## TUTORIAL 7

## STA437 WINTER 2015

AL NOSEDAL

## Contents

1. Test on Covariance Matrices 1
1.1. Testing $H_{0}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{\mathbf{0}} \quad 1$
1.2. Testing Sphericity 4

## 1. Tests on Covariance Matrices

1.1. Testing $H_{0}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{\mathbf{0}}$. We begin with the basic hypothesis $H_{0}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{\mathbf{0}}$ versus $H_{1}: \boldsymbol{\Sigma} \neq \boldsymbol{\Sigma}_{\mathbf{0}}$. The hypothesized covariance matrix $\boldsymbol{\Sigma}_{\mathbf{0}}$ is a target value for $\boldsymbol{\Sigma}_{\mathbf{0}}$ or a nominal value from previous experience. To test $H_{0}$, we obtain a random sample of $n$ observation vectors $\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{2}}, \ldots, \mathbf{y}_{\mathbf{n}}$ from $N_{p}(\mu, \boldsymbol{\Sigma})$ and calculate $\mathbf{S}$. To see if $\mathbf{S}$ is significantly different from $\boldsymbol{\Sigma}_{\mathbf{0}}$, we use the following test statistic, which is a modification of the likelihood ratio

$$
u=\nu\left[\ln \left|\mathbf{\Sigma}_{\mathbf{0}}\right|-\ln |\mathbf{S}|+\operatorname{tr}\left(\mathbf{S} \mathbf{\Sigma}_{\mathbf{0}}{ }^{-1}\right)-p\right]
$$

(in one of our lectures, we showed that $u=-2 \ln (\lambda)$, where $\lambda$ represents a likelihood ratio test)
where $\nu$ represents the degrees of freedom of $\mathbf{S}$. For a single sample, $\nu=n-1$; for a pooled covariance matrix, $\nu=\sum_{i=1}^{k} n_{i}-k=N-k$. Note that if $\mathbf{S}=\boldsymbol{\Sigma}_{\mathbf{0}}$, then $u=0$; otherwise $u$ increases with the "distance" between $\mathbf{S}$ and $\boldsymbol{\Sigma}_{\mathbf{0}}$. When $\nu$ is large, the statistic $u$ is approximately distributed as $\chi^{2}\left[\frac{1}{2} p(p+1)\right]$ if $H_{0}$ is true. For moderate size $\nu$,

$$
u^{\prime}=\left[1-\frac{1}{6 \nu-1}\left(2 p+1-\frac{2}{p+1}\right)\right] u
$$

is a better approximation to the $\chi^{2}\left[\frac{1}{2} p(p+1)\right]$ distribution. We reject $H_{0}$ if $u$ or $u^{\prime}$ is greater than $\chi^{2}\left[\alpha, \frac{1}{2} p(p+1)\right]$. Note that the degrees of freedom for the $\chi^{2}$-statistic, $\frac{1}{2} p(p+1)$, is the number of distinct parameters in $\boldsymbol{\Sigma}$.

We can express $u$ in terms of the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ of $\mathbf{S} \boldsymbol{\Sigma}_{\mathbf{0}}{ }^{-1}$, then $u$ can be written as

$$
u=\nu\left[\sum_{i=1}^{p}\left(\lambda_{i}-\ln \left(\lambda_{i}\right)-p\right] .\right.
$$

Exercise 7.14. In Example 5.2.2, height and weight were given for a sample of 20 college-age males, we assumed that for the height and weight data of this example, the population covariance matrix is

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
20 & 100 \\
100 & 1000
\end{array}\right)
$$

the sample covariance matrix is

$$
\mathbf{S}=\left(\begin{array}{cc}
14.58 & 128.87 \\
128.870 & 1441.27
\end{array}\right)
$$

Test this as a hypothesis using $u^{\prime}$ (Use $\alpha=0.01$ ).

## Solution

To find $u$ and $u^{\prime}$ we need: $\nu, p,\left|\boldsymbol{\Sigma}_{\mathbf{0}}\right|,|\mathbf{S}|, \operatorname{tr}\left(\mathbf{S} \boldsymbol{\Sigma}_{\mathbf{0}}{ }^{-1}\right)$. In this case $\nu=n-1=$ $20-1=19, p=2,\left|\boldsymbol{\Sigma}_{\mathbf{0}}\right|=10000,|\mathbf{S}|=4406.24$, and $\operatorname{tr}\left(\mathbf{S} \boldsymbol{\Sigma}_{\mathbf{0}}{ }^{-1}\right)=1.76314$. Which yield

$$
\begin{gathered}
u=11.07 \\
u^{\prime}=0.96166 u=10.64
\end{gathered}
$$

Our critical value is given by

$$
\chi^{2}\left[\alpha, \frac{1}{2} p(p+1)\right]=\chi^{2}[0.01,3]=11.345
$$

We can't reject the hypothesized covariance matrix.
Example. Let us suppose that the reaction times in hundredths of a second after three preparatory intervals can be described by a trivariate Normal random variable. Reaction times have been measured under the three conditions on a random sample of $N=20$ normal subjects. From those data we wish to test the hypothesis $H_{0}$ :

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
4 & 3 & 2 \\
3 & 6 & 5 \\
2 & 5 & 10
\end{array}\right)
$$

that has been suggested by the effects of the lengthening preparatory intervals on the variances and correlations, as well as by previous experimental results. The sample covariance is

$$
\mathbf{S}=\left(\begin{array}{ccc}
3.42 & 2.60 & 1.89 \\
2.60 & 8 & 6.51 \\
1.89 & 6.51 & 9.62
\end{array}\right)
$$

(Use $\alpha=0.05$ ).

