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1. Maximization of Quadratic Forms

Result. Let Bp×p be a positive definite matrix with eigenvalues λ1 ≥ λ2 ≥ ... ≥
λp ≥ 0 and associated normalized eigenvectors e1, e2, ..., ep. Then

maxx 6=0
x

′
Bx

x′x
= λ1

(attained when x = e1 ).
Proof. Let Pp×p be the orthogonal matrix whose columns are the eigenvectors
e1, e2, ..., ep and D be the diagonal matrix with eigenvalues λ1, λ2, ..., λp along the
main diagonal. Let B1/2 = PD1/2P

′
and y = P

′
x.

Consequently, x 6= 0 implies y 6= 0. Thus,
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Setting x = e1 gives

e
′
1Be1

e
′
1e1

= e
′

1Be1 = λ1.

�
1



2 AL NOSEDAL

2. One-Way Multivariate Analysis of Variance

After being exposed to Hotelling’s T 2, it should come as no surprise to you that
Multivariate Analysis of Variance (MANOVA) could be handled by reducing each
subject’s scores on p variables to a single number -a simple linear combination of his
scores on those original p variables. Heuristically, one-way MANOVA consists of a
search for that linear combination of the variables which maximally discriminates
among the k groups in the sense of producing the largest possible univariate F-
ratio, followed by comparison of this largest possible univariate F to a critical
value appropriate to such a statistic. Formally, it should be fairly clear from your
familiarity with the relationship between the variance of a linear combination of
variables and the variances of the component variables that

F (a) =
MSBV

MSWV

=

∑g
l=1 nl(v̄l − v̄)2/(g − 1)∑g

l=1 nl
∑nl

j=1(vlj − v̄l)2/(
∑g

l=1 nl − g)
=

a
′
Ba

a′Wa

(
N − g
g − 1

)
where MSBV is the mean square between groups for variable V ; MSWV the

within-group mean square for dependent variable V ;

Vj = a1X1j + a2X2j + ...+ apXpj

where j = 1, 2, ..., n (number of subjects) and n = n1 + n2 + ...+ ng.
The task is to choose an a such that F (a) is maximized. However, maximizing

F (a) is equivalent to maximizing a
′
Ba

a′Wa
. Note that

maxa6=0
a

′
Ba

a′Wa
= maxa6=0

a
′
W1/2W−1/2BW−1/2W1/2a

a′W1/2W1/2a
Since W 1/2 is symmetric, letting x = W1/2a and B∗ = W−1/2BW−1/2, we have

maxx 6=0
x

′
B∗x

x′x
Therefore, using our result for Maximization of Quadratic forms

maxx 6=0
x

′
B∗x

x′x
= λ∗1

where λ∗1 is the largest eigenvalue of B∗ = W−1/2BW−1/2. According to your
textbook, the maximum of F (a) corresponds to the largest eigenvalue of W−1B.
We will show that B∗ = W−1/2BW−1/2 and W−1B have the same eigenvalues.

Definition. Two matrices A and B are called similar if there exists an invert-
ible matrix X such that A = X−1BX.

Theorem. Suppose A and B are similar matrices. Then A and B have the
same characteristic polynomial and hence the same eigenvalues.
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Proof.
|λI−A| = |λI−X−1BX|

= |λX−1IX−X−1BX|
= |X−1(λI−B)X|
= |X−1||λI−B||X|
= |λI−B|

This is the characteristic polynomial of B, so A and B have the same charac-
teristic polynomial. Hence A and B have the same eigenvalues. �

Hence, if we can show that W−1/2BW−1/2 and W−1B are similar, we are done.
Proof.

W−1B = W−1/2W−1/2BW−1/2W1/2

Let A∗ = W−1B, X = W1/2, and B∗ = W−1/2BW−1/2. Clearly, A∗ and B∗

are similar. Therefore, they have the same eigenvalues. �

2.1. Roy’s Test. To test H0 : µ1 = µ2 = ... = µg (g number of groups or samples)
based on λ1, the largest eigenvalue of W−1B, we use Roy’s union-intersection test,
also called Roy’s largest root test. The test statistic is given by

θ =
λ1

1 + λ1
Critical values for θ are given in Table A.10. We reject H0 : µ1 = µ2 = ... = µg

if θ > θα, s,m,N . The parameters s, m, and N are defined as
s = min(νH , p), m = 1

2
(|νH − p| − 1), N = 1

2
(νE − p − 1). Where p = number

of variables, νH = degrees of freedom for hypothesis, νE = degrees of freedom for
error.

2.2. Pillai and Lawley-Hotelling Tests. There are two additional test statistics
for H0 : µ1 = µ2 = ... = µg based on the eigenvalues λ1, λ2, ..., λs of W−1B. The
Pillai statistic is given by

V (s) = tr[(W +B)−1B] =
s∑
i=1

λi
1 + λi

.

