	.813	.725	.657	.601	.553	.512	.475	.443	.414	.388	.365	.344
40	.858	.786	.730	.682	.640	.602	.568	.537	.509	.484	.460	.439
60	.903	.853	.811	.774	.741	.710	.682	.656	.632	.609	.588	.568
80	.927	.888	.854	.825	.798	.772	.749	.727	.706	.686	.667	.649
100	.941	.909	.882	.857	.834	.813	.793	.774	.755	.738	.721	.705
120	.951	.924	.900	.879	.860	.841	.823	.807	.791	.775	.760	.746
140	.958	.934	.914	.895	.878	.862	.846	.831	.817	.803	.790	.777
200	.905	.940	.929	.913	.898	.885	.8/1	.859	.846	.834	.823	.812
200	.970	.934	.939	.920	.913	.901	.889	.8/8	.80/	.85/	.84/	.83/
240	.973	071	.949	.938	.921	.917	.907	.89/	.888	.8/9	.870	.802
320 110	.701	070	.902	.933	.943	.931	.929	.922	.914	.907	.901	.094
600	900	981	970	975	070	.935	.940	057	.937	040	.920	.921
800	993	988	984	981	977	974	971	968	965	962	050	956
1000	.994	.991	.987	.985	.982	.979	.977	.974	.972	.969	.967	.964

5	6	8
_	_	-

Table A.9.	(Continued)
Table A.J.	(Commuca)

							VH					
ν_E	1	2	3	4	5	6	7	8	9	10	11	12
						<i>p</i> =	= 3					
1	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2	.000	.000	.000	.000	.000	.001 ^a	.002 ^a	.004 ^a	.005 ^a	.008 ^a	.010 ^a	.013 ^a
3	1.70 ^a	.354 ^a	.179 ^a	.127 ^a	.105 ^a	.095 ^a	.091 ^a	.090 ^a	.091 ^a	.092 ^a	.095 ^a	.098 ^a
4	.034	.010	.004	.002	.001	.001	.809 ^a	.659 ^a	.562 ^a	.496 ^a	.449 ^a	.416 ^a
5	.097	.036	.018	.010	6.36 ^a	4.37 ^a	3.20 ^a	2.46 ^a	1.97 ^a	1.64 ^{<i>a</i>}	1.40 ^a	1.22^{a}
6	.168	.074	.040	.024	.016	.011	.008	.006	.004	3.94 ^{<i>a</i>}	3.28 ^a	2.79 ^a
7	.236	.116	.068	.043	.029	.021	.016	.012	9.49 ^a	7.67 ^a	6.35 ^{<i>a</i>}	5.35 ^a
8	.296	.160	.099	.066	.046	.034	.026	.020	.016	.013	.011	9.00 ^a
9	.349	.203	.131	.091	.066	.049	.038	.030	.024	.020	.016	.014
10	.396	.243	.164	.117	.086	.066	.052	.041	.034	.028	.023	.020
. 11	.437	.281	.196	.143	.108	.084	.067	.054	.044	.037	.031	.026
12	.473	.316	.226	.169	.130	.103	.083	.067	.056	.047	.040	.034
13	.505	.348	.255	.194	.152	.122	.099	.082	.068	.058	.049	.042
14	.534	.378	.283	.219	.1/4	.141	.116	.096	.081	.069	.059	.051
15	.560	.405	.309	.243	.195	.100	.133	.111	.095	.081	.070	.001
10	.583	.431	.334	.200	.210	.179	.149	.127	.108	.093	.081	.071
10	.003	.454	.337	.200	.230	.197	.100	.142	.122	.100	.092	.001
10	.022	.470	.379	.309	.230	.215	.105	172	140	.110	.104	102
20	.039	.490	.399	.529	.273	.255	.199	.172	163	144	127	.102
20	.033	532	.419	.540	.293	.250	.215	201	177	156	130	124
21	683	548	.457	383	327	282	.230	215	190	169	150	135