## Solution

To find $u$ and $u^{\prime}$ we need: $\nu, p,\left|\boldsymbol{\Sigma}_{\mathbf{0}}\right|,|\mathbf{S}|, \operatorname{tr}\left(\mathbf{S} \boldsymbol{\Sigma}_{\mathbf{0}}{ }^{-1}\right)$. In this case $\nu=n-1=$ $20-1=19, p=3,\left|\boldsymbol{\Sigma}_{\mathbf{0}}\right|=86,|\mathbf{S}|=88.6355$, and $\operatorname{tr}\left(\mathbf{S} \boldsymbol{\Sigma}_{\mathbf{0}}{ }^{-1}\right)=3.2216$. Which yield

$$
\begin{gathered}
u=3.64 \\
u^{\prime}=3.43
\end{gathered}
$$

Our critical value is given by

$$
\chi^{2}\left[\alpha, \frac{1}{2} p(p+1)\right]=\chi^{2}[0.05,3]=12.592
$$

Since $u^{\prime}$ does not exceed our critical value, we conclude that the hypothesized covariance matrix is tenable.
$R$ code
Sigma. $0<-$ matrix (c ( $4,3,2,3,6,5,2,5,10$ ), nrow=3, ncol=3)
Sigma. 0
Sigma.0.inv<-solve(Sigma.0)
Sigma.0.inv
S<-matrix(c(3.42,2.60,1.89,2.60,8,6.51,1.89,6.51,9.62),nrow=3,ncol=3)

## S

S\%*\%Sigma.0.inv
trace<-sum(diag(S\%*\%Sigma.0.inv))
trace

```
##########################
## test statistic u
##########################
# n = number of individuals
n<-20
# p = dimension of your data
p<-3
# nu
nu<-n-1
u<-nu*( log(det(Sigma.0)) - log(det(S)) + trace -p )
u
##########################
### test statistic u'
##########################
# k =constant
k<-1-(2*p+1 - (2/(p+1)))*(1/(6*nu-1))
u.star<-k*u
u.star
```

1.2. Testing Sphericity. The hypothesis that the variables $y_{1}, y_{2}, \ldots, y_{p}$ in $\mathbf{y}$ are independent and have the same variance can be expressed as $H_{0}: \Sigma=\sigma^{2} \mathbf{I}$ versus $H_{1}: \boldsymbol{\Sigma} \neq \sigma^{2} \mathbf{I}$, where $\sigma^{2}$ is the unknown common variance. This hypothesis is of interest in repeated measures. Under $H_{0}$, the ellipsoid $(\mathbf{y}-\mu)^{\prime} \boldsymbol{\Sigma}^{\mathbf{- 1}}(\mathbf{y}-\mu)=$ $c^{2}$ reduces to $(\mathbf{y}-\mu)^{\prime}(\mathbf{y}-\mu)=\sigma^{2} c^{2}$, the equation of a sphere; hence the term sphericity is applied to the covariance structure $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$. Another sphericity hypothesis of interest in repeated measures is $H_{0}: \mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}=\sigma^{2} \mathbf{I}$, where $\mathbf{C}$ is any full-rank $(p-1) \times p$ matrix of orthonormal contrasts. For a random sample $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}$ from $N_{p}(\mu, \boldsymbol{\Sigma})$, the likelihood ratio for testing $H_{0}: \boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$ is

$$
L R=\left[\frac{|\mathbf{S}|}{(\operatorname{tr} \mathbf{S} / p)^{p}}\right]^{n / 2}
$$

It has been shown that for a general likelihood ratio statistic $L R$,

$$
-2 \ln (L R) \text { is approximately } \chi_{\nu}^{2}
$$

for large $n$, where $\nu$ is the total number of parameters minus the number of estimated under the restrictions imposed by $H_{0}$. In this case, we obtain

$$
-2 \ln (L R)=-n \ln \left[\frac{|\mathbf{S}|}{(\operatorname{tr} \mathbf{S} / p)^{p}}\right]=-n \ln u
$$

where $u=\frac{p^{p}|\mathbf{S}|}{(\operatorname{tr} \mathbf{S})^{p}}$. We can express $u$ in terms of the eigenvalues of $\mathbf{S}$, doing so yields

$$
u=\frac{p^{p} \prod_{i=1}^{p} \lambda_{i}}{\left(\sum_{i=1}^{p} \lambda_{i}\right)^{p}} .
$$

