TUTORIAL 10 STA437 WINTER 2015

AL NOSEDAL

CONTENTS

1.	Canonical Correlation	1
1.1.	Tests of NO relationship between the y 's and the x 's	1
1.2.	Example 1	2
1.3.	Test of Significance of Succeeding Canonical Correlations	3
1.4.	Exercise	3
1.5.	Relationships of Canonical Correlation	
	Analysis to other Multivariate Techniques	3

1. CANONICAL CORRELATION

In this tutorial, we discuss basic tests of significance associated with canonical correlations and relationships of canonical correlation analysis to other multivariate techniques.

1.1. Tests of NO relationship between the y's and the x's. When $\Sigma_{xy} = 0$, a'X and b'Y have covariance a' Σ_{xy} b = 0 for all vectors a and b. Consequently, all the canonical correlations must be zero, and there is no point in pursuing a canonical correlation analysis. In Chapter 7, we considered the hypothesis of independence, $H_0 : \Sigma_{yx} = 0$. If $\Sigma_{yx} = 0$, the covariance of every y_i with every x_j is zero, and all corresponding correlations are likewise zero. Hence, under H_0 there is **no** linear relationship between the y's and the x's, and H_0 is equivalent to the statement that **all** canonical correlations $r_1, r_2, ..., r_s$ are nonsignificant. Thus, the significance of $r_1, r_2, ..., r_s$ can be tested by

$$\Lambda_1 = \frac{|\mathbf{S}|}{|\mathbf{S}_{yy}||\mathbf{S}_{xx}|} = \frac{|\mathbf{R}|}{|\mathbf{R}_{yy}||\mathbf{R}_{xx}|},$$

which is distributed as $\Lambda_{p,q,n-1-q}$. We reject H_0 if $\Lambda_1 \leq \Lambda_{\alpha}$. Critical values Λ_{α} are available in Table A.9 using $\nu_H = q$ and $\nu_E = n - 1 - q$. The statistic Λ_1 is also distributed as $\Lambda_{q,p,n-1-p}$. Λ_1 is expressible in terms of the squared canonical correlations:

AL NOSEDAL

$$\Lambda_1 = \prod_{i=1}^s (1 - r_i^2).$$

If the parameters exceed the range of critical values for Wilks' Λ in Table A.9, we can use the χ^2 -approximation,

$$\chi^2 = -[n - \frac{1}{2}(p + q + 3)]ln(\Lambda_1),$$

which is approximately distributed as χ^2 with pq degrees of freedom. We reject H_0 if $\chi^2 \ge \chi^2_{\alpha}$.

1.2. Example 1. In an investigation of the relation of the Wechsler Adult Intelligence Scale to age. Researchers obtained this matrix of correlations among the digit span and vocabulary subsets, chronological age, and years of formal education:

$$\mathbf{R} = \begin{pmatrix} 1 & 0.45 & -0.19 & 0.43 \\ 0.45 & 1 & -0.02 & 0.62 \\ -0.19 & -0.02 & 1 & -0.29 \\ 0.43 & 0.62 & -0.29 & 1 \end{pmatrix},$$

The sample consisted of n = 933 men and women aged 25 to 64. Test the significance of the canonical correlations. Use $\alpha = 0.05$.

Solution

As noted at the beginning of this tutorial, the following tests are equivalent: 1. Test of $H_0: \Sigma_{\mathbf{vx}} = \mathbf{0}$, independence of two sets of variables.

2. Test of significance of the canonical correlations.

First, let us use Wilks' lambda. p = q = 2, $\nu_H = 2$, and $\nu_E = 933 - 1 - 2 = 930$

 $|\mathbf{R}| = 0.4015025$

 $|\mathbf{R}_{xx}| = 0.7975$

 $|\mathbf{R}_{yy}| = 0.9159$

$$\Lambda = \frac{|\mathbf{R}|}{|\mathbf{R}_{yy}||\mathbf{R}_{xx}|} = \frac{0.4015025}{(0.7975)(0.9159)} = 0.5497$$

 $\Lambda_{0.05,2,2,930} \approx 0.9955$

Since $\Lambda = 0.5497 < \Lambda_{0.05,2,2,930} \approx 0.9955$, we reject the hypothesis of independence. We must conclude that the subtests are dependent upon age and education.