22	695	564	470	300	343	202	260	220	203	181	162	146
23	706	578	486	415	359	313	275	243	216	193	173	156
25	717	591	500	430	374	327	289	256	229	205	185	167
26	727	604	514	444	388	341	302	269	241	.217	.196	.178
27	736	616	527	458	401	355	315	.282	.2.53	.229	.207	.188
28	.744	.627	.540	.471	.415	.368	.328	.294	.265	.240	.218	.199
29	.752	.638	.552	.483	.427	.380	.340	.306	.277	.251	.229	.209
30	.760	.648	.563	.495	.439	.392	.352	.318	.288	.262	.239	.219
40	.816	.724	.651	.591	.539	.494	.454	.419	.387	.359	.334	.311
60	.875	.808	.752	.704	.661	.623	.587	.555	.526	.498	.473	.449
80	.905	.853	.808	.769	.733	.700	.670	.641	.615	.590	.566	.544
100	.924	.881	.844	.810	.780	.751	.725	.700	.676	.654	.632	.612
120	.936	.900	.868	.839	.813	.788	.764	.742	.721	.700	.681	.663
140	.945	.913	.886	.861	.837	.815	.794	.774	.755	.736	.719	.702
170	.955	.928	.905	.884	.864	.845	.827	.809	.792	.776	.761	.746
200	.961	.939	.919	.900	.883	.866	.850	.835	.820	.806	.792	.779
240	.968	.949	.932	.916	.901	.887	.873	.860	.848	.835	.823	.811
320	.976	.961	.948	.936	.925	.914	.903	.893	.883	.873	.864	.854
440	.982	.972	.962	.953	.945	.937	.929	.921	.913	.906	.899	.891
600	.987	.979	.972	.966	.959	.953	.947	.941	.936	.930	.924	.919
800	.990	.984	.979	.974	.969	.965	.960	.956	.951	.947	.943	.939
1000	.992	.987	.983	.979	.975	.972	.968	.964	.961	.957	.954	.950

							v_H					
ν_E	1	2	3	4	5	6	7	8	9	10	11	12
						<i>p</i> =	= 4					
1	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
2	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
3	.000	.000	.000	.000	.000	.001 ^a	.001 ^a	.001 ^a	.002 ^a	.002 ^a	.002 ^a	.003 ^a
4	1.384	.292 ^a	.127 ^a	.075 ^a	.052 ^a	.040 ^a	.033 ^a	.029 ^a	.026 ^a	.025 ^a	.023 ^a	.022 ^a
5	.026	6.09 ^a	2.31 ^a	1.13 ^a	.647 ^a	.416 ^a	.292 ^a	.218 ^a	.172 ^a	.141 ^a	.120 ^a	.105 ^a
6	.076	.024	.010	5.07 ^a	2.90 ^a	1.82 ^a	1.22 ^{<i>a</i>}	.872 ^a	.652 ^a	.508 ^a	.409 ^a	.338 ^a
7	.135	.051	.024	.013	7.74 ^a	4.94 ^a	3.34 ^a	2.36 ^a	1.74 ^{<i>a</i>}	1.33 ^a	1.05 ^a	.848 ^a
8	.194	.084	.043	.025	.015	.010	6.98 ^{<i>a</i>}	4.99 ^a	3.70 ^{<i>a</i>}	2.82 ^a	2.21 ^a	1.77 ^a
9	.249	.119	.066	.040	.026	.017	.012	8.91 ^{<i>a</i>}	6.66 ^{<i>a</i>}	5.11 ^a	4.01 ^{<i>a</i>}	3.21 ^a
10	.298	.155	.091	.057	.038	.027	.019	.014	.011	8.29 ^{<i>a</i>}	6.54 ^{<i>a</i>}	5.25 ^a
11	.343	.190	.117	.077	.053	.037	.027	.021	.016	.012	9.84 ^a	7.95 ^a
12	.382	.223	.143	.097	.068	.049	.037	.028	.022	.017	.014	.011
