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1. Assessing the assumption of Normality

1.1. Evaluating the Normality of the Univariate Marginal Distributions.
Plots are always useful devices in any data analysis. Special plots called Q-Q plots
can be used to assess the assumption of Normality. These plots can be made for
the marginal distributions of the sample observations on each variable. They are
in effect, plots of the sample quantile versus the quantile one would expect to
observe if the observations actually were Normally distributed. When the points
lie very nearly along a straight line, the Normality assumption remains tenable.
Normality is suspect if the points deviate from a straight line. Once the reasons
for the non-Normality are identified, corrective action is often possible.

To simplify notation, let x1, x2, ..., xn represent n observations on any single
characteristic Xi. Let x(1) ≤ x(2) ≤ ... ≤ x(n) represent these observations after
they are ordered according to magnitude. For example, x(n) is the largest observa-
tion. The x(j)’s are the sample quantiles. The proportion j/n of the sample at or
to the left of x(j) is often approximated by (j − 1/2)/n for analytical convenience.
For a standard Normal distribution, the quantiles q(j) are defined by the relation

P [Z ≤ q(j)] =

∫ ∞
−∞

1√
2π
ez

2/2dz = p(j) =
j − 1/2

n

Here p(j) is the probability of getting a value less than or equal to q(j) in a single
drawing from a Standard Normal population. The idea is to look at the pairs of
quantiles (q(j), x(j)) with the same associated cumulative probability (j − 1/2)/n.
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If the data arise from a Normal population, the pairs (q(j), x(j)) will be approxi-
mately linearly related, since σq(j) + µ is nearly the expected sample quantile.

Example 1. A sample of n = 10 observations gives the values in the following
table:

Ordered Observations Probability levels Standard Normal
x(j) (j − 1/2)/n Quantiles q(j)
-1 0.05 -1.645

-0.10 0.15 -1.036
0.16 0.25 -0.674
0.41 0.35 -0.385
0.62 0.45 -0.125
0.80 0.55 0.125
1.26 0.65 0.385
1.54 0.75 0.674
1.71 0.85 1.036
2.30 0.95 1.645

Here, for example, P [Z ≤ 0.385] =
∫ 0.385

−∞
1√
2π
e−z

2/2dz = 0.65.

Let us now construct the Q-Q plot and comment on its appearance. The Q-Q
plot for the foregoing data, which is a plot of the ordered data x(j) against the
normal quantiles is shown in Figure 1. The pairs of points (q(j), x(j)) lie very nearly
along a straight line, and we would not reject the notion that these data are Nor-
mally distributed-particularly with a sample size as small as n = 10.

R code

## Example

## Q-Q plot (step-by-step)

## Ordered observations

obs<-c(-1,-0.1,0.16,0.41,0.62,0.80,1.26,1.54,1.71,2.30)

n<-length(obs)

## Corresponding probability values

prob.levels<-(seq(1:n)-0.5)/n

## Standard Normal Quantiles
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norm.quantiles<-qnorm(prob.levels)

## Q-Q plot

par(mfrow=c(2,1))

plot(norm.quantiles,obs,xlab=expression(q[(j)]),ylab=expression(x[(j)]),

main="Ours",col="blue",pch=19)

## Q-Q plot (using R function)

qqnorm(obs,col="blue",pch=19)
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Figure 1. Q-Q plots for the data in Example 1.
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Example 2 (A Q-Q plot for radiation data). The quality-control depart-
ment of a manufacturer of microwave ovens is required by federal government to
monitor the amount of radiation emitted when the doors of the ovens are closed.
Observations of the radiation emitted through closed doors of n = 42 randomly
selected ovens were made. The data set is available on Portal (T4-1.DAT). In
order to determine the probability of exceeding a prespecified tolerance level, a
probability distribution for the radiation emitted was needed. Can we regard the
observations here as being Normally distributed? Use R to construct the Q-Q plot.

R code

radiation<-read.table(file="T4-1.DAT")

rad.vec<-matrix(unlist(radiation),ncol=1)

qqnorm(rad.vec,col="blue",pch=19)
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Figure 2. A Q-Q plot of the radiation data (door closed).

It appears from the plot that the data as a whole are not normally distributed.

The straightness of the Q-Q plot can be measured by calculating the correlation
coefficient of the points in the plot. The correlation coefficient for the Q-Q plot is
defined by
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rQ =

∑n
j=1(x(j) − x̄)(q(j) − q̄)√∑n

j=1(x(j) − x̄)2
√∑n

j=1(q(j) − q̄)2

and a powerful test of normality can be based on it. Formally, we reject the
hypothesis of Normality at level of significance α if rQ falls below the appropriate
value in the following table.