Which is equivalent to saying that at least r_1^2 appears to be nonzero.

Now, let us use a χ^2 -approximation,

$$\chi^{2} = -[n - \frac{1}{2}(p + q + 3)]ln(\Lambda_{1})$$

$$\chi^{2} = -[933 - \frac{1}{2}(2 + 2 + 3)]ln(0.5497) = -[933 - 3.5](-0.5984)$$

$$\chi^{2} = -[929.5](-0.5984) = 556.2128$$

The critical value is $\chi^2_{0.05,(2)(2)} = \chi^2_{0.05,4} = 9.488$. Since 556.2128 > 9.488, we reject H_0 . We must conclude that the subtests are dependent upon age and education. Which is the same as saying that at least r_1^2 appears to be nonzero.

1.3. Test of Significance of Succeeding Canonical Correlations. If the test $\Lambda_1 = \prod_{i=1}^{s} (1-r_i^2)$ based on all *s* canonical correlations rejects H_0 , we are not sure if the canonical correlations beyond the first are significant. To test the significance of $r_2, r_3, ..., r_s$, we delete r_1^2 from Λ_1 to obtain

$$\Lambda_2 = \prod_{i=2}^s (1 - r_i^2)$$

If this test rejects the hypothesis, we conclude that at least r_2 is significantly different from zero. We can continue in this manner, testing each r_i in turn, until a test fails to reject the hypothesis. At the *k*th step, the test statistic is

$$\Lambda_k = \prod_{i=k}^s (1 - r_i^2),$$

which is distributed as $\Lambda_{p-k+1,q-k+1,n-k-q}$ and tests the significance of $r_k, r_{k+1}, ..., r_s$. The χ^2 -approximation is given by

$$\chi^{2} = -[n - \frac{1}{2}(p + q + 3)]ln(\Lambda_{k}),$$

which is approximately distributed as χ^2 with (p-k+1)(q-k+1) degrees of freedom.

1.4. Exercise. Continue your analysis of the canonical correlations in Example 1.

1.5. Relationships of Canonical Correlation Analysis to other Multivariate Techniques.

AL NOSEDAL

Subject	X_1	X_2	Y_1	Y_2	Z_1
1	4	2	11	25	1
2	1	3	14	25	1
3	3	5	12	26	1
4	2	2	11	30	1
5	2	2	13	25	-1
6	4	5	12	30	-1
7	5	4	12	27	-1
8	5	5	15	28	-1

a) Conduct a canonical analysis of the relationship between variables Z_1 , on the one hand, and variables X_1 , X_2 , Y_1 , and Y_2 . Report both sets of canonical coefficients and the canonical correlation between the two sets of variables.

b) Treating subjects 1-4 as members of one group and subjects 5-8 as members of a second group, conduct a one-way MANOVA on the differences among the groups in mean response vectors.

c) Using vector **b** from part a), calculate for each subject the single score, $V_i = b_1 X_{1i} + b_2 X_{2i} + b_3 Y_{1i} + b_4 Y_{2i}$. Now conduct a t-test on the difference in **V** between the two groups.

d) Using Hotelling's T^2 , conduct a test of the overall null hypothesis of no difference between the two groups in overall mean response vectors.

e) Compare and contrast the results obtained in parts a)-d). Solution

z1<-c(1,1,1,1,-1,-1,-1,-1)

x1<-c(4,1,3,2,2,4,5,5)

x2<-c(2,3,5,2,2,5,4,5)

y1<-c(11,14,12,11,13,12,12,15)

y2<-c(25,25,26,30,25,30,27,28)

data

Using covariance matrix

S<-cov(data)

product 1

S11<-S[1,1]

S22<-S[2:5,2:5]

S12<-S[1,2:5]

