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Likelihood of Single Observation

The conditional observation distribution of y |µ is Normal with
mean µ and variance σ2, which is known. Its density is

f (y |µ) =
1√
2πσ

exp

(
− 1

2σ2
(y − µ)2

)
.

Al Nosedal. University of Toronto. Bayesian Inference for Normal Mean



Likelihood of Single Observation

The part that doesn’t depend on the parameter µ can be absorbed
into the proportionality constant. Thus the likelihood shape is
given by

f (y |µ) ∝ exp

(
− 1

2σ2
(y − µ)2

)
.

where y is held constant at the observed value and µ is allowed to
vary over all possible values.
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Likelihood for a Random Sample of Normal Observations

Usually we have a random sample y1, y2, ..., yn of observations
instead of a single observation. The observations in a random
sample are all independent of each other, so the joint likelihood of
the sample is the product of the individual observation likelihoods.
This gives

f (y1, ..., yn|µ) = f (y1|µ)× f (y2|µ)× ...× f (yn|µ).

We are considering the case where the distribution of each
observation yj |µ is Normal with mean µ and variance σ2, which is
known.
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Finding the posterior probabilities analyzing the sample all
at once

Each observation is Normal, so it has a Normal likelihood. This
gives the joint likelihood

f (y1, ..., yn|µ) ∝ e−
1

2σ2 (y1−µ)2

× e−
1

2σ2 (y2−µ)2

× ...e−
1

2σ2 (yn−µ)2
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Finding the posterior probabilities analyzing the sample all
at once

After ”a little bit” of algebra we get

f (y1, ..., yn|µ) ∝ e−
n

2σ2 (µ2−2µȳ+ȳ2) × e
− n

2σ2

(
y2
1 +...+y2

n
n

−ȳ2

)
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When we absorb the part that doesn’t involve µ into the
proportionality constant we get

f (y1, ..., yn|µ) ∝ e
− 1

2σ2/n
(ȳ−µ)2

.

We recognize that this likelihood has the shape of a Normal
distribution with mean µ and variance σ2

n . So the joint likelihood
of the random sample is proportional to the likelihood of the
sample mean, which is

f (ȳ |µ) ∝ e
− 1

2σ2/n
(ȳ−µ)2

.
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Flat Prior Density for µ

The flat prior gives each possible value of µ equal weight. It does
not favor any value over any other value, g(µ) = 1. The flat prior
is not really a proper prior distribution since −∞ < µ <∞, so it
can’t integrate to 1. Nevertheless, this improper prior works out
all right. Even though the prior is improper, the posterior will
integrate to 1, so it is proper.
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A single Normal observation y

Let y be a Normally distributed observation with mean µ and
known variance σ2. The likelihood

f (y |µ) ∝ e−
1

2σ2 (y−µ)2

,

if we ignore the constant of proportionality.
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A single Normal observation y (cont.)

Since the prior always equals 1, the posterior is proportional to
this. Rewrite it as

g(µ|y) ∝ e−
1

2σ2 (y−µ)2

.

We recognize from this shape that the posterior is a Normal
distribution with mean y and variance σ2.
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Normal Prior Density for µ

The observation y is a random variable taken from a Normal
distribution with mean µ and variance σ2 which is assumed
known. We have a prior distribution that is Normal with mean m
and variance s2. The shape of the prior density is given by

g(µ) ∝ e−
1

2s2 (µ−m)2

.
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Posterior

The prior times the likelihood is

g(µ)× f (y |µ) ∝ e
− 1

2

[
(µ−m)2

s2 + (y−µ)2

σ2

]
.
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Posterior (cont.)

After a ”little bit” of algebra

g(µ)× f (y |µ) ∝ exp

(
− 1

2σ2s2/(σ2 + s2)

[
µ− (σ2m + s2y)

σ2 + s2

]2
)
.

We recognize from this shape that the posterior is a Normal
distribution having mean and variance given by

m
′

= (σ2m+s2y)
σ2+s2 and (s

′
)2 = σ2s2

(σ2+s2)
respectively.
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Simple updating rule for Normal family

First we introduce the precision of a distribution that is the
reciprocal of the variance. The posterior precision

1

(s ′)2
=

(
σ2s2

(σ2 + s2)

)−1

=
(σ2 + s2)

σ2s2
=

1

s2
+

1

σ2
.

Thus the posterior precision equals prior precision plus the
observation precision.
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Simple updating rule for Normal family (cont.)

The posterior mean is given by

m
′

=
(σ2m + s2y)

σ2 + s2
=

σ2

σ2 + s2
×m +

s2

σ2 + s2
× y

This can be simplified to

m
′

=
1/s2

1/σ2 + 1/s2
×m +

1/σ2

1/σ2 + 1/s2
× y

Thus the posterior mean is the weighted average of the prior mean
and the observation, where the weights are the proportions of the
precisions to the posterior precision.
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Simple updating rule for Normal family (cont.)

This updating rule also holds for the flat prior. The flat prior has
infinite variance, so it has zero precision. The posterior precision
will equal the prior precision

1

σ2
= 0 +

1

σ2
,

and the posterior variance equals the observation variance σ2. The
flat prior doesn’t have a well-defined prior mean. It could be
anything. We note that

0

1/σ2
× anything +

1/σ2

1/σ2
× y = y ,

so the posterior mean using flat prior equals the observation y .
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A random sample y1, y2, ..., yn

A random sample y1, y2, ..., yn is taken from a Normal distribution
with mean µ and variance σ2, which is assumed known. We use
the likelihood of the sample mean, ȳ which is Normally distributed
with mean µ and variance σ2

n . The precision of ȳ is n
σ2 .

