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Sometimes we want to model a relationship between two variables,
X and Y . We might want to find an equation that describes the
relationship. Often we plan to use the value of X to help predict Y
using that relationship. The data consist of n ordered pairs of
points (xi , yi ) for i = 1, 2, 3, ..., n. We think of x as the predictor
variable (independent variable) and consider that we know it
without error. We think y is a response variable that depends on x
in some unknown way, but that each observed y contains an error
term as well.
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A linear relationship is the simplest equation relating two variables.
This would give a straight line relationship between the predictor x
and the response y . We leave the parameters of the line, the slope
β, and the y-intercept α0 unknown, so all lines are possible. Then
we determine the best estimates of the unknown parameters by
some criterion. The criterion that is most frequently used is least
squares. This is where we find the parameter values that minimize
the sum of squares of the residuals, which are the vertical
distances of the observed points to the fitted equation.
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Sum of Squares of the Residuals

The sum of squares of the residuals from line y = α0 + βx is

SSres =
n∑

i=1

[yi − (α0 + βxi )]2.

To find values of α0 and β that minimize SSres using calculus, take
derivatives with respect to each α0 and β and set equal to 0, and
solve the resulting set of simultaneous equations.
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Least squares line

The equation of the least squares line is

ŷ = A0 + Bx

where

B =
x̄y − x̄ ȳ

x̄2 − (x̄)2
= r

Sy
Sx
.

A0 = ȳ − Bx̄ .

(where r = sample correlation, Sy = sample standard deviation of
y , and Sx = sample standard deviation of x)
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Alternative equation

The slope and any other point besides y-intercept also determines
the line. Say the point Ax̄ , where the least squares line intercepts
the vertical line at x̄ :

Ax̄ = A0 + Bx̄ = ȳ .

Thus the least squares line goes through the point ((x̄ , ȳ). An
alternative equation for the least squares line is

ŷ = Ax̄ + B(x − x̄) = ȳ + B(x − x̄),

which is particularly useful.
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Estimating the Variance around the Least Squares Line

The estimate of the variance around the least squares line is

σ̂2 =

∑n
i=1[yi − (Ax̄ + B(xi − x̄))]2

n − 2

which is the sum of squares of the residuals divided by n − 2. The
reason we use n − 2 is that we have used two estimates, Ax̄ and B
in calculating the sum of squares. The general rule for finding an
unbiased estimate of the variance is that the sum of squares is
divided by the degrees of freedom, and we lose a degree of freedom
for every estimated parameter in the sum of squares formula.
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Simple Linear Regression Assumptions

1. Mean assumption. The conditional mean of y given x is an
unknown linear function of x .

µy |x = α0 + βx ,

where β is the unknown slope and α0 is the unknown y intercept,
the intercept of the vertical line x=0. In the alternate
parameterization

µy |x = αx̄ + β(x − x̄),

where αx̄ is the unknown intercept of the vertical line x = x̄ .
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Simple Linear Regression Assumptions

2. Error assumption. Observation equals mean plus error, which is
Normally distributed with mean 0 and known variance σ2. All
errors have equal variance.
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Simple Linear Regression Assumptions

3. Independence Assumption. The errors for all the observations
are independent of each other.
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Using the alternate parameterization

yi = αx̄ + β × (xi − x̄) + ei ,

where αx̄ is the mean value for y given x = x̄ , and β is the slope.
Each ei is Normally distributed with mean 0 and known variance
σ2. The ei are all independent of each other. Therefore yi |xi is
Normally distributed with mean αx̄ + β × (xi − x̄) and variance σ2

and all the yi |xi are all independent of each other.
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Bayes’ Theorem for the Regression Model

Bayes’ theorem is always summarized by

Posterior ∝ Prior × Likelihood

so we need to determine the likelihood and decide on our prior for
this model.
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The Joint Likelihood for β and αx̄

The likelihood of observation i is:

likelihoodi (αx̄ , β) ∝ e−
1

2σ2 [yi−(αx̄+β(xi−x̄))]2

,

since we can ignore the part not containing the parameters.
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The Joint Likelihood for β and αx̄

The observations are all independent, so the likelihood of the
whole sample of all the observations is the product of the
individual likelihoods:

likelihoodsample(αx̄ , β) ∝ e−
1

2σ2 [
∑n

i=1[yi−(αx̄+β(xi−x̄))]2].
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The Joint Likelihood for β and αx̄