13	.418	.255	.169	.117	.085	.063	.047	.037	.029	.023	.019	.015
14	.450	.286	.194	.138	.102	.077	.059	.046	.037	.030	.024	.020
15	.479	.314	.219	.159	.119	.091	.071	.056	.045	.037	.030	.025
16	.506	.340	.243	.180	.136	.106	.083	.067	.054	.044	.037	.031
17	.529	.365	.266	.200	.154	.121	.096	.078	.064	.053	.044	.037
18	.551	.389	.288	.219	.171	.136	.109	.089	.074	.061	.051	.044
19	.571	.410	.309	.239	.188	.151	.123	.101	.084	.070	.059	.051
20	.589	.431	.329	.257	.205	.166	.136	.113	.094	.079	.068	.058
21	.606	.450	.348	.275	.221	.181	.149	.124	.105	.089	.076	.065
22	.621	.468	.366	.292	.237	.195	.162	.136	.115	.098	.085	.073
23	.636	.485	.383	.309	.253	.210	.175	.148	.126	.108	.093	.081
24	.649	.501	.399	.325	.268	.224	.188	.160	.137	.118	.102	.089
25	.661	.516	.415	.340	.283	.237	.201	.172	.148	.128	.111	.097
26	.673	.530	.430	.355	.297	.251	.214	.183	.158	.138	.120	.106
27	.684	.544	.444	.369	.311	.264	.226	.195	.169	.147	.129	.114
28	.694	.556	.458	.383	.324	.277	.238	.206	.180	.157	.138	.122
29	.703	.568	.471	.396	.337	.289	.250	.217	.190	.167	.147	.131
30	.712	.580	.483	.409	.349	.301	.261	.228	.200	.177	.157	.139
40	.779	.668	.583	.513	.455	.406	.364	.327	.295	.267	.243	.221
60	.849	.767	.700	.643	.592	.547	.507	.471	.438	.409	.382	.357
80	.885	.821	.766	.718	.675	.636	.600	.567	.536	.508	.482	.457
100	.908	.854	.809	.768	.730	.696	.664	.634	.606	.580	.555	.532
120	.923	.877	.838	.802	.770	.739	.711	.684	.658	.634	.611	.590
140	.934	.894	.860	.828	.799	.772	.746	.721	.698	.676	.655	.635
170	.945	.912	.883	.856	.831	.808	.785	.764	.743	.724	.705	.687
200	.953	.925	.900	.876	.855	.834	.814	.795	.777	.759	.742	.726
240	.961	.937	.916	.896	.877	.859	.842	.826	.810	.795	.780	.765
320	.971	.952	.936	.921	.907	.893	.879	.866	.854	.841	.829	.818
440	.979	.965	.953	.942	.931	.921	.911	.901	.891	.882	.872	.863
600	.984	.974	.966	.957	.949	.941	.934	.926	.919	.912	.905	.898
800	.988	.981	.974	.968	.961	.956	.950	.944	.938	.933	.927	.922
1000	.991	.985	.979	.974	.969	.964	.960	.955	.950	.946	.941	.937

Table A.9. (Continued)

		$ u_H$											
v_E	1	2	3	4	5	6	7	8	9	10	11	12	
						p = 3	5						
1	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
2	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
3	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
4	.000	.000	.000	.000	.001 ^a	.001 ^a	.001 ^a						
5	1.60 ^a	.291 ^a	.105 ^a	.052 ^a	.031 ^a	.021 ^a	.015 ^a	.012 ^a	.010 ^a	.008 ^a	.007 ^a	.007 ^a	
