TUTORIAL 7 STA437 WINTER 2015

AL NOSEDAL

Contents

1. Test on Covariance Matrices	1
1.1. Testing $H_0: \Sigma = \Sigma_0$	1
1.2. Testing Sphericity	4

1. Tests on Covariance Matrices

1.1. Testing $H_0 : \Sigma = \Sigma_0$. We begin with the basic hypothesis $H_0 : \Sigma = \Sigma_0$ versus $H_1 : \Sigma \neq \Sigma_0$. The hypothesized covariance matrix Σ_0 is a target value for Σ_0 or a nominal value from previous experience. To test H_0 , we obtain a random sample of *n* observation vectors $\mathbf{y_1}, \mathbf{y_2}, ..., \mathbf{y_n}$ from $N_p(\mu, \Sigma)$ and calculate **S**. To see if **S** is significantly different from Σ_0 , we use the following test statistic, which is a modification of the likelihood ratio

$$u = \nu [ln |\mathbf{\Sigma}_0| - ln |\mathbf{S}| + tr(\mathbf{S} \mathbf{\Sigma}_0^{-1}) - p]$$

(in one of our lectures, we showed that $u = -2ln(\lambda)$, where λ represents a likelihood ratio test)

where ν represents the degrees of freedom of **S**. For a single sample, $\nu = n - 1$; for a pooled covariance matrix, $\nu = \sum_{i=1}^{k} n_i - k = N - k$. Note that if $\mathbf{S} = \Sigma_0$, then u = 0; otherwise u increases with the "distance" between **S** and Σ_0 . When ν is large, the statistic u is approximately distributed as $\chi^2[\frac{1}{2}p(p+1)]$ if H_0 is true. For moderate size ν ,

$$u^{'} = \left[1 - \frac{1}{6\nu - 1}\left(2p + 1 - \frac{2}{p+1}\right)\right]u$$

is a better approximation to the $\chi^2[\frac{1}{2}p(p+1)]$ distribution. We reject H_0 if u or u' is greater than $\chi^2[\alpha, \frac{1}{2}p(p+1)]$. Note that the degrees of freedom for the χ^2 -statistic, $\frac{1}{2}p(p+1)$, is the number of distinct parameters in Σ .

We can express u in terms of the eigenvalues $\lambda_1, \lambda_2, ..., \lambda_p$ of $\mathbf{S}\Sigma_0^{-1}$, then u can be written as

$$u = \nu \left[\sum_{i=1}^{p} (\lambda_i - \ln(\lambda_i) - p) \right].$$

Exercise 7.14. In Example 5.2.2, height and weight were given for a sample of 20 college-age males, we assumed that for the height and weight data of this example, the population covariance matrix is

$$\boldsymbol{\Sigma} = \left(\begin{array}{cc} 20 & 100\\ 100 & 1000 \end{array}\right),$$

the sample covariance matrix is

$$\mathbf{S} = \left(\begin{array}{rrr} 14.58 & 128.87\\ 128.870 & 1441.27 \end{array}\right).$$

Test this as a hypothesis using u' (Use $\alpha = 0.01$). Solution

To find u and u' we need: ν , p, $|\Sigma_0|$, $|\mathbf{S}|$, $tr(\mathbf{S}\Sigma_0^{-1})$. In this case $\nu = n - 1 = 20 - 1 = 19$, p = 2, $|\Sigma_0| = 10000$, $|\mathbf{S}| = 4406.24$, and $tr(\mathbf{S}\Sigma_0^{-1}) = 1.76314$. Which yield

$$u = 11.07$$

$$u' = 0.96166u = 10.64$$

Our critical value is given by

$$\chi^{2}[\alpha, \frac{1}{2}p(p+1)] = \chi^{2}[0.01, 3] = 11.345$$

We **can't** reject the hypothesized covariance matrix.

Example. Let us suppose that the reaction times in hundredths of a second after three preparatory intervals can be described by a trivariate Normal random variable. Reaction times have been measured under the three conditions on a random sample of N = 20 normal subjects. From those data we wish to test the hypothesis H_0 :

$$\Sigma = \left(\begin{array}{rrrr} 4 & 3 & 2 \\ 3 & 6 & 5 \\ 2 & 5 & 10 \end{array}\right)$$

that has been suggested by the effects of the lengthening preparatory intervals on the variances and correlations, as well as by previous experimental results. The sample covariance is

$$\mathbf{S} = \left(\begin{array}{rrrr} 3.42 & 2.60 & 1.89\\ 2.60 & 8 & 6.51\\ 1.89 & 6.51 & 9.62 \end{array}\right)$$