S21<-S[2:5,1]

prod1<-solve(S11)%*%S12%*%solve(S22)%*%S21

prod1

Finding Eigenvalues and Eigenvectors

```
e.val.vec.1<-eigen(prod1)</pre>
```

Canonical correlation

r1<-sqrt(e.val.vec.1\$val)</pre>

r1

```
## a1 = vector of coefficients that defines first canonical variate
a1<-e.val.vec.1$vec
a1
## product 2</pre>
```

```
6
                             AL NOSEDAL
prod2<-solve(S22)%*%S21%*%solve(S11)%*%S12
prod2
## Finding Eigenvalues and Eigenvectors
e.val.vec.2<-eigen(prod2)</pre>
## Canonical correlation
r2<-sqrt(e.val.vec.2$val[1])</pre>
r2
## b1 = vector of coefficients that defines "other" first canonical variate
b1<-e.val.vec.2$vec[ ,1]</pre>
b1
### b) One-Way MANOVA
groups<-factor(data[ ,1])</pre>
groups
Y<-data[ , 2:5]
Y
fit<-manova(Y<sup>~</sup>groups)
sum.wilks<-summary(fit,test="Wilks")</pre>
sum.wilks
## B
B<-sum.wilks$SS[1]
В
B<-matrix(unlist(B),4,4)</pre>
## W
```

```
W<-sum.wilks$SS[2]
```

W

```
W<-matrix(unlist(W),4,4)
```

inv.W.B<-solve(W)%*%B

eigen(inv.W.B)

```
## Is there something "interesting" about
## the first eigenvector?
```

TUTORIAL 10

lambda.1<-eigen(inv.W.B)\$values[1]</pre>

```
## Remember Tutorial 4?
## The test statistic for Roy's test is:
## theta = lambda.1/(1+lambda.1)
```

theta<-lambda.1/(1+lambda.1)

theta

b1<-matrix(b1,ncol=1)</pre>

b1

```
V1<-data[ ,-1]%*%b1
```

V1

t-test

T.test<-t.test(V1[1:4],V1[5:8],alternative="two.sided",var.equal=TRUE)

T.test

```
AL NOSEDAL
```

```
## Squaring test statistic
```

```
(T.test$statistic)^2
```

```
## breaking down data
```

```
group1<-data[1:4 ,-1]</pre>
```

```
group2<-data[5:8,-1]
```

sample sizes

```
n1<-dim(group1)[1]</pre>
```

```
n2<-dim(group2)[1]
```

mean vectors

```
y.bar.1<-apply(group1,2,FUN=mean)</pre>
```

y.bar.2<-apply(group2,2,FUN=mean)</pre>

covariance matrices

S.1<-cov(group1)

```
S.2<-cov(group2)
```

```
Sp<-(n1+n2-2)^(-1)*((n1-1)*S.1 + (n2-1)*S.2)
```

Hotelling?s T^2

T.2<-(n1*n2/(n1+n2))*t(y.bar.1-y.bar.2)%*%solve(Sp)%*%(y.bar.1-y.bar.2)

Τ.2

8

```
## Is there something "interesting"
## about T.2?
```

- e) Comparisons
 - The canonical coefficients for variables X_1 , X_2 , Y_1 , and Y_2 are identical to the coefficients of the MANOVA-derived discriminant function ("biggest" eigenvalue of $\mathbf{W}^{-1}\mathbf{B}$). They are also identical with the T^2 -derived discriminant function, though you were not required to calculate this last function.
 - When these coefficients are used to obtain a single combined score for each subject, and a standard univariate t-test is conducted on the difference between the two groups on the resulting new variable, the square of this is the same as the value of Hotelling's T^2 statistic.
 - We saw that $r_1^2 = \frac{\lambda_1}{1+\lambda_1}$.

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

df	$\chi^2_{.995}$	$\chi^2_{.990}$	$\chi^2_{.975}$	$\chi^2_{.950}$	$\chi^2_{.900}$	$\chi^2_{.100}$	$\chi^2_{.050}$	$\chi^2_{.025}$	$\chi^2_{.010}$	$\chi^2_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169