6	.021	4.39 ^a	1.48 ^a	.647 ^a	.335 ^a	.197 ^a	.126 ^a	.087 ^a	.064 ^a	.049 ^a	.039 ^a	.032 ^a	
7	.063	.017	6.36 ^{<i>a</i>}	2.90 ^a	1.51 ^a	.872 ^a	.544 ^a	.361 ^a	.253 ^a	.185 ^a	.141 ^a	.110 ^a	
8	.114	.037	.016	7.74 ^a	4.21 ^{<i>a</i>}	2.48 ^{<i>a</i>}	1.56 ^{<i>a</i>}	1.03 ^{<i>a</i>}	.716 ^a	.516 ^a	.385 ^a	.296 ^a	
9	.165	.063	.029	.015	8.79 ^a	5.35 ^a	3.43 ^a	2.30 ^a	1.61 ^{<i>a</i>}	1.16 ^a	.861 ^a	.657 ^a	
10	.215	.092	.046	.026	.015	9.64 ^{<i>a</i>}	6.34 ^{<i>a</i>}	4.34 ^a	3.06 ^a	2.22 ^a	1.66 ^a	1.27 ^a	
11	.261	.122	.066	.038	.024	.015	.010	7.22 ^a	5.17 ^a	3.80 ^a	2.86 ^a	2.19 ^a	
12	.303	.153	.086	.053	.034	.022	.015	.011	7.99 ^a	5.95 ^a	4.51 ^a	3.49 ^a	
13	.341	.183	.108	.068	.045	.031	.022	.016	.012	8.68 ^{<i>a</i>}	6.66 ^a	5.19 ^a	
14	.376	.212	.130	.085	.057	.040	.029	.021	.016	.012	9.31 ^a	7.32 ^a	
15	.407	.239	.152	.102	.070	.050	.037	.027	.021	.016	.012	9.88 ^{<i>a</i>}	
16	.436	.266	.174	.119	.084	.061	.045	.034	.026	.020	.016	.013	
17	.462	.291	.195	.136	.098	.072	.054	.042	.032	.025	.020	.016	
18	.486	.315	.216	.154	.113	.084	.064	.050	.039	.031	.025	.020	
19	.508	.337	.236	.171	.127	.096	.074	.058	.046	.037	.030	.024	
20	.529	.359	.256	.188	.142	.109	.085	.067	.053	.043	.035	.029	
21	.548	.379	.275	.205	.156	.121	.095	.076	.061	.050	.041	.034	
22	.565	.398	.293	.221	.171	.134	.106	.085	.069	.057	.047	.039	
23	.581	.416	.310	.237	.185	.146	.117	.095	.077	.064	.053	.044	
24	.596	.433	.327	.253	.199	.159	.128	.104	.086	.071	.060	.050	
25	.610	.449	.343	.268	.213	.171	.139	.114	.094	.079	.066	.056	
26	.623	.465	.359	.283	.226	.183	.150	.124	.103	.087	.073	.062	
27	.635	.479	.374	.297	.239	.195	.161	.134	.112	.094	.080	.068	
28	.647	.493	.388	.311	.252	.207	.172	.143	.121	.102	.087	.075	
29	.658	.506	.401	.324	.265	.219	.182	.153	.130	.110	.094	.081	
30	.668	.519	.415	.337	.277	.230	.193	.163	.138	.118	.102	.088	
40	.744	.617	.522	.446	.384	.333	.291	.255	.224	.198	.176	.156	
60	.825	.729	.652	.587	.531	.482	.438	.400	.366	.336	.308	.284	
80	.867	.791	.727	.672	.623	.578	.538	.502	.469	.438	.410	.385	
100	.893	.830	.//6	.728	.685	.645	.609	.576	.544	.516	.489	.464	
120	.910	.856	.810	.768	.730	.694	.661	.631	.602	.575	.549	.525	
140	.923	.876	.835	.798	.763	.731	.701	.673	.647	.621	.598	.575	
170	.936	.897	.862	.830	.801	.773	./4/	.722	.698	.6/5	.654	.633	
200	.945	.912	.882	.854	.828	.803	./80	./58	./36	./16	.696	.677	
240	.954	.926	.900	.8/7	.835	.833	.813	. 193	.115	./5/	./39	.122	
