
Inference for a Population Proportion

Al Nosedal.
University of Toronto.

November 11, 2015

Al Nosedal. University of Toronto. Inference for a Population Proportion



Statistical inference is drawing conclusions about an entire
population based on data in a sample drawn from that population.
From both frequentist and Bayesian perspectives, there are three
main goals of inference: estimation, hypothesis testing, and
prediction. Estimation and hypothesis testing deal with drawing
conclusions about unknown and unobservable population
parameters. Prediction is estimating the values of potentially
observable but currently unobserved quantities.
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Bayesian Inference: Summarizing the Posterior Distribution

All Bayesian inference is based on the posterior distribution, which
contains all the current information about the unknown parameter.
Although a plot of the posterior density gives a full graphical
description, numeric summaries of the posterior are needed as well.
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The Posterior Mean

The mean of the posterior distribution is often used as the
Bayesian point estimate of a parameter. For a beta prior and
binomial likelihood, the posterior mean is

E (π|y) =
α + y

α + β + n
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Example

In our example, with the beta(10, 40) prior

E (π|y) =
α + y

α + β + n
=

17

100
= 0.17
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A comment about Posterior Mean

If we denote the posterior mean by µpost , then

µpost =
α + y

α + β + n
= w

α

α + β
+ (1− w)

y

n

where w = α+β
α+β+n .
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Other Bayesian Point Estimates

The posterior median and posterior mode are sometimes used
instead of the posterior mean as Bayesian point estimates.
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The Posterior Variance

The posterior variance is one summary of the spread of the
posterior distribution. The larger the posterior variance, the more
uncertainty we still have about the parameter, even after learning
from the current data.
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Example

In our school-quitting example, with the uniform prior, the prior
variance = 1

12 = 0.083, and posterior variance = 0.00246. If we
instead used the Beta(10, 40) prior, the prior variance = 0.003144
and the posterior variance = 0.00140. As we would expect, the
posterior variance is smaller with the informative Beta(10,40) prior
than with the noninformative uniform prior.
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Bayesian Posterior Intervals

Intervals called ”credible sets” also are used as numeric posterior
summaries. There are two commonly used kinds.
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Equal-Tail Posterior Credible Sets

For example, the endpoints of a 95% equal-tail credible set are the
0.025 and the 0.975 quantiles of the posterior distribution. We can
use built-in R functions to calculate them. For our quitting- school
problem with the beta(10,40) prior, the posterior density was
Beta(17, 83), and the qbeta function in R can be used as follows:

qbeta( c(0.025, 0.975), 17, 83 );

This interval is shown graphically in the next slide.
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Equal-Tail Posterior Credible Sets
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Highest Posterior Density Regions

The other kind of Bayesian posterior interval is the highest
posterior density region, or HPD region. The posterior density at
any point inside such an HPD region is greater than the density at
any point outside it. The HPD region also is the shortest possible
interval trapping the desired probability. HPD regions are
preferable to equal-tail credible sets when the posterior is highly
skewed or multimodal. However, they are generally difficult to
compute. The intuition behind the computation of an HPD region
is as follows. Suppose that we want a 95% posterior probability
region. We begin by placing a horizontal line just touching the
posterior density curve at its mode. We then slide the line
downwards toward the x-axis until it cuts the density curve at
points such that the area under the density curve between these
points is exactly 0.95.
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Interpretation of Bayesian Intervals

Recall that the posterior distribution represents our updated
subjective probability distribution for the unknown parameter.
Thus, for us, the interpretation of the 95% credible set is that the
probability that the true π is in that interval is 0.95. For example,
if the Beta(10,40) had been a true representation of our prior
beliefs or

P(0.103 < π < 0.249) = 0.95.
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Using the Posterior Distribution to Test Hypotheses

H1 : π ≤ 0.10

vs

H2 : π > 0.10
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Using the Posterior Distribution to Test Hypotheses

We simply need the posterior probabilities of these two ranges of
values for π. Suppose that the Beta(10, 40) had been our true
prior, so our posterior distribution is Beta(17, 83). We can use a
built-in R function to obtain P(π ≤ 0.1|y).

pbeta(0.1, 17, 83);

(you should get 0.0187, roughly).

