
TUTORIAL 3
STA437 WINTER 2015

AL NOSEDAL

Contents

1. Toy example 1
2. Comparing two mean vectors 7
2.1. Review of Univariate Two-Sample t-Test 7
2.2. Multivariate Two-Sample T 2-Test 8
3. Test on Individual variables conditional on Rejection of H0 by the

T 2-test 10
4. Computation of T 2 12
4.1. Obtaining T 2 from Multiple Regression 12
5. Paired Observations Test 13
5.1. Univariate case 13
5.2. Multivariate case 14

1. Toy example

Example.

Group 1
Subject X Y

1 1 1
2 2 0
3 2 1
4 2 2
5 3 0
6 3 1
7 3 1.85
8 4 0.5

1
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Group 2
Subject X Y

1 3 2
2 3 4
3 3 5
4 4 2
5 4 3
6 4 4
7 5 4
8 5 5

1. Enter data for groups 1 and 2.

2. Make a scatterplot for these two groups. Use two different colours, one for
each group.

3. Compute, the following three linear combos:
a) Z1 = 1X + 0Y
b) Z2 = 0X + 1Y
c) Z3 = 0.51X + 0.86Y

4. Find the mean of Z1 for groups 1 and 2. Compute the difference between
these two means.

5. Repeat 4 for Z2 and Z3.

Solution (R code)

## 1. Entering data

g1.x<-c(1,2,2,2,3,3,3,4)

g1.y<-c(1,0,1,2,0,1,1.85,0.5)

g2.x<-c(3,3,3,4,4,4,5,5)

g2.y<-c(2,4,5,2,3,4,4,5)

## Groups

group.1<-matrix(c(g1.x,g1.y),nrow=8,ncol=2)

group.2<-matrix(c(g2.x,g2.y),nrow=8,ncol=2)
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all<-rbind(group.1,group.2)

## 2. Scatterplots

plot(group.1,col="blue",pch=19,xlim=c(0,6),ylim=c(0,6),xlab="X",ylab="Y")

points(group.2,col="red",pch=19)

## 3. Linear combos and

## 4. Computing means

## Z1 = 1 X + 0 Y

a1<-matrix(c(1,0),nrow=2,ncol=1)

z1<-all%*%a1

## group 1

mean(z1[1:8, ])

sd(z1[1:8, ])

## group 2

mean(z1[9:16, ])

sd(z1[9:16, ])

## Z2 = 0 X + 1 Y

a2<-matrix(c(0,1),nrow=2,ncol=1)

z2<-all%*%a2

## group 1

mean(z2[1:8, ])

sd(z2[1:8, ])
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## group 2

mean(z2[9:16, ])

sd(z2[9:16, ])

## Z3 = 0.51 X + 0.86 Y

a3<-matrix(c(0.51,0.86),nrow=2,ncol=1)

z3<-all%*%a3

## group 1

mean(z3[1:8, ])

sd(z3[1:8, ])

## group 2

mean(z3[9:16, ])

sd(z3[9:16, ])

## 5. Difference between means

d1<-mean(z1[1:8, ])-mean(z1[9:16, ])

d1

d2<-mean(z2[1:8, ])-mean(z2[9:16, ])

d2

d3<-mean(z3[1:8, ])-mean(z3[9:16, ])

d3

Now, let us try to understand what these linear combos mean, geometrically.

plot(group.1,col="blue",pch=19,xlim=c(0,6),ylim=c(0,6),xlab="X",ylab="Y")
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points(group.2,col="red",pch=19)

arrows(0,0,a3[1],a3[2],lty=2)

for(i in 1:8){

points(z3[i]*a3[1],z3[i]*a3[2],col="blue")

}

for(i in 9:16){

points(z3[i]*a3[1],z3[i]*a3[2],col="red")

}
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Figure 1. Scatterplot and optimal projection.
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The basic idea for simplifying the problem of analyzing differences in location
simultaneously in several variables consists of finding suitable linear combinations
of all variables. Using an arbitrary linear combination

Z = a1X1 + a2X2 + ...+ apXp

we obtain in both groups a new variable Z, whose mean and standard deviation
is denoted by Z̄1 and s1 (for group 1), and by Z̄2 and s2 (for group 2), respectively.
For the linear combination Z we can compute the associated standard distance

D(Z) = D(a1, a2, ..., ap) =
|Z̄1 − Z̄2|

s
with

s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
We can now define the multivariate standard distance as the maximum standard

distance that can be obtained from any linear combination of X1 to Xp. Formally,

Dp = maxD(a1, a2, ..., ap)

over all possible choices of the coefficients a1 to ap. The index p in Dp indi-
cates that the measure of distance is based on p variables. The linear combination
for which the maximum is achieved will be called discriminant function or
discriminant variable. Multivariate standard distance is therefore nothing but
univariate standard distance for a particular linear combination called the discrim-
inant function.