(Use $\alpha = 0.05$). Solution

To find u and u' we need: ν , p, $|\Sigma_0|$, $|\mathbf{S}|$, $tr(\mathbf{S}\Sigma_0^{-1})$. In this case $\nu = n - 1 = 20 - 1 = 19$, p = 3, $|\Sigma_0| = 86$, $|\mathbf{S}| = 88.6355$, and $tr(\mathbf{S}\Sigma_0^{-1}) = 3.2216$. Which yield

u = 3.64

 $u^{'} = 3.43$

Our critical value is given by

$$\chi^{2}[\alpha, \frac{1}{2}p(p+1)] = \chi^{2}[0.05, 3] = 12.592$$

Since u' does not exceed our critical value, we conclude that the hypothesized covariance matrix is tenable.

\mathbf{R} code

Sigma.0<-matrix(c(4,3,2,3,6,5,2,5,10),nrow=3,ncol=3)

Sigma.0

Sigma.0.inv<-solve(Sigma.0)</pre>

Sigma.0.inv

```
S<-matrix(c(3.42,2.60,1.89,2.60,8,6.51,1.89,6.51,9.62),nrow=3,ncol=3)
```

S

S%*%Sigma.0.inv

trace<-sum(diag(S%*%Sigma.0.inv))</pre>

trace

```
## test statistic u
# n = number of individuals
n<-20
# p = dimension of your data
p<-3
# nu
nu < -n - 1
u<-nu*( log(det(Sigma.0)) - log(det(S)) + trace -p )
u
### test statistic u'
# k =constant
k<-1-(2*p+1 - (2/(p+1)))*(1/(6*nu-1))
u.star<-k*u
```

```
u.star
```

1.2. Testing Sphericity. The hypothesis that the variables $y_1, y_2, ..., y_p$ in **y** are independent and have the same variance can be expressed as $H_0: \Sigma = \sigma^2 \mathbf{I}$ versus $H_1: \Sigma \neq \sigma^2 \mathbf{I}$, where σ^2 is the unknown common variance. This hypothesis is of interest in repeated measures. Under H_0 , the ellipsoid $(\mathbf{y} - \mu)' \Sigma^{-1} (\mathbf{y} - \mu) = c^2$ reduces to $(\mathbf{y} - \mu)' (\mathbf{y} - \mu) = \sigma^2 c^2$, the equation of a sphere; hence the term sphericity is applied to the covariance structure $\Sigma = \sigma^2 \mathbf{I}$. Another sphericity hypothesis of interest in repeated measures is $H_0: \mathbf{C}\Sigma\mathbf{C}' = \sigma^2 \mathbf{I}$, where **C** is any full-rank $(p-1) \times p$ matrix of orthonormal contrasts. For a random sample $\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n$ from $N_p(\mu, \Sigma)$, the likelihood ratio for testing $H_0: \Sigma = \sigma^2 \mathbf{I}$ is

4

$$LR = \left[\frac{|\mathbf{S}|}{(tr\mathbf{S}/p)^p}\right]^{n/2}$$

It has been shown that for a general likelihood ratio statistic LR,

$$-2ln(LR)$$
 is approximately χ^2_{ν}

for large n, where ν is the total number of parameters minus the number of estimated under the restrictions imposed by H_0 . In this case, we obtain

$$-2ln(LR) = -nln\left[\frac{|\mathbf{S}|}{(tr\mathbf{S}/p)^p}\right] = -n \ ln \ u$$

where $u = \frac{p^{p}|\mathbf{S}|}{(tr\mathbf{S})^{p}}$. We can express u in terms of the eigenvalues of \mathbf{S} , doing so yields

$$u = \frac{p^p \prod_{i=1}^p \lambda_i}{\left(\sum_{i=1}^p \lambda_i\right)^p}$$

An improvement over $-n \ln u$ is given by

$$u' = -\left(\nu - \frac{2p^2 + p + 2}{6p}\right)\ln u,$$

where ν is the degrees of freedom for **S**. The statistic u' has an approximate χ^2 -distribution with $\frac{1}{2}p(p+1) - 1$ degrees of freedom. We reject H_0 if $u' \geq \chi^2[\alpha, \frac{1}{2}p(p+1) - 1]$. To test $H_0: \mathbf{C\Sigma C}' = \sigma^2 \mathbf{I}$, use $\mathbf{C\Sigma C}'$ in place of **S** and use p-1 in place of p, including in the degrees of freedom for χ^2

$$\begin{split} u &= \frac{(p-1)^{(p-1)} |\mathbf{S}|}{(tr\mathbf{S})^{(p-1)}} \\ u^{'} &= -\left(\nu - \frac{2p^2 - 3p + 3}{6(p-1)}\right) ln \ u, \end{split}$$