300	.966	.944	.925	.906	.889	.872	.830	.841	.825	.811	.191	.183	
440	.975	.959	.945	.931	.918	.905	.893	.881	.870	.858	.84/	.830	
000	.982	.970	.939	.949	.939	.930	.920	.911	.903	.894	.000	.0//	
1000	.980	.9//	.909	.901	.934	.947	.940	.933	.920	.919	020	024	

		ν _H											
v_E	1	2	3	4	5	6	7	8	9	10	11	12	
						p = 6	ò						
1	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
2	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
3	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
4	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
5	.007 ^a	.002 ^a	.001 ^a	.001 ^a	.001 ^a	.000	.000	.000	.000	.000	.000	.000	
6	2.04 ^a	.315 ^a	.095 ^a	.040 ^a	.021 ^a	.012 ^a	.008 ^a	.006 ^a	.004 ^a	.003 ^a	.003 ^a	.002 ^a	
7	.019	3.48 ^a	1.05 ^a	.416 ^a	.197 ^a	.106 ^a	.063 ^a	.040 ^a	.027 ^a	.020 ^a	.015 ^a	.011 ^a	
8	.054	.013	4.37 ^a	1.82 ^a	.872 ^a	.465 ^a	.270 ^a	.168 ^a	.111 ^a	.076 ^a	.055 ^a	.041 ^a	
9	.098	.029	.011	4.94 ^a	2.48 ^a	1.36 ^a	.798 ^a	.497 ^a	.325 ^a	.222 ^a	.157 ^a	.115 ^a	
10	.144	.050	.021	.010	5.35 ^a	3.04 ^a	1.83 ^a	1.16 ^a	.762 ^a	.521 ^a	.369 ^a	.269 ^a	
11	.189	.074	.034	.017	9.64 ^{<i>a</i>}	5.67 ^a	3.51 ^a	2.26 ^a	1.51 ^a	1.05 ^a	.744 ^a	.543 ^a	
12	.232	.099	.049	.027	.015	9.35 ^a	5.94 ^a	3.92 ^a	2.66 ^a	1.86 ^a	1.34 ^a	.983 ^a	
13	.271	.126	.066	.037	.022	.014	9.17 ^a	6.17 ^a	4.27 ^a	3.03 ^a	2.20^{a}	1.63 ^a	
14	.308	.152	.084	.049	.031	.020	.013	9.07 ^a	6.38 ^{<i>a</i>}	4.59 ^a	3.37 ^a	2.52 ^a	
15	.341	.179	.103	.063	.040	.026	.018	.013	9.00 ^a	6.57 ^a	4.88 ^a	3.68 ^a	
16	.372	.204	.122	.077	.050	.034	.024	.017	.012	8.97 ^a	6.74 ^{<i>a</i>}	5.14 ^a	
17	.400	.229	.141	.091	.061	.042	.030	.021	.016	.012	8.97 ^a	6.90 ^a	
18	.426	.252	.160	.106	.072	.051	.037	.027	.020	.015	.012	8.97 ^a	
19	.450	.275	.179	.121	.084	.060	.044	.033	.025	.019	.015	.011	
20	.473	.296	.197	.136	.096	.070	.052	.039	.030	.023	.018	.014	
21	.493	.317	.215	.151	.109	.080	.060	.045	.035	.027	.021	.017	
22	.512	.337	.233	.166	.121	.090	.068	.052	.041	.032	.025	.020	
23	.530	.355	.250	.181	.134	.101	.077	.060	.047	.037	.030	.024	
24	.546	.373	.266	.195	.146	.111	.086	.067	.053	.042	.034	.028	
25	.562	.390	.282	.210	.159	.122	.095	.075	.060	.048	.039	.032	
26	.576	.406	.298	.224	.171	.133	.104	.083	.066	.054	.044	.036	
27	.590	.422	.313	.237	.183	.143	.113	.091	.073	.060	.049	.040	
28	.603	.436	.327	.251	.195	.154	.123	.099	.080	.066	.054	.045	
29	.615	.450	.341	.264	.207	.165	.132	.107	.088	.072	.060	.050	