Finally, let us compute the ”discriminant function”

R code

## S1

S1<-cov(group.1)

y.bar.1<-apply(group.1,2,FUN=mean)

## S2

S2<-cov(group.2)

y.bar.2<-apply(group.2,2,FUN=mean)

## Sp
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Sp<-(1/14)*(7*S1+7*S2)

diff<-y.bar.1-y.bar.2

diff<-matrix(diff,nrow=2,ncol=1)

## Finding Discriminant Function

a.star<-solve(Sp)%*%diff

a.star<-(-1)*a.star

norm<-t(a.star)%*%a.star

## Normalized Discriminant Function

disc.fun<-a.star/sqrt(norm[1])

disc.fun

2. Comparing two mean vectors

2.1. Review of Univariate Two-Sample t-Test. In the one-variable case we
obtain a random sample y11, y12, ..., y1n1 from N(µ1, σ

2
1) and a second random

sample y21, y22, ..., y2n2 from N(µ2, σ
2
2). We assume that the two samples are

independent and that σ2
1 = σ2

2 = σ2, say, with σ2 unknown. From the two samples
we calculate the pooled variance

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
,

where n1 +n2− 2 is the sum of the weights n1− 1 and n2− 1 in the numerator.
To test H0 : µ1 = µ2 vs Ha : µ1 6= µ2,

we use

t =
ȳ1 − ȳ2

sp
√

1
n1

+ 1
n2

which has a t-distribution with n1 + n2− 2 degrees of freedom when H0 is true.
We therefore reject H0 if |t| ≥ tα/2,n1+n2−2.
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2.2. Multivariate Two-Sample T 2-Test. We wish to test H0 : µ1 = µ2 vs
H1 : µ1 6= µ2.

We obtain a random sample y11,y12, ...,y1n1 from Np(µ1,Σ1) and a second ran-
dom sample y21,y22, ...,y2n2 from Np(µ1,Σ2). We assume that the two samples
are independent and that Σ1 = Σ2 = Σ, say, with Σ unknown.

T 2 =
n1n2

n1 + n2

(ȳ1 − ȳ2)
′
Sp

−1(ȳ1 − ȳ2)

where

Sp =
1

n1 + n2 − 2
[(n1 − 1)S1 + (n2 − 1)S2]

We reject H0 if T 2 ≥ T 2
α,p,n1+n2−2. Critical values of T 2 are found in Table A.7.

Example. Four psychological tests were given to 32 men and 32 women. The
data are recorded in Table 5.1. The variables are:

y1 = pictorial inconsistencies,
y2 = paper from board,
y3 = tool recognition,
y4 = vocabulary.

The mean vectors are

ȳ1 =


15.97
15.91
27.19
22.75



ȳ2 =


12.34
13.91
16.66
21.94


The covariance matrices of the two samples are

S1 =


5.192 4.545 6.522 5.250
4.545 13.18 6.760 6.266
6.522 6.760 28.67 14.47
5.250 6.266 14.47 16.65
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S2 =


9.136 7.549 4.864 4.151
7.549 18.60 10.22 5.446
4.864 10.22 30.04 13.49
4.151 5.446 13.49 28.00


Test the hypothesis H0 : µ1 = µ2 versus H1 : µ1 6= µ2 at the 0.01 significance

level.
Solution
The pooled covariance matrix is

Sp =
1

32 + 32− 2
[(32− 1)S1 + (32− 1)S2] =


7.164 6.047 5.693 4.701
6.047 15.89 8.492 5.856
5.693 8.492 29.36 13.98
4.701 5.856 13.98 22.32


T 2 =

n1n2

n1 + n2

(ȳ1 − ȳ2)
′
Sp

−1(ȳ1 − ȳ2) = 97.6015

From interpolation in Table A.7, we obtain T 2
0.01,4,62 = 15.373, and we therefore

reject H0 : µ1 = µ2.