The term in brackets in the exponent equals

n∑
i=1

[yi − ȳ + ȳ − (αx̄ + β(xi − x̄))]2

Breaking this into three sums and simplifying gives us

SSy − 2βSSxy + β2SSx + n(αx̄ − ȳ)2,
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The Joint Likelihood for β and αx̄

where SSy =
∑n

i=1(yi − ȳ)2, and SSxy =
∑n

i=1(xi − x̄)(yi − ȳ), and
SSx =

∑n
i=1(xi − x̄)2. Thus the joint likelihood can be written as

likelihoodsample(αx̄ , β) ∝ e−
1

2σ2 [SSy−2βSSxy+β2SSx+n(αx̄−ȳ)2].
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The Joint Likelihood for β and αx̄

Writing this as the a product of two exponentials gives

likelihoodsample(αx̄ , β) ∝ e−
1

2σ2 [SSy−2βSSxy+β2SSx ]e−
1

2σ2 [n(αx̄−ȳ)2].

We factor out SSx in the first exponential, complete the square,
and absorb the part that doesn’t depend on any parameter into the
proportionality constant. This gives us

likelihoodsample(αx̄ , β) ∝ e
− SSx

2σ2

[
β− SSxy

SSx

]2

e−
n

2σ2 [(αx̄−ȳ)2].
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The Joint Likelihood for β and αx̄

Note that B =
SSxy
SSx

, the least squares slope, and ȳ = Ax̄ , the least
squares estimate of the intercept of the vertical line x = x̄ . We
have factored out the joint likelihood into the product of two
individual likelihoods

likelihoodsample(αx̄ , β) ∝ likelihoodsample(αx̄)× likelihoodsample(β),

Since the joint likelihood has been factored into the product of the
individual likelihoods we know that the individual likelihoods are
independent.
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The Joint Prior for β and αx̄

If we multiply the joint likelihood by a joint prior, it is proportional
to the joint posterior. We will use independent priors for each
parameter. The joint prior of the two parameters is the product of
the two individual priors:

g(αx̄ , β) = g(αx̄)× g(β).

We can either use Normal priors, or flat priors.
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The Joint Posterior for β and αx̄

The joint prior and the joint likelihood both factor into a part
depending on αx̄ and a part depending on β. Rearranging them
gives the joint posterior factored into the marginal posteriors

g(αx̄ , β| data) ∝ g(αx̄ | data)× g(β| data).
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The Joint Posterior for β and αx̄

Since the joint posterior is the product of the marginal posteriors,
they are independent. Each of these marginal posteriors can be
found by using the simple updating rules for Normal distributions,
which works for Normal and flat priors. For instance, if we use a
Normal(mβ, s

2
β) prior for β, we get a Normal(m

′
β, (s

′
β)2), where

1

(s
′
β)2

=
1

s2
β

+
SSx
σ2

and

m
′
β =

1
s2
β

1
(s

′
β)2

×mβ +
SSx
σ2

1
(s

′
β)2

× B.
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The Joint Posterior for β and αx̄

Similarly if we use a Normal(mαx̄ , s
2
αx̄

) prior for αx̄ , we get a

Normal(m
′
αx̄
, (s

′
αx̄

)2), where

1

(s ′αx̄
)2

=
1

s2
αx̄

+
n

σ2

and

m
′
αx̄

=

1
s2
αx̄

1
(s′αx̄

)2

×mαx̄ +
n
σ2

1
(s′αx̄

)2

× Ax̄ .
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Bayesian Credible Interval for Slope

The posterior distribution of β summarizes our entire belief about
it after examining the data. We may want to summarize it by a
(1− α)× 100% Bayesian credible interval for slope β. This will be

m
′
β ± zα/2

√
(s

′
β)2.
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Bayesian Credible Interval for Slope

More realistically, we don’t know σ2. A sensible approach in that
instance is to use the estimate calculated from the residuals (σ̂2 ).
We have to widen the confidence interval to account for the
increased uncertainty due to not knowing σ2. We do this by using
a Student’s t critical value with n − 2 degrees of freedom∗∗. The
credible interval becomes

m
′
β ± tα/2

√
(s

′
β)2.