30	.626	.464	.355	.277	.219	.175	.142	.116	.095	.079	.066	.055	
40	.711	.570	.467	.387	.324	.273	.232	.198	.170	.147	.127	.110	
60	.802	.693	.608	.536	.476	.424	.379	.340	.305	.275	.249	.225	
80	.849	.762	.690	.629	.574	.526	.483	.445	.410	.378	.350	.324	
100	.878	.806	.745	.691	.642	.599	.559	.523	.489	.458	.430	.404	
120	.898	.836	.783	.735	.692	.652	.616	.582	.551	.521	.494	.468	
140	.912	.858	.811	.769	.730	.694	.660	.629	.599	.572	.546	.521	
170	.927	.882	.842	.806	.772	.740	.710	.682	.656	.630	.607	.584	
200	.938	.899	.864	.832	.803	.774	.748	.722	.698	.675	.653	.632	
240	.948	.915	.886	.858	.833	.808	.785	.763	.741	.721	.701	.682	
320	.961	.936	.913	.892	.872	.852	.834	.816	.799	.782	.766	.750	
440	.972	.953	.936	.920	.905	.890	.876	.862	.849	.836	.823	.811	
600	.979	.965	.953	.941	.930	.918	.908	.897	.887	.877	.867	.857	
800	.984	.974	.964	.955	.947	.938	.930	.922	.914	.906	.898	.891	
1000	.987	.979	.971	.964	.957	.950	.944	.937	.930	.924	.918	.912	

5	7	2
5	1	4

Table A.9.	(Continued)
Table A.J.	(Commucu)

		ν _H											
ν_E	1	2	3	4	5	6	7	8	9	10	11	12	
						p = 7	1						
1	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
2	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
3	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
4	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
6	.043 ^a	.006 ^a	.002 ^a	.001 ^a	.001 ^a	.000	.000	.000	.000	.000	.000	.000	
7	2.62 ^a	.350 ^a	.091 ^a	.033 ^a	.015 ^a	.008 ^a	.005 ^a	.003 ^a	.002 ^a	.002 ^a	.001 ^a	.001 ^a	
8	.018	2.95 ^a	.809 ^a	.292 ^a	.126 ^a	.063 ^a	.034 ^a	.020 ^a	.013 ^a	.009 ^a	.006 ^a	.005 ^a	
9	.048	.010	3.20 ^a	1.22^{a}	.543 ^a	.270 ^a	.147 ^a	.086 ^a	.053 ^a	.035 ^a	.024 ^a	.017 ^a	
10	.087	.023	8.07 ^a	3.34 ^a	1.56 ^a	.798 ^a	.440 ^a	.259 ^a	.160 ^a	.104 ^a	.070 ^a	.049 ^a	
11	.128	.040	.016	6.97 ^{<i>a</i>}	3.43 ^a	1.83 ^a	1.04 ^{<i>a</i>}	.619 ^a	.387 ^a	.252 ^a	.170 ^a	.119 ^a	
12	.170	.060	.026	.012	6.34 ^{<i>a</i>}	3.51 ^a	2.05 ^a	1.25 ^a	.796 ^a	.525 ^a	.357 ^a	.249 ^a	
13	.209	.083	.038	.019	.010	5.94 ^a	3.57 ^a	2.23 ^a	1.45 ^a	.967 ^a	.665 ^a	.468 ^a	
14	.246	.106	.052	.027	.015	9.17 ^a	5.67 ^a	3.634	2.40 ^a	1.62 ^a	1.13ª	.804"	
15	.281	.129	.067	.037	.022	.013	8.37 ^a	5.48"	3.684	2.54	1.79 ^a	1.28"	
16	.313	.153	.083	.047	.029	.018	.012	7.804	5.34 ^a	3.734	2.66 ^a	1.94"	
17	.343	.176	.099	.059	.037	.024	.016	.011	7.384	5.24"	3.78"	2.78"	
18	.370	.199	.116	.071	.045	.030	.020	.014	9.81ª	7.06"	5.16"	3.83ª	
19	.396	.221	.133	.083	.054	.037	.025	.018	.013	9.20 ^a	6.80 ^a	5.10 ^a	