We reject H0 for V (s) ≥ V
(s)
α . The upper percentage points, V

(s)
α , are given in

Table A.11, indexed by s, m, and N , which are defined as in Roy’s test.

The Lawley-Hotelling statistic is defined as

U (s) = tr(W−1B) =
s∑
i=1

λi

and is also known as Hotelling’s generalized T 2-statistic. Table A.12 gives upper
percentage points of the test statistic
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νE
νH
U (s).

We reject H0 for large values of the test statistic.

3. Examples

Example 1. Four psychological tests were given to 32 men and 32 women. The
data are recorded in file PSYCH.DAT. The variables are:

y1 = pictorial inconsistencies,
y2 = paper from board,
y3 = tool recognition,
y4 = vocabulary.

The mean vectors are

ȳ1 =


15.97
15.91
27.19
22.75



ȳ2 =


12.34
13.91
16.66
21.94


The covariance matrices of the two samples are

S1 =


5.192 4.545 6.522 5.250
4.545 13.18 6.760 6.266
6.522 6.760 28.67 14.47
5.250 6.266 14.47 16.65



S2 =


9.136 7.549 4.864 4.151
7.549 18.60 10.22 5.446
4.864 10.22 30.04 13.49
4.151 5.446 13.49 28.00


Test the hypothesis H0 : µ1 = µ2 versus H1 : µ1 6= µ2 at the 0.01 significance

level.

## "Reading" data

data<-read.table(file="PSYCH.DAT")
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## breaking down data

males<-data[1:32 ,-1]

females<-data[33:64 ,-1]

## sample sizes

n1<-dim(males)[1]

n2<-dim(females)[1]

## mean vectors

y.bar.1<-apply(males,2,FUN=mean)

y.bar.2<-apply(females,2,FUN=mean)

## covariance matrices

S.1<-cov(males)

S.2<-cov(females)

Sp<-(n1+n2-2)^(-1)*((n1-1)*S.1 + (n2-1)*S.2)

## Hotelling’s T^2

T.2<-(n1*n2/(n1+n2))*t(y.bar.1-y.bar.2)%*%solve(Sp)%*%(y.bar.1-y.bar.2)

## Critical value

p<-dim(males)[2]

crit.val<-((n1+n2-2)*p/(n1+n2-p-1))*qf(0.99,p,n1+n2-p-1)

crit.val

## Again... but using MANOVA.
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groups<-factor(data[ ,1])

groups

Y<-cbind(data[ ,2],data[ ,3],data[ ,4],data[ ,5])

Y

fit<-manova(Y~groups)

## showing MANOVA table

summary(fit,test="Roy")

## matrix W and B

sum.roy<-summary(fit,test="Roy")

## largest eigenvalue

lambda.1<-sum.roy$Eigen[1]

## N = total number of individuals

N<-n1 + n2

## g = number of groups or samples

g<-2

## largest univariate F

F.a<-(N-g)*lambda.1/(g-1)

Example 2. In a classical experiment carried out from 1918 to 1934, apple
trees of different rootstocks were compared. The data for eight trees from each of
six rootstocks are given in roots.DAT. The variables are

y1 = trunk girth at 4 years (mm x 100)

y2 = extension growth at 4 years (m)
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y3 = trunk girth at 15 years (mm x 100)

y4 = weight of tree above ground at 15 years (lb x 1000)

In this case, the mean vectors represent six points in four-dimensional space.
Compare the mean vectors for significant differences using all four MANOVA tests
(use α = 0.05). Compare your results with those shown in your textbook.

roots<-read.table(file=’roots.DAT’)

groups<-factor(roots[ ,1])

Y2<-cbind(roots[ ,2],roots[ ,3],roots[ ,4],roots[ ,5])

fit.2<-manova(Y2~groups)

## showing MANOVA table

summary(fit.2,test="Wilks")

## matrix W and B

sum.wilks<-summary(fit.2,test="Wilks")

sum.wilks

## B

sum.wilks$SS[1]

## W

sum.wilks$SS[2]

## Pillai’s statistic

summary(fit.2,test="Pillai")

## Lawley-Hotelling statistic
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summary(fit.2,test="Hotelling-Lawley")

## Roy’s test statistic

summary(fit.2,test="Roy")

Example 3. Tests on Individual variables following rejection of H0 by
the overall MANOVA test.

In Example 2, the hypothesis H0 : µ1 = µ2 = ... = µ6 was rejected for the
rootstock data of roots.DAT. We can therefore test the four individual variables
using the 0.05 level of significance for a univariate F-test.

## Individuals anovas

anova1<-aov(Y2[ ,1]~groups)

summary(anova1)

anova2<-aov(Y2[ ,2]~groups)

summary(anova2)

anova3<-aov(Y2[ ,3]~groups)

summary(anova3)

anova4<-aov(Y2[ ,4]~groups)

summary(anova4)

Thus for three of the four variables, the six means differ significantly.