## "Reading" data

data<-read.table(file="PSYCH.DAT")

## breaking down data

males<-data[1:32 ,-1]

females<-data[33:64 ,-1]

## sample sizes

n1<-dim(males)[1]

n2<-dim(females)[1]

## mean vectors

y.bar.1<-apply(males,2,FUN=mean)

y.bar.2<-apply(females,2,FUN=mean)
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## covariance matrices

S.1<-cov(males)

S.2<-cov(females)

Sp<-(n1+n2-2)^(-1)*((n1-1)*S.1 + (n2-1)*S.2)

## Hotelling’s T^2

T.2<-(n1*n2/(n1+n2))*t(y.bar.1-y.bar.2)%*%solve(Sp)%*%(y.bar.1-y.bar.2)

T.2

## Critical value

p<-dim(males)[2]

crit.val<-((n1+n2-2)*p/(n1+n2-p-1))*qf(0.99,p,n1+n2-p-1)

crit.val

3. Test on Individual variables conditional on Rejection of H0 by
the T 2-test

We give a procedure that could be used to check each variable following rejection
of H0 by a two-sample T 2 test:

tj =
ȳ1j − ȳ2j√

[(n1 + n2)/n1n2]sjj
, j = 1, 2, ..., p,

where sjj is the jth diagonal element of Sp. Reject H0 : µ1j = µ2j if |tj| >
tα/2,n1+n2−2.

Example. For the psychological data in Table 5.1, calculate t-tests for the
individual variables at the 0.01% significance level.

Solution (R code)

## Test on Individual variables conditional on Rejection of H0

## Univariate t-tests

# c = constant
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c<-(n1*n2/(n1+n2))

## first variable

t1.2<-c*t(y.bar.1[1]-y.bar.2[1])%*%solve(Sp[1,1])%*%(y.bar.1[1]-y.bar.2[1])

t1<-sqrt(t1.2)

t1

# you should get 5.41

## Critical value

crit.val.1<-qt(1-(0.01/2),n1+n2-2)

crit.val.1

# you should get 2.65

## second variable

t2.2<-c*t(y.bar.1[2]-y.bar.2[2])%*%solve(Sp[2,2])%*%(y.bar.1[2]-y.bar.2[2])

t2<-sqrt(t2.2)

t2

# you should get 2.00

## third variable

t3.2<-c*t(y.bar.1[3]-y.bar.2[3])%*%solve(Sp[3,3])%*%(y.bar.1[3]-y.bar.2[3])

t3<-sqrt(t3.2)

t3

# you should get 7.77

## fourth variable
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t4.2<-c*t(y.bar.1[4]-y.bar.2[4])%*%solve(Sp[4,4])%*%(y.bar.1[4]-y.bar.2[4])

t4<-sqrt(t4.2)

t4

# you should get 0.68

4. Computation of T 2

4.1. Obtaining T 2 from Multiple Regression. We illustrate the regression
approach to computation of T 2 using the psychological data in Table 5.1. We set
w = n2

n1+n2
= 32

64
= 1

2
for each observation in the first group (males) and equal to

− n1

n1+n2
= −1

2
in the second group (females). When w is regressed on the 64 y’s,

we obtain 
b0
b1
b2
b3
b4

 =


−0.751
0.051
−0.020
0.047
−0.031


R2 = 0.6115. And T 2 = (n1 + n2 − 2) R2

1−R2 = 62(0.6115)
1−0.6115

= 97.601, as we obtained
before.

R code

## categorical variable for males

w1<-n2/(n1+n2)

## categorical variable for females

w2<-(-1)*n1/(n1+n2)

## vector with categorical variables

w<-c(rep(w1,n1),rep(w2,n2))

w

## Regressing w on variables
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new.data<-matrix(unlist(data[ ,-1]),nrow=64,ncol=4)

## saving results from regression

model<-lm(w~new.data)

## let us see what we have in model

sum.mod<-summary(model)

sum.mod

names(sum.mod)

## Finding Hotelling’s T^2

## We need R^2 (Multiple R-squared)

R.2<-sum.mod$r.squared

T.2<-(n1+n2-2)*(R.2/(1-R.2))

T.2

5. Paired Observations Test

5.1. Univariate case. Suppose that two samples are not independent because
there exists a natural pairing between the ith observation yi in the first sample
and the ith observation xi in the second sample for all i, as, for example, when a
treatment is applied twice to the same individual. With such pairing, the samples
are often referred to as paired observations or matched pairs. The two samples
thus obtained are correlated, and a two-sample test statistic is not appropriate.
We reduce the two samples to one by working with the difference between the
paired observations, as in the following layout for two treatments applied to the
same subject:

Pair Number Treatment 1 Treatment 2 di = yi − xi
1 y1 x1 d1
2 y2 x2 d2
...