20	.420	.242	.149	.096	.064	.044	.031	.022	.016	.012	8.72ª	0.00 ^e	
21	.442	.263	.100	.109	.074	.052	.037	.026	.019	.014	.011	8.34"	
22	.462	.283	.183	.123	.085	.060	.043	.031	.023	.018	.015	.010	
23	.482	.301	.199	.130	.095	.008	.050	.037	.028	.021	.010	.015	
24	.499	.520	.215	.149	.100	.077	.057	.042	.032	.025	.019	.013	
25	.510	.557	.230	.102	.117	.000	.004	.040	.037	.029	.022	.018	
20	.332	370	.240	.175	120	104	.071	.055	.042	.033	.020	.020	
27	561	385	.200	201	150	113	.079	.001	053	.037	033	027	
20	574	300	289	214	161	123	.007	.000	059	047	037	030	
30	586	413	302	226	172	132	103	081	.052	.052	042	034	
40	679	526	417	335	273	224	185	154	128	.108	.091	.077	
60	.779	.660	.566	.490	.426	.373	.327	.288	.254	.225	.200	.178	
80	.832	.735	.656	.588	.530	.479	.434	.394	.358	.326	.298	.272	
100	.864	.783	.715	.656	.603	.556	.513	.475	.439	.408	.378	.352	
120	.886	.817	.757	.704	.657	.613	.574	.537	.504	.473	.444	.418	
140	.902	.841	.788	.741	.698	.658	.621	.587	.556	.526	.498	.472	
170	.919	.868	.823	.782	.744	.709	.676	.645	.616	.589	.563	.539	
200	.931	.887	.848	.812	.778	.747	.717	.689	.662	.637	.613	.590	
240	.942	.905	.871	.841	.812	.784	.758	.733	.709	.687	.665	.644	
320	.957	.928	.902	.878	.855	.833	.812	.792	.773	.754	.736	.719	
440	.968	.947	.928	.910	.893	.876	.860	.844	.829	.814	.800	.786	
600	.977	.961	.947	.933	.920	.908	.895	.883	.872	.860	.849	.838	
800	.982	.971	.960	.950	.940	.930	.920	.911	.902	.893	.884	.876	
1000	.986	.977	.968	.959	.951	.943	.936	.928	.921	.914	.906	.899	

		v_H											
ν_E	1	2	3	4	5	6	7	8	9	10	11	12	
						p = 8							
1	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
2	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
3	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
4	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
5	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
6	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
7	.138 ^a	.015 ^a	.004 ^a	.001 ^a	.001 ^a	.000	.000	.000	.000	.000	.000	.000	
8	3.30 ^a	.393 ^a	.090 ^a	.029 ^a	.012 ^a	.006 ^a	.003 ^a	.002 ^a	.001 ^a	.001 ^a	.001 ^a	.000	
9	.017	2.63 ^{<i>a</i>}	.659 ^a	.218 ^a	.087 ^a	.040 ^a	.020 ^a	.011 ^a	.007 ^a	.004 ^a	.003 ^a	.002 ^a	
10	.044	8.63 ^{<i>a</i>}	2.46 ^a	.872 ^a	.361 ^a	.168 ^a	.086 ^a	.047 ^a	.028 ^a	.017 ^a	.011 ^a	.008 ^a	
11	.078	.019	6.15 ^{<i>a</i>}	2.36 ^a	1.03 ^{<i>a</i>}	.497 ^a	.259 ^a	.144 ^a	.085 ^a	.052 ^a	.034 ^a	.023 ^a	