Sample Significance Significance Significance
size n level 0.01 level 0.05 level 0.10

5 0.8299 0.8788 0.9032
10 0.8801 0.9198 0.9351
15 0.9126 0.9389 0.9503
20 0.9269 0.9508 0.9604
25 0.9410 0.9591 0.9665
30 0.9479 0.9652 0.9715
35 0.9538 0.9682 0.9740
40 0.9599 0.9726 0.9771
45 0.9632 0.9749 0.9792
50 0.9671 0.9768 0.9809
55 0.9695 0.9787 0.9822
60 0.9720 0.9801 0.9836
75 0.9771 0.9838 0.9866
100 0.9822 0.9873 0.9895
150 0.9879 0.9913 0.9928
200 0.9905 0.9931 0.9942
300 0.9935 0.9953 0.9960

Example 3 (A correlation coefficient test for Normality). Let us cal-
culate the correlation coefficient rQ from the Q-Q plot of Example 1 and test for
Normality.

rQ =
8.584√

8.472
√

8.795
= 0.994

A test of Normality at the 10% level of significance is provided by referring
rQ = 0.994 to the entry in our Table corresponding to n = 10 and α = 0.10. This
entry is 0.9351. Since rQ > 0.9351, we do not reject the hypothesis of Normality.

R code

## A correlation coefficient test for Normality

r.q<-cor(norm.quantiles,obs)
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1.2. Evaluating Bivariate Normality. We would like to check on the assump-
tion of Normality for all distributions of 2, 3, ..., p dimensions. However, for prac-
tical work it is usually sufficient to investigate the univariate and bivariate dis-
tributions. We considered univariate marginal distributions earlier. It is now of
interest to examine the bivariate case.

Result. Let x be distributed as Np(µ,Σ) with |Σ| > 0. Then
a. (x− µ)

′
Σ−1(x− µ) is distributed as χ2

p, where χ2
p denotes the chi-square

distribution with p degrees of freedom.
b. The Np(µ,Σ) distribution assigns probability 1 − α to the solid ellipsoid {x :
(x− µ)

′
Σ−1(x− µ) ≤ χ2

p(α)}, where χ2
p(α) denotes the upper (100α)th percentile

of the χ2
p distribution. By this result, the set of bivariate outcomes x such that

(x− µ)
′
Σ−1(x− µ) ≤ χ2

2(0.5)

has probability 0.5. Thus, we should expect roughly the same percentage, 50%,
of sample observations to lie in the ellipse given by

{all x such that (x− x̄)
′
S−1(x− x̄) ≤ χ2

2(0.5)}

where we have replaced µ by its estimate x̄ and Σ−1 by its estimate S−1. If not,
the Normality assumption is suspect.

Example 4 (Checking bivariate Normality. Although not a random sam-
ple, data consisting of observations (x1 = sales, x2 = profits) for the 10 largest
U.S. industrial corporations are available on Portal (us-corp.txt). These data give

x̄ =

(
62309.1
2927.3

)

S =

(
1000509114 25575600
25575600 1430020

)
so

S−1 =

(
1.841298e− 09 −3.293122e− 08
−3.293122e− 08 1.288259e− 06

)
From R, χ2

2(0.5) = 1.386294 ≈ 1.39. Thus, any observation x
′
= [x1, x2] satisfy-

ing

(
x1 − 62309.1
x2 − 2927.3

)′ (
1.841298e− 09 −3.293122e− 08
−3.293122e− 08 1.288259e− 06

)(
x1 − 62309.1
x2 − 2927.3

)
≤ 1.39
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is on or inside the estimated 50% contour. Otherwise the observation is outside
this contour. The first pair of observations is [x1, x2]

′
= [126974, 4224]. In this

case

(
126974− 62309.1

4224− 2927.3

)′ (
1.841298e− 09 −3.293122e− 08
−3.293122e− 08 1.288259e− 06

)(
126974− 62309.1

4224− 2927.3

)

= 4.342967 > 1.39

and this point falls outside the 50% contour. The remaining nine points have
generalized distances from x̄ of 1.20, 0.59, 0.83, 1.88, 1.01, 1.02, 5.33, 0.81, and 0.97,
respectively. Since seven of these distances are less than 1.39, a proportion, 0.70,
of the data falls within the 50% contour. If the observations were Normally dis-
tributed, we would expect about half, or 5, of them to be within this contour. This
large a difference in proportions would ordinarily provide evidence for rejecting the
notion of bivariate Normality; however, our sample size of 10 is too small to reach
this conclusion.