...
...

...
n yn xn dn
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To obtain a t-test it is not sufficient to assume individual Normality for each
of y and x. To allow for the covariance between y and x, we need the additional
assumption that y and x have a bivariate Normal distribution with

µ =

(
µ1

µ2

)
Σ =

(
σ2
y σyx

σyx σ2
x

)
It then follows that di = yi − xi is N(µy − µx, σ2

d), where σ2
d = σ2

y + σ2
x − 2σyx.

From d1, d2, ..., dn we calculate

d̄ =
1

n

n∑
i=1

di and s2d =
1

n− 1

n∑
i=1

(di − d̄)2.

To test H0 : µy = µx, that is, H0 : µd = 0, we use the one-sample statistic

t =
d̄

sd/
√
n

which is distributed as tn−1 if H0 is true. We reject H0 in favor of H1 : µd 6= 0
if |t| > tα/2,n−1.

5.2. Multivariate case. Here we assume the same natural pairing of sampling
units as in the univariate case, but we measure p variables on each sampling unit.
In terms of two treatments applied to each sampling unit, this situation is as
follows:

Pair Number Treatment 1 Treatment 2 di = yi − xi
1 y1 x1 d1

2 y2 x2 d2
...

...
...

...
n yn xn dn

Given the observed differences d
′
j = [dj1, dj2, ..., djp], j = 1, 2, ..., n, an α-level

test of H0 : δ = 0 versus H0 : δ 6= 0 for an Np(δ,Σd) population rejects H0 if the
observed

T 2 = nd̄
′
S−1

dd̄ >
(n− 1)p

(n− p)
Fp,n−p(α)

where Fp,n−p(α) is the upper (100α)th percentile of an F-distribution with p and
n− p d.f.

Example. Municipal wastewater treatment plants are required by law to mon-
itor their discharges into rivers and streams on a regular basis. Concern about
the reliability of data from one of these self-monitoring programs led to a study
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in which samples of effluent were divided and sent to two laboratories for testing.
One-half of each sample was sent to the Wisconsin State Laboratory of Hygiene,
and one-half was sent to a private commercial laboratory routinely used in the
monitoring program. Measurements of biochemical oxygen demand (BOD) and
suspended solids (SS) were obtained for n = 11 sample splits, from the two labora-
tories. The data are available in water.DAT. First and third columns of water.DAT
correspond to BOD for Commercial lab and State lab, respectively. Second and
fourth columns of water.DAT correspond to SS for Commercial lab and State lab,
respectively. Do the two laboratories’ chemical analyses agree? (Use α = 0.05).

Solution (R code)

water<-read.table(file="water.DAT")

water<-matrix(unlist(water),nrow=11,ncol=4)

# vector with difference for BOD

a1<-matrix(c(1,0,-1,0),nrow=4,ncol=1)

d1<-water%*%a1

# vector with difference for SS

a2<-matrix(c(0,1,0,-1),nrow=4,ncol=1)

d2<-water%*%a2

# matrix of differences

diffs<-cbind(d1,d2)

# vector of differences

diff.bar<-apply(diffs,2,FUN=mean)

# covariance matrix

S.d<-cov(diffs)

# n= number of rows of diffs
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n<-dim(diffs)[1]

# Test statistic

T.2<-n*t(diff.bar)%*%solve(S.d)%*%diff.bar

T.2

# p = number of columns of diffs

p<-dim(diffs)[2]

alpha<-0.05

# critical value

crit.val<-(p*(n-1)/(n-p))*qf(1-alpha,p,n-p)

crit.val

Taking α = 0.05, we find that [p(n−1)/(n−p)]Fp,n−p(0.05) = [2(10)/9]F2,9(0.05) =
9.47. Since T 2 = 13.6 > 9.47, we reject H0 and conclude that there is a nonzero
mean difference between the measurements of the two laboratories.