With this prior, we would conclude that P(π ≤ 0.1|y) ≈ 0.019.
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Using the Posterior Distribution to Test Hypotheses

Note that different people, approaching the question with different
prior information, will end up with different (subjective) posterior
probabilities on H0. Different people also will have different views
on how small P(π ≤ 0.1|y) has to be in order for it to be
appropriate to go before the regents, for instance.

Al Nosedal. University of Toronto. Inference for a Population Proportion



Bayes Factor

A Bayesian can test competing hypotheses H1 and H2 by
examining the Bayes factor (Jeffreys 1961)

BF (H1/H2|y) =
Pposterior (H1|y)/Pposterior (H2|y)

Pprior (H1|y)/Pprior (H2|y)

The Bayes factor is the odds ratio of the posterior odds to the
prior odds of the hypothesis H1 relative H2.
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Bayes Factor

Jeffreys recommends the following guidelines for degrees of
evidence for H1 and H2, based on ranges of Bayes factor values:
1. BF (H1/H2|y) < 1/100: decisive evidence for H2.
2. 1/100 < BF (H1/H2|y) < 1/10: strong evidence for H2.
3. 1/10 < BF (H1/H2|y) < 1/

√
(10): substantial evidence for H2.

4. 1/
√

(10) < BF (H1/H2|y) < 1: minimal evidence for H2.
5. 1 < BF (H1/H2|y) <

√
(10): minimal evidence for H1.

6.
√

(10) < BF (H1/H2|y) < 10: substantial evidence for H1.
7. 10 < BF (H1/H2|y) < 100: strong evidence for H1.
8. BF (H1/H2|y) > 100: decisive evidence for H1.
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Example

In our school-quitting example, H1 : π ≤ 0.10 and H2 : π > 0.10.
The prior odds for H1/H2 based on a flat noninformative prior
Beta(1, 1), is Pprior (H1)/Pprior (H2) = 0.10/0.90 ≈ 0.1111. A
random sample survey of n = 50 students with the binomial model
provide y = 7 (yesses) and a proportion estimate of π̂ = 7

50 = 0.14.
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Example (cont.)

The posterior distribution based on the conjugate prior is
Beta(8, 44) with posterior odds
Pposterior (H1|y)/Pposterior (H2|y) = 0.1330/0.8670 = 0.1534 and
Bayes factor

BF (H1/H2|y) =
Pposterior (H1|y)/Pposterior (H2|y)

Pprior (H1|y)/Pprior (H2|y)

=
0.1534

0.1111
= 1.3807

providing minimal evidence for H1 : π ≤ 0.10.
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R code

The probabilities for the posterior Beta distribution are calculated
using R cumulative distribution command
for H1.

pbeta(0.10,8,44);

for H2

1-pbeta(0.10,8,44);
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Prior and Posterior
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## Noninformative prior and posterior;

p=seq(0,1,by=0.001);

prior=dbeta(p,1,1);

posterior=dbeta(p,8,44);

plot(p,posterior,col="blue",xlab=expression(pi),

ylab=" ", type="l");

lines(p,prior,col="red");

legend("topright",c("posterior","prior"),

col=c("blue","red"),lty=c(1,1));

# lty =1 tells R to draw a regular line;
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Example (informative prior)

In our school-quitting example, H1 : π ≤ 0.10 and H2 : π > 0.10.
The prior odds for H1/H2 based on a prior Beta(10, 40), is
Pprior (H1)/Pprior (H2) = 0.0215/0.9785 ≈ 0.02197. A random
sample survey of n = 50 students with the binomial model provide
y = 7 (yesses) and a proportion estimate of π̂ = 7

50 = 0.14.
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Example (cont.)