∗∗ Actually we are treating the unknown parameter σ2 as a
nuisance parameter and using the prior g(σ2) ∝ (σ2)−1. The
marginal posterior of β is found by integrating σ2 out of the joint
posterior.
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Testing One-sided Hypothesis about Slope

Often we want to determine whether or not the amount of increase
in y associated with one unit increase in x is greater than some
value, β0. We can do this by testing

H0 : β ≤ β0 vs H1 : β > β0

at the α level of significance in a Bayesian manner. To do the test
in a Bayesian manner, we calculate the posterior probability of the
null hypothesis.
(If we used the estimate of the variance, then we would use a
Student’s t with n-2 degrees of freedom instead of the standard
Normal Z .)
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Testing Two-sided Hypothesis about Slope

If β = 0, then the mean of y does not depend on x at all. We
really would like to test H0 : β = 0 vs H1 : β 6= 0 in a Bayesian
manner, before we use the regression model to make predictions.
To do the test in a Bayesian manner, look where 0 lies in relation
to the credible interval. If it lies outside interval, reject H0.
Otherwise, we can’t reject the null hypothesis, and we should not
use the regression model to help with predictions.
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Example

A company is manufacturing a food product, and must control the
moisture level in the final product. It is cheaper (and hence
preferable) to measure the level at an in-process stage rather than
in the final product. The company statistician recommends to the
engineers running the process that a measurement of the moisture
level at an in-process stage may be a good prediction of what the
final moisture level will be. He organizes the collection of the data
from 25 batches, giving the moisture level at the in-process stage
and the final moisture level for each batch.
Summary statistics for these data are: x̄ = 14.389, ȳ = 14.221,
x̄2 = 207.0703, ȳ2 = 202.3186, and x̄y = 204.6628.
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Example

He then calculates the least squares line relating the final moisture
level to the in-process moisture level:

B =
x̄y − x̄ ȳ

x̄2 − (x̄)2
=

204.6628− 14.389(14.221)

207.0703− (14.389)2
=

0.042569

0.032755
= 1.29963

The equation of the least squares line is

ŷ = 14.221 + 1.29963(x − 14.389)
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Example

Then, he calculates the least squares fitted values ȳ + B(xi − x̄),
the residuals, and the squared residuals. The estimated variance
about the least squares line is

σ̂2 =

∑n
i=1(yi − ŷ)2

n − 2
=

0.80188

23
= 0.0320753.

To find the estimated standard deviation about the least squares
line, he takes the square root:

σ̂ =
√

0.0320753 = 0.179096.
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Example (cont.)

The statistician decides that he will use a Normal(1, 0.32) prior for
β and a Normal(15, 12) prior for αx̄ . Since he doesn’t know the
true variance, he will use the estimated variance about the least
squares regression line σ̂2 = 0.0320753. Note that
SSx =

∑n
i=1(xi − x̄)2 = n(x̄2 − (x̄)2) = 25(207.0703− 14.3892) =

0.674475
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Example (cont.)

The posterior precision of β is

1

(s
′
β)2

=
1

0.32
+

25

0.674475
= 48.177,

so the posterior standard deviation of β is

s
′
β =
√

48.177 = 0.144
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Example (cont.)

The posterior mean of β is

m
′
β =

1
0.32

48.177
× 1 +

25
0.64775

48.177
× 1.29963 = 1.231.
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Example (cont.)

Similarly the posterior precision of αx̄ is

1

(s ′αx̄
)2

=
1

12
+

25

0.674475
= 38.066,

so the posterior standard deviation of αx̄ is

s
′
αx̄

=
√

38.066 = 0.162.
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Example (cont.)

The posterior mean of αx̄ is

m
′
αx̄

=
1
12

38.066
× 15 +

25
0.64775

38.066
× 14.221 = 14.242.
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Example (cont.)

Since he used the estimated variance in place of the unknown true

variance, he used m
′
β ± tα/2

√
(s

′
β)2 to find the 95% Bayesian

credible interval where there are 23 degrees of freedom. The
interval is

1.231± 2.069(0.144)

(0.933, 1.529).
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Example

A researcher measured heart rate (x) and oxygen uptake (y) for
one person under varying exercise conditions. He wishes to
determine if heart rate which is easier to measure can be used to
predict oxygen uptake. If so, then the estimated oxygen uptake
based on the measured heart rate can be used in place of the
measured oxygen uptake for later experiments on the individual.
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Heart Rate Oxygen Uptake
x y

94 0.47
96 0.75
94 0.83
95 0.98

104 1.18
106 1.29
108 1.40
113 1.60
115 1.75
121 1.90
131 2.23
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Example

a) Plot a scatterplot of oxygen uptake y versus heart rate x.
b) Calculate the parameters of the least squares line.
c) Graph the least squares line on your scatterplot.
d) Calculate the estimated variance about the least squares line.
e) Suppose that we know that oxygen uptake given the heart rate
is Normal(α0 + βx , σ2), where σ2 = 0.132 is known. Use a
Normal(0, 12) prior for β. What is the posterior distribution of β?
f) Find a 95% credible interval for β.
g) Perform a Bayesian test of H0 : β = 0 vs H1 : β 6= 0
at the 95% level of significance.
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Solution b