Computing the fraction of the points within a contour and subjectively com-
paring it with the theoretical probability is a useful, but rather rough, procedure.
A somewhat more formal method for judging the joint Normality of a data set is
based on the squared generalized distances

d2j = (xj − x̄)
′
S−1(xj − x̄), j = 1, 2, ..., n

where x1, x2, . . . , xn are the sample observations. The procedure we are
about to describe is not limited to the bivariate case: it can be used for all p ≥ 2.
When the parent population is Multivariate Normal and both n and n − p are
greater than 25 or 30, each of the squared distances d21, d

2
2, ..., d

2
n should behave

like a chi-square random variable. Although these distances are not independent
or exactly chi-square distributed, it is helpful to plot them as if they were. The
resulting plot is called a chi-squared plot or gamma plot, because the chi-square
distribution is a special case of the more general gamma distribution. To construct
the chi-square plot,

1. Order the squared distances from smallest to largest as d2(1) ≤ d2(2) ≤ ... ≤ d2(n).

2. Graph the pairs
(
qc,p((j − 1/2)/n), d2(j)

)
, where qc,p((j − 1/2)/n) is the

100(j − 1/2)/n quantile of the chi-square distribution with p degrees of freedom.

The plot should resemble a straight line through the origin having slope 1. A sys-
tematic curved pattern suggests lack of Normality. One or two points far above the
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line indicate large distances, or outlying observations, that merit further attention.

Example 5 (Constructing a chi-square plot).
Let us construct a chi-square plot of the generalized distances Example 4. The

ordered distances and the corresponding chi-square percentiles for p = 2 and n =
10 are listed in the following table:

j d2(j) qc,p((j − 1/2)/n)

1 0.59 0.10
2 0.81 0.33
3 0.83 0.58
4 0.97 0.86
5 1.01 1.20
6 1.02 1.60
7 1.20 2.10
8 1.88 2.77
9 4.34 3.79
10 5.33 5.99

A graph of the pairs
(
qc,2((j − 1/2)/10), d2(j)

)
is shown in Figure 3. The points

in Figure 3 do not lie along the line with slope 1. The smallest distances appear
to be too large and the middle distances appear to be too small, relative to the
distances expected from bivariate Normal populations for samples of size 10. These
data do not appear to be bivariate Normal; however, the sample size is small, and
it is difficult to reach a definitive conclusion. If further analysis of the data were
required, it might be reasonable to transform them to observations more nearly
bivariate Normal. Appropriate transformations are discussed in Section 2.

R code

## Example. Checking Bivariate Normality

corporations<-read.table(file="us-corp.txt",header=TRUE)

corporations

data<-corporations[ ,-1]

S<-cov(data)

x.bar<-apply(data,2,FUN=mean)

## Turning data and x.bar into column vectors

data<-matrix(unlist(data),nrow=10,ncol=2)
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x.bar<-matrix(x.bar,ncol=1)

new.data<-t(data)

## First squared generalized distance

t(new.data[ ,1]-x.bar)%*%solve(S)%*%(new.data[ ,1]-x.bar)

# we should get 4.34

## Constructing a chi-square plot

# Initializing vector of squared generalized distances

d2<-numeric(10)

for (i in 1:10){

d2[i]<-t(new.data[ ,i]-x.bar)%*%solve(S)%*%(new.data[ ,i]-x.bar)

}

## Ordering squared distances from smallest to largest.

d2.j<-sort(d2)

## Quantiles from chi-square distribution with 2 df

n<-length(d2.j)

prob.levels<-(seq(1:n)-0.5)/n

chi.quantiles<-qchisq(prob.levels,2)

## Chi-square plot

## mar

## A numerical vector of the form c(bottom, left, top, right)

## which gives the number of lines of margin to be specified on the four

## sides of the plot.

par(mar=c(5,5,5,5))
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plot(chi.quantiles,d2.j,xlab=expression(q[2]),

ylab=expression(d[(j)]^2),pch=19,col="blue")

title("Chi-square plot")

## Distances that fall inside the 50% contour.

q.50<-qchisq(0.5,2)

d2.j[d2.j<q.50]

●

● ●

● ● ●

●

●

●

●

0 1 2 3 4 5 6

1
2

3
4

5

q2

d (
j)2

Chi−square plot

Figure 3. A chi-square plot of the ordered distances in Example 4.

2. Transformations to near Normality

If Normality is not a viable assumption, what is the next step? One alter-
native is to ignore the findings of a Normality check and proceed as if the data
were Normally distributed. This practice is not recommended, since, in many in-
stances, it could lead to incorrect conclusions. A second alternative is to make
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non-Normal data more ”Normal looking” by considering transformations of the
data. Normal-theory analyses can then be carried out with the suitably trans-
formed data. Transformations are nothing more than a reexpression of the data in
different units. For example, when a histogram of positive observations exhibits a
long right-hand tail, transforming the observations by taking their logarithms or
square roots will often markedly improve the symmetry about the mean and the
approximation to a Normal distribution.