The posterior distribution based on the conjugate prior is
Beta(17, 83) with posterior odds
Pposterior (H1|y)/Pposterior (H2|y) = 0.0188/0.9812 = 0.0191 and
Bayes factor

BF (H1/H2|y) =
Pposterior (H1|y)/Pposterior (H2|y)

Pprior (H1|y)/Pprior (H2|y)

=
0.0191

0.02197
≈ 0.87

providing minimal evidence for H2 : π > 0.10.
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Posterior Predictive Distributions

In many studies, the research question of interest is predicting
values of a future sample from the same population. For example,
suppose we are considering interviewing another sample of 50 UI
students in the hope of getting more evidence to present to the
regents, and we would like to get an idea of how it is likely to turn
out before we go to the trouble of doing so!
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Posterior Predictive Distributions

More generally, we are considering a new sample of sample size n∗

and want to estimate the probability of some particular number y∗

of successes in this sample. We need the probability of getting y∗

successes in a future sample given the information in our current
data y , not given some particular value of π. Recall that all of our
current knowledge about π is contained in the posterior
distribution obtained using the original survey.
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Posterior Predictive Distributions

Thus, the posterior predictive probability of getting some particular
value of y∗ in a future sample of size n∗ is

p(y∗|y) =

∫ 1

0
p(y∗|π)p(π|y)dπ, Y = y∗ = 0, 1, ..., n.

where y denotes the data from the original sample and p(π|y) is
the posterior distribution based on that sample.
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Posterior Predictive Distributions

This is particularly easy to compute if n∗ = 1, in which case the
probability of getting 1 success is π, so
P(y∗ = 1|y) =

∫ 1
0 p(y∗ = 1|π)p(π|y)dπ

=
∫ 1

0 πp(π|y)dπ = E (π|y)
because, by definition, the expected value of a random variable is
obtained by integrating the random variable over its density. This
is just the posterior mean of π.

Al Nosedal. University of Toronto. Inference for a Population Proportion



Example

If we had used the Beta(10,40) prior, resulting in the posterior
density being Beta(17,83), then Pr(y∗ = 1|y) = 17

100 = 0.17.
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In general, if a Bayesian analysis has been done to estimate a
population proportion π, using a Beta(α, β) prior and a dataset
with y successes in a sample of size n, then the posterior density
P(π|y) is Beta(αpost , βpost), where αpost = α + y = α∗ and
βpost = β + n − y = β∗, and the predictive probability of getting
y∗ successes in a future sample of size n∗ is

P(y∗|y) =

∫ 1

0

(
n∗

y∗

)
πy

∗
(1−π)n

∗−y∗ Γ(α∗ + β∗)

Γ(α∗)Γ(β∗)
πα

∗−1(1−π)β
∗−1dπ
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So the posterior predictive probability will be

P(y∗|y) =

(
n∗

y∗

)
Γ(α∗ + β∗)

Γ(α∗)Γ(β∗)

Γ(y∗ + α∗)Γ(n∗ − y∗ + β∗)

Γ(α∗ + β∗ + n∗)

(This distribution is known as the Beta-Binomial distribution).
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Easy Example

Find the posterior predictive probability when α∗ = 1, β∗ = 1, and
n∗ = 3.

Al Nosedal. University of Toronto. Inference for a Population Proportion



Easy Example

Solution.
If α∗ = 1, β∗ = 1, and n∗ = 3, then we have

P(y∗ = 0|y) =
(3

0

) Γ(2)
Γ(1)Γ(1)

Γ(1)Γ(3−0+1)
Γ(1+1+3)

= (1) (1!)
(0!)(0!)

(0!)(3!)
(4!) = 1

4
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Easy Example (cont.)

Doing something similar we have that

P(y∗ = 1|y) =
(3

1

) Γ(2)
Γ(1)Γ(1)

Γ(2)Γ(3−1+1)
Γ(1+1+3) = 1

4

P(y∗ = 2|y) =
(3

2

) Γ(2)
Γ(1)Γ(1)

Γ(3)Γ(3−2+1)
Γ(1+1+3) = 1

4

P(y∗ = 3|y) =
(3

3

) Γ(2)
Γ(1)Γ(1)

Γ(4)Γ(3−3+1)
Γ(1+1+3) = 1

4
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Gibbs Sampling Procedure

First, let the parameter vector be partitioned into blocks

θ = (θ1, θ2, ..., θJ)

where θJ is the Jth block of parameters. Each block contains one
or more parameters. Let θ−J be the set of all the other parameters
not in block J. The proportional form of Bayes theorem,

g(θ1, θ2, ..., θJ |y) ∝ f (y |θ1, θ2, ..., θJ)× g(θ1, θ2, ..., θJ)

gives the shape of the joint posterior density of all the parameters,
where
f (y |θ1, θ2, ..., θJ) and g(θ1, θ2, ..., θJ)
are the joint likelihood and the joint prior density for all parameters.
This gives us the shape of the joint posterior, not its scale.
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Gibbs Sampling Procedure