Example. We use the probe word data in word.txt to illustrate tests of sphericity. The five variables appear to be commensurate, an the hypothesis $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ may be of interest. We would expect the variables to be correlated, and H_0 would ordinarily be tested using a multivariate approach. However, if $\Sigma = \sigma^2 \mathbf{I}$ or $\mathbf{C}\Sigma\mathbf{C}' = \sigma^2 \mathbf{I}$, then the hypotheses $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ can be tested with a univariate ANOVA F-test. We first test $H_0: \Sigma = \sigma^2 \mathbf{I}$.

$$u = \frac{p^p |\mathbf{S}|}{(tr\mathbf{S})^p} = \frac{5^5(27, 236, 586)}{(292.891)^5} = 0.0395$$

(with n = 11 and p = 5)

$$u' = -\left(\nu - \frac{2p^2 + p + 2}{6p}\right)\ln u = 26.177$$

The approximate χ^2 -test has $\frac{1}{2}p(p+1)-1 = 14$ degrees of freedom. We therefore compare u' = 26.177 with $\chi^2_{0.05,14} = 23.685$ and **reject** $H_0 : \Sigma = \sigma^2 \mathbf{I}$. To test $H_0 : \mathbf{C}\Sigma\mathbf{C}' = \sigma^2 \mathbf{I}$, we use the following matrix of orthonormalized contrasts:

$$\mathbf{C} = \begin{pmatrix} 4/\sqrt{20} & -1/\sqrt{20} & -1/\sqrt{20} & -1/\sqrt{20} & -1/\sqrt{20} \\ 0 & 3/\sqrt{12} & -1/\sqrt{12} & -1/\sqrt{12} & -1/\sqrt{12} \\ 0 & 0 & 2/\sqrt{6} & -1/\sqrt{6} & -1/\sqrt{6} \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$

We obtain

$$u = \frac{(p-1)(p-1)|\mathbf{S}|}{(tr\mathbf{S})(p-1)} = \frac{4^4(144039.8)}{(93.6)^4} = 0.480$$
$$u' = 6.183.$$

For degrees of freedom, we now have $\frac{1}{2}(4)(5) - 1 = 9$, and the critical value is $\chi^2_{0.05,9} = 16.919$. Hence, we **do not** reject $\mathbf{C\Sigma C}' = \sigma^2 \mathbf{I}$, and a univariate F-test of $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ may be justified.

R code

```
word<-read.table(file="word.txt")</pre>
```

word

```
S<-cov(word)
```

S

```
n<-dim(word)[1]</pre>
```

n

```
p<-dim(word)[2]</pre>
```

р

test statistic

```
denom<-( sum(diag(S/p)) )^p</pre>
```

TUTORIAL 7

```
LR <-(det(S)/denom)^{(n/2)}
```

 $u < -(LR)^{(2/n)}$

u

##

nu<-n-1

test statistic u'

```
# k = constant
```

```
k<-(-1)*(nu-1*(2*p^2+p+2)/(6*p))
```

```
u.star<-k*log(u)
```

```
u.star
```

critical value

alpha<-0.05

DF= degrees of freedom

```
DF<-(0.5)*p*(p+1)-1
```

```
crit.val<-qchisq(1-alpha,DF)</pre>
```

crit.val

CSC'

C = matrix of contrasts

```
v<-rev(contr.helmert(5))
```

```
C<-matrix(v,nrow=4,ncol=5,byrow=TRUE)
## normalizing C
C<-C/diag(sqrt(C%*%t(C)))
## test statistic u
u<-(p-1)^(p-1)*det(C%*%S%*%t(C))/( sum(diag(C%*%S%*%t(C))) )^(p-1)
u
## test statistic u'
## k = constant
k<- (-1)*(nu - ( 2*p^2-3*p+3 )/( 6*(p-1) ) )
u.star<-k*log(u)
u.star
## critical value
alpha<-0.05
## DF= degrees of freedom
DF<-(0.5)*(p-1)*(p)-1
crit.val<-qchisq(1-alpha,DF)</pre>
```

```
crit.val
```

Exercise 7.17. Test H_0 : $\mathbf{\Sigma} = \sigma^2 \mathbf{I}$ and H_0 : $\mathbf{C\Sigma C}' = \sigma^2 \mathbf{I}$ for the cork data.