An improvement over $-n \ln u$ is given by

$$
u^{\prime}=-\left(\nu-\frac{2 p^{2}+p+2}{6 p}\right) \ln u
$$

where $\nu$ is the degrees of freedom for $\mathbf{S}$. The statistic $u^{\prime}$ has an approximate $\chi^{2}$-distribution with $\frac{1}{2} p(p+1)-1$ degrees of freedom. We reject $H_{0}$ if $u^{\prime} \geq$ $\chi^{2}\left[\alpha, \frac{1}{2} p(p+1)-1\right]$. To test $H_{0}: \mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}=\sigma^{2} \mathbf{I}$, use $\mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}$ in place of $\mathbf{S}$ and use $p-1$ in place of $p$, including in the degrees of freedom for $\chi^{2}$

$$
\begin{gathered}
u=\frac{(p-1)^{(p-1)}|\mathbf{S}|}{(\operatorname{tr} \mathbf{S})^{(p-1)}} \\
u^{\prime}=-\left(\nu-\frac{2 p^{2}-3 p+3}{6(p-1)}\right) \ln u,
\end{gathered}
$$

Example. We use the probe word data in word.txt to illustrate tests of sphericity. The five variables appear to be commensurate, an the hypothesis $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}$ may be of interest. We would expect the variables to be correlated, and $H_{0}$ would ordinarily be tested using a multivariate approach. However, if $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$ or $\mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}=\sigma^{2} \mathbf{I}$, then the hypotheses $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}$ can be tested with a univariate ANOVA F-test. We first test $H_{0}: \boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$.

$$
u=\frac{p^{p}|\mathbf{S}|}{(t r \mathbf{S})^{p}}=\frac{5^{5}(27,236,586)}{(292.891)^{5}}=0.0395
$$

(with $n=11$ and $p=5$ )

$$
u^{\prime}=-\left(\nu-\frac{2 p^{2}+p+2}{6 p}\right) \ln u=26.177
$$

The approximate $\chi^{2}$-test has $\frac{1}{2} p(p+1)-1=14$ degrees of freedom. We therefore compare $u^{\prime}=26.177$ with $\chi_{0.05,14}^{2}=23.685$ and reject $H_{0}: \boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$. To test $H_{0}: \mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}=\sigma^{2} \mathbf{I}$, we use the following matrix of orthonormalized contrasts:

$$
\mathbf{C}=\left(\begin{array}{rrrrr}
4 / \sqrt{20} & -1 / \sqrt{20} & -1 / \sqrt{20} & -1 / \sqrt{20} & -1 / \sqrt{20} \\
0 & 3 / \sqrt{12} & -1 / \sqrt{12} & -1 / \sqrt{12} & -1 / \sqrt{12} \\
0 & 0 & 2 / \sqrt{6} & -1 / \sqrt{6} & -1 / \sqrt{6} \\
0 & 0 & 0 & 1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)
$$

We obtain

$$
\begin{gathered}
u=\frac{\left.(p-1)^{( } p-1\right)|\mathbf{S}|}{\left.(\operatorname{tr} \mathbf{S})^{( } p-1\right)}=\frac{4^{4}(144039.8)}{(93.6)^{4}}=0.480, \\
u^{\prime}=6.183 .
\end{gathered}
$$

For degrees of freedom, we now have $\frac{1}{2}(4)(5)-1=9$, and the critical value is $\chi_{0.05,9}^{2}=16.919$. Hence, we do not reject $\mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}=\sigma^{2} \mathbf{I}$, and a univariate F-test of $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}$ may be justified.

## R code

```
word<-read.table(file="word.txt")
word
S<-cov(word)
S
n<-dim(word)[1]
n
p<-dim(word)[2]
p
## test statistic
```

```
denom<-( sum(diag(S/p)) )^p
LR<-(det(S)/denom)^(n/2)
u<-(LR)^(2/n)
u
##
nu<-n-1
## test statistic u'
# k = constant
k<-(-1)*(nu-1*(2*p^2+p+2)/(6*p))
u.star<-k*log(u)
u.star
## critical value
alpha<-0.05
## DF= degrees of freedom
DF<-(0.5)*p*(p+1)-1
crit.val<-qchisq(1-alpha,DF)
crit.val
### CSC
## C = matrix of contrasts
v<-rev(contr.helmert (5))
```

```
C<-matrix(v, nrow=4,ncol=5,byrow=TRUE)
## normalizing C
C<-C/diag(sqrt(C%*%t(C)))
## test statistic u
u<-(p-1)^(p-1)*\operatorname{det}(C%*%S%*%t(C))/( sum(diag(C%*%%S%*%t(C))) ) ^(p-1)
u
## test statistic u'
## k = constant
k<- (-1)*(nu - ( 2*p^2-3*p+3)/( 6*(p-1) ) )
u.star<-k*log(u)
u.star
## critical value
alpha<-0.05
## DF= degrees of freedom
DF<-(0.5)*(p-1)*(p)-1
crit.val<-qchisq(1-alpha,DF)
crit.val
```

Exercise 7.17. Test $H_{0}: H_{0}: \boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$ and $H_{0}: \mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}=\sigma^{2} \mathbf{I}$ for the cork data.