Gibbs sampling requires that we know the full conditional
distribution of each block of parameters θJ , given all the other
parameters θ−J and the data y . Let the full conditional
distribution of block θJ be denoted

g(θJ |θ−J = g(θJ |θ1, ..., θJ−1, θJ+1, ..., θJ , y)

These full conditional distributions may be very complicated, but
we must know them to run the Gibbs sampler. In Gibbs sampling,
we will cycle through the parameter blocks in turn, drawing each
one from its full conditional distribution given the most recent
values of the other parameter blocks, and all the observed data.
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Steps of the Gibbs Sampler

At time n = 0 start from an arbitrary point in the parameter
space θ0 = (θ0

1, θ
0
2, ..., θ

0
J)

For n = 1, 2, ...,N.

For j = 1, 2, ..., J, draw θ
(n)
J from

g(θj |θ
(n)
1 , ..., θ

(n)
j−1, θ

(n)
j , ..., θ

(n−1)
J , y)

The long-run distribution of θ(N) = (θ
(N)
1 , ..., θ

(N)
J ) is the true

posterior g(θ1, ..., θJ |y).
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Example

We shall illustrate the procedure with our easy example. We
suppose that π and y∗ have the joint distribution

p(y∗, π) =

(
n∗

y∗

)
πy

∗+α∗−1(1− π)n
∗−y+β∗−1

and that we are interested in the marginal distribution of y∗.
Rather than integrating with respect to π, which would show that
y has a Beta-Binomial distribution, we proceed to find the required
distribution from the two conditional distributions:

y∗|π ∼ Binomial(n∗, π),

π|y∗ ∼ Beta(y∗ + α∗, n∗ − y∗ + β∗)
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iter=100000;

#initializing matrix;

both=matrix(0,nrow=iter,ncol=2);

# parameters;

alpha=1;

beta=1;

m=3;
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# initializing sampling;

set.seed(2015);

# first pi;

both[1,1]=runif(1);

# first y;

both[1,2]=rbinom(1,size=m,both[1,1]);
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for(i in 2:iter )

{

# new y;

both[i,1]=rbeta(1,both[i-1,2]+alpha,m-both[i-1,2]+beta);

# new pi;

both[i,2]=rbinom(1,size=m,both[i,1]);

}
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# Probability distribution of Y;

dist=table(both[ ,2])/iter;

dist

# Graph of pmf;

plot(dist,xlab="Y",ylab="P(Y=y)");

Al Nosedal. University of Toronto. Inference for a Population Proportion



Graph of Beta-Binomial
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Negative Binomial (Pascal) Distribution

The probability mass function (pmf) for the distribution of the
number of the trial on which the rth success occurs in independent
Bernoulli trials of an experiment in which π denotes the probability
of success on a single trial, is given by:

f (y |π, r) =

(
y − 1

r − 1

)
πr (1− π)y−r , y = r , r + 1, ...
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Vague prior (noninformative)

A vague prior for π is given by the uniform prior density:

g(π) = 1, 0 < π < 1.

The kernel of the posterior distribution for π is given by

h(π|y , r) ∝ π(r+1)−1(1− π)(y−r+1)−1
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Bayes’ estimator of π

The Bayes’ estimator of π is given by

π̂ = E (π|y , r) =
r + 1

r + 1 + y − r + 1
=

r + 1

y + 2
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Conjugate prior

A natural conjugate prior for π is given by the Beta prior density
kernel:

g(π) ∝ πα−1(1− π)β−1, α > 0, β > 0, 0 < π < 1.

The posterior density kernel is found as

h(π|y , r) ∝ π(α+r)−1(1− π)(β+y−r)−1
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Bayes’ estimator of π

The Bayes’ estimator of π is given by

π̂ = E (π|y , r) =
α + r

(α + r) + (β + y − r)
=

α + r

α + β + y
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