The least squares slope

B =
145.64− (107)(1.307273)

11584.09− (107)2
=

5.761818

135.0909
= 0.04265141

A0 = 1.307273− 0.04265141(107) = −3.256428

Al Nosedal. University of Toronto. Bayesian Inference for Simple Linear Regression



Solution c

●

●

●

●

●

●

●

●

●

●

●

100 110 120 130

0.
5

1.
0

1.
5

2.
0

heart rate

ox
yg

en
 u

pt
ak

e

Al Nosedal. University of Toronto. Bayesian Inference for Simple Linear Regression



Solution d

The estimated variance about the least squares line is found by
taking the sum of squares of residuals and dividing by n − 2 and
equals σ̂2 = 0.13028672.
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Solution e

The likelihood of β is proportional to a Normal(B, σ
2

SSx
) where B is

the least squares slope and SSx = 1486 and σ2 = 0.132.
The prior for β is Normal(0, 12). The posterior precision will be

1

(s ′)2
=

1

12
+

SSx
0.132

= 87930

the posterior variance will be (s
′
)2 = 1

87930 = 0.000011 and the
posterior mean

m
′

=
1/12

87930
× 0 +

SSx/0.132

87930
× 0.04265141 = 0.0426509

The posterior distribution of β is Normal(0.0426, 0.00332).
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Solution f and g

m
′
β ± zα/2

√
(s

′
β)2.

0.0426± 1.96(0.0033).

A 95% Bayesian Credible Interval for β is (0.036, 0.049).

We observe that the null value 0 lies outside the credible interval,
so we reject the null hypothesis.
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# R Code;

# Data;

heart=c(94,96,94,95,104,106,108,113,115,121,131);

oxygen=c(0.47,0.75,0.83,0.98,1.18,1.29,1.40,1.60,

1.75,1.90,2.23);

mean(heart);

mean(oxygen);

mean(heart*oxygen);

mean(heart*heart);
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# R Code;

# Scatterplot;

plot(heart,oxygen,pch=19,xlab="heart rate",

ylab="oxygen uptake");

# pch=19 tells R to draw solid circles;
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# R Code;

lin.reg=lm(oxygen~heart);

names(lin.reg);

lin.reg$res;

# gives you the residuals;

n=length(lin.reg$res);

sigma2.hat= sum(lin.reg$res*lin.reg$res)/(n-2);

sigma.hat=sqrt(sigma2.hat);
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# Scatterplot with least-squares line;

plot(heart,oxygen,pch=19,xlab="heart rate",

ylab="oxygen uptake");

abline(lin.reg,col="blue");

# abline tells R to add least-squares line;
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A few comments

Bayesian statistics does inference using the rules of probability
directly

Bayesian statistics is based on a single tool, Bayes’ theorem,
which finds the posterior density of the parameters, given the
data. It combines both the prior information we have given in
the prior g(θ1, ..., θp) and the information about the
parameters contained in the observed data given in the
likelihood f (y1, ..., yn|θ1, ..., θp)
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A few comments

It is easy to find the unscaled posterior by posterior
proportional to prior times likelihood. The unscaled posterior
has all the shape information. However, it is not the exact
posterior density. It must be divided by its integral to make it
exact.

Evaluating the integral may be very difficult, particularly if
there are lots of parameters. It is hard to find the exact
posterior except in a few special cases.
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A few comments

Computational Bayesian Statistics is based on developing
algorithms that we can use to draw samples from the true
posterior, even when we only know the unscaled version. There are
two types of algorithms we can use to draw a sample from the true
posterior, even when we only know it in the unscaled form. The
first type are direct methods, where we draw a random sample
from an easily sampled density, and reshape this sample by only
accepting some of the values into the final sample, in such a way
that the accepted values constitute a random sample from the
posterior. These methods quickly become inefficient as the number
of parameters increase.
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A few comments

The second type is where we set up a Markov chain that has the
posterior as its long-run distribution, and letting the chain run long
enough so a random draw from the Markov chain is a random draw
from the posterior. These are known as Markov chain Monte Carlo
(MCMC) methods. The Metropolis-Hastings algorithm and the
Gibbs sampling algorithm are the two main Markov chain Monte
Carlo methods. The Markov chain Monte Carlo samples will not be
independent. There will be serial dependence due to the Markov
property. Different chains have different mixing properties. That
means they move around the parameter space at different rates.
However, a MCMC sample provides an approximation to a random
sample from the posterior, one that can be used for inference.
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