In many instances, the choice of a transformation to improve the approximation
to normality is not obvious. For such cases, it is convenient to let the data suggest
a transformation. A useful family of transformations for this purpose is the family
of power transformations. Power transformations are defined only for positive
variables. However, this not as restrictive as it seems, because a single constant
can be added to each observation in the data if some of the values are negative.

Let x represent an arbitrary observation. The power family of transformations
is indexed by a parameter λ. A given value for λ implies a particular trans-
formation. For example, consider xλ with λ = −1. Since x−1 = 1/x, this choice
of λ corresponds to the reciprocal transformation. For λ = 0, we define x0 = ln(x).

A convenient analytical method is available for choosing a power transformation.
Box and Cox consider the slightly modified family of power transformations

xλ =

{
xλ−1
λ

λ 6= 0
ln(x) λ = 0

which is continuous in λ for x > 0. Given the observations x1, x2, ..., xn, the
Box-Cox solution for the choice of an appropriate power λ is the solution that
maximizes the expression

(1) L(λ) = −n
2
ln

[
1

n

n∑
j=1

(x
(λ)
j −

¯
x
(λ)
j )2

]
+ (λ− 1)

n∑
j=1

ln(xj)

where
¯
x
(λ)
j = 1

n

∑n
j=1 x

(λ)
j .

The calculation of L(λ) for many values of λ is an easy task for a computer.
It is helpful to have a graph of L(λ) versus λ, as well as a tabular display of the

pairs (λ, L(λ)), in order to study the behaviour near the maximizing value λ̂. For

instance, if either λ = 0 (logarithm) or λ = 1/2 (square root) is near λ̂, one of
these may be preferred because of its simplicity.

Comment. It is now understood that the transformation obtained by maximiz-
ing L(λ) usually improves the approximation to Normality. However, there is no
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guarantee that even the best choice of λ will produce a transformed set of values
that adequately conform to a Normal distribution. The outcomes produced by a
transformation selected according to equation (1) should always be carefully ex-
amined for possible violations of the tentative assumption of Normality.

Example 6 (Determining a power transformation for univariate data).
We gave readings of the microwave radiation emitted through the closed doors of
n = 42 ovens in Example 2. The Q-Q plot of these data in Figure 2 indicates
that the observations deviate from that would be expected if they were Normally
distributed. Since all the observations are positive, let us perform a power trans-
formation of the data which, we hope, will produce results that are more nearly
Normal. Restricting our attention to the family of transformations we discussed
above, we must find that value of λ maximizing the function L(λ) in equation (1).

The curve of L(λ) versus λ that allows the more exact determination λ̂ = 0.28 is

shown in Figure 4. It is evident from the plot that a value of λ̂ around 0.30 max-
imizes L(λ). For convenience, we choose λ̂ = 0.25. The data xj were reexpressed
as

x
(1/4)
j =

x
1/4
j − 1

1/4
j = 1, 2, ..., 42

and a Q-Q plot was constructed from the transformed quantities. This is shown
in Figure 5. The quantile pairs fall very close to a straight line, and we would

conclude from this evidence that the x
(1/4)
j are approximately Normal.

R code

## Transformations to near Normality

box.cox<-function(x,lambda){

if (lambda==0) y<-log(x) else

y<-(x^(lambda)-1)/lambda

return(y)

}
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L.lambda<-function(x,lambda){

new.x<-box.cox(x,lambda)

n<-length(new.x)

L<-(-n/2)*log( (1/n)*(sum(new.x*new.x)) - mean(new.x)^2 ) + (lambda-1)*sum(log(x))

return(L)

}

## Finding values for plot of L(lambda) vs lambda

lambda.vec<-seq(0,0.6,by=0.01)

k<-length(lambda.vec)

L.fun<-numeric(k)

for (i in 1:k){

L.fun[i]<-L.lambda(rad.vec,lambda.vec[i])

}

## Plot of L(lambda) vs lambda

par(mar=c(5,5,5,5))

plot(lambda.vec,L.fun,type="l",col="blue",xlab=expression(lambda),

ylab=expression(L(lambda)))

## Q-Q plot of transformed data

trans.rad.vec<-box.cox(rad.vec,0.25)

qqnorm(trans.rad.vec,col="blue",pch=19)
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qqline(trans.rad.vec)
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Figure 4. Plot of L(λ) vs λ for radiation data (door closed).
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Figure 5. A Q-Q plot of the transformed radiation data (door closed).