12	.116	.033	.012	4.99 ^a	2.30 ^a	1.16 ^a	.619 ^a	.351 ^a	.209 ^a	.130 ^a	.084 ^a	.056 ^a	
13	.154	.051	.020	8.91 ^a	4.34 ^a	2.26 ^a	1.25 ^a	.727 ^a	.441 ^a	.278 ^a	.181 ^a	.122 ^a	
14	.190	.070	.030	.014	7.22 ^a	3.92 ^{<i>a</i>}	2.23 ^a	1.33 ^a	.824 ^a	.527 ^a	.347 ^a	.235 ^a	
15	.225	.090	.041	.021	.011	6.17 ^a	3.63 ^a	2.22 ^a	1.40 ^a	.910 ^a	.608 ^a	.416 ^a	
16	.258	.111	.054	.028	.016	9.06 ^{<i>a</i>}	5.48 ^a	3.42 ^{<i>a</i>}	2.20^{a}	1.46 ^a	.987 ^a	.683 ^a	
17	.289	.133	.067	.037	.021	.013	7.80 ^a	4.98 ^{<i>a</i>}	3.27 ^a	2.20^{a}	1.51 ^a	1.06 ^a	
18	.318	.154	.082	.046	.027	.017	.011	6.92 ^{<i>a</i>}	4.62 ^{<i>a</i>}	3.15 ^a	2.19 ^a	1.56 ^a	
19	.345	.175	.096	.056	.034	.021	.014	9.23 ^{<i>a</i>}	6.26 ^a	4.34 ^{<i>a</i>}	3.06 ^{<i>a</i>}	2.19 ^a	
20	.370	.195	.111	.067	.042	.027	.018	.012	8.22 ^{<i>a</i>}	5.77 ^a	4.12 ^{<i>a</i>}	2.99 ^a	
21	.393	.215	.127	.078	.050	.033	.022	.015	.010	7.46 ^a	5.39 ^a	3.95 ^a	
22	.415	.235	.142	.089	.058	.039	.026	.018	.013	9.40 ^a	6.86 ^{<i>a</i>}	5.08 ^a	
23	.436	.254	.157	.101	.067	.045	.031	.022	.016	.012	8.56 ^a	6.39 ^a	
24	.455	.272	.172	.113	.076	.052	.037	.026	.019	.014	.010	7.88^{a}	
25	.473	.289	.187	.124	.085	.060	.042	.031	.023	.017	.013	9.56 ^a	
26	.490	.306	.201	.136	.095	.067	.048	.035	.026	.020	.015	.011	
27	.505	.322	.215	.148	.104	.075	.055	.040	.030	.023	.017	.013	
28	.520	.338	.229	.160	.114	.083	.061	.045	.034	.026	.020	.016	
29	.534	.353	.243	.172	.124	.091	.068	.051	.039	.030	.023	.018	
30	.548	.367	.256	.183	.134	.099	.074	.056	.043	.034	.026	.021	
40	.649	.485	.372	.290	.229	.182	.146	.118	.096	.079	.065	.054	
60	.758	.627	.527	.447	.381	.327	.282	.244	.212	.184	.161	.141	
80	.815	.709	.623	.551	.489	.435	.389	.348	.313	.281	.253	.229	
100	.851	.761	.687	.622	.566	.516	.471	.431	.395	.362	.333	.306	
120	.875	.798	.732	.675	.623	.577	.535	.496	.461	.429	.399	.372	
140	.892	.825	.767	.715	.667	.625	.585	.549	.515	.484	.455	.428	
170	.911	.854	.804	.759	.717	.679	.644	.610	.579	.550	.523	.497	
200	.924	.875	.831	.791	.755	.720	.688	.657	.629	.602	.576	.551	
240	.936	.895	.858	.823	.791	.761	.732	.705	.679	.655	.631	.609	
320	.952	.920	.891	.865	.839	.815	.792	.770	.748	.728	.708	.689	
440	.965	.942	.920	.900	.880	.862	.844	.827	.810	.794	.778	.762	
600	.974	.957	.941	.926	.911	.897	.883	.870	.857	.844	.831	.819	
800	.981	.968	.955	.944	.933	.922	.911	.901	.890	.880	.871	.861	
1000	.985	.974	.964	.955	.946	.937	.928	.920	.911	.903	.895	.887	