Al Nosedal. University of Toronto. Bayesian Inference for Normal Mean



We have reduced the problem to updating given a single Normal
observation of ȳ . Posterior precision equals the prior precision plus
the precision of ȳ .

1

(s ′)2
=

1

s2
+

n

σ2
=
σ2 + ns2

σ2s2
.

The posterior mean equals the weighted average of the prior mean
and ȳ where the weights are the proportions of the posterior
precision:

m
′

=
1/s2

n/σ2 + 1/s2
×m +

n/σ2

n/σ2 + 1/s2
× ȳ

Al Nosedal. University of Toronto. Bayesian Inference for Normal Mean



Equivalent Prior Sample Size

A useful check on your prior is to consider the ”equivalent sample
size”. Set your prior variance s2 = σ2

neq
and solve for neq. This

relates your prior precision to the precision from a sample. Your
belief is of equal importance to a sample of size neq.
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Specifying Prior Parameters

We already saw that there were many strategies for picking the
parameter values for a beta prior to go with a binomial likelihood.
Similar approaches work for specifying the parameters of a normal
prior for a normal mean. Often we will have some degree of
knowledge about where the normal population is centered, so
choosing the mean of the prior distribution for µ usually is less
difficult than picking the prior variance (or precision). Workable
strategies include:

Graph normal densities with different variances until you find
one that matches your prior information.

Identify an interval which you believe has 95% probability of
trapping the true value of µ, and find the normal density that
produces it.

Quantify your degree of certainty about the value of µ in
terms of equivalent prior sample size.
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Example

Arnie and Barb are going to estimate the mean length of
one-year-old rainbow trout in a stream. Previous studies in other
streams have shown the length of yearling rainbow trout to be
Normally distributed with known standard deviation of 2 cm. Arnie
decides his prior mean is 30 cm. He decides that he doesn’t believe
it is possible for a yearling rainbow to be less than 18 cm or greater
than 42 cm. Thus his prior standard deviation is 4 cm. Thus he
will use a Normal(30, 4) prior. Barb doesn’t know anything about
trout, so she decides to use the ”flat” prior.
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Example (cont.)

They take a random sample of 12 yearling trout from the stream
and find the sample mean ȳ = 32 cm. Arnie and Barb find their
posterior distributions using the simple updating rules for the
Normal conjugate family.
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Example (cont.)

For Arnie

1

(s ′)2
=

1

42
+

12

22

Solving for this gives his posterior variance (s
′
)2 = 0.3265. His

posterior standard deviation is s
′

= 0.5714. His posterior mean is
found by

m
′

=
1/42

1
42 + 12

22

× 30 +
12/22

1
42 + 12

22

× 32 = 31.96
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Example (cont.)

Barb is using the ”flat” prior, so her posterior variance is

1

(s ′)2
=

12

22

and her posterior standard deviation is s
′

= 0.5774. Her posterior
mean m

′
= 32, the sample mean.

Both Arnie and Barb have Normal posterior distributions.
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Using the Posterior Density to Perform Inference

We have already calculated a Bayesian point estimate of µ, the
posterior mean.

E (µ|ȳ).
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Bayesian Credible Interval for Normal mean

Known Variance
Using either a ”flat” prior, or a Normal(m, s2) prior, the posterior
distribution of µ given ȳ is Normal(m

′
, (s
′
)2), where we update

according to the rules:
1. Precision is the reciprocal of the variance.
2. Posterior precision equals prior precision plus the precision of
sample mean.
3. Posterior mean is weighted sum of prior mean and sample
mean, where the weights are the proportions of the precisions to
the posterior precision.
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Bayesian Credible Interval for Normal mean

Our (1− α)× 100% Bayesian Credible Interval for µ is

m
′ ± zα/2 × s

′
,

where the z-value is found in the standard Normal table. Since the
posterior distribution is Normal and thus symmetric, the credible
interval found is the shortest, as well as having equal tail
probabilities.
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Bayesian Credible Interval for Normal mean

Unknown Variance
If we don’t know the variance, we don’t know the precision, so we
can’t use the updating rules directly. The obvious thing to do is to
calculate the sample variance

σ̂2 =
1

n − 1

n∑
i=1

(yi − ȳ)2

from the data. Then we use our equations to find (s
′
)2 and m

′

where we use the sample variance σ̂2 in place of the unknown
variance σ2.
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Bayesian Credible Interval for Normal mean (cont.)

Unknown Variance
There is extra uncertainty here, the uncertainty in estimating σ2.
We should widen the credible interval to account for this added
uncertainty. We do this by taking the values from the Student’s t
table instead of the Standard Normal table. The correct Bayesian
credible interval is

m
′ ± tα/2 × s

′
.

The t value is taken from the row labelled df = n − 1 (degrees of
freedom equals number of observations minus 1)∗.
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∗ The resulting Bayesian credible interval is exactly the same one
that we would find if we did the full Bayesian analysis with σ2 as a
nuisance parameter, using the joint prior distribution for µ and σ2

made up of the same prior for µ|σ2 that we used before (”flat” or
Normal(m, s2)) times the prior for σ2 given by g(σ2) ∝ (σ2)−1.
We would find the joint posterior by Bayes’ Theorem. We would
find the marginal posterior distribution of µ by marginalizing out
σ2. We would get the same Bayesian credible interval using
Student’s t critical values.
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Example

Arnie and Barb calculated their 95% credible interval from their
respective posterior distributions using

m
′ ± zα/2 × s

′
.

The R Code to find them is shown in the next slide. Arnie and
Barb end up with slightly different credible intervals because they
started with different prior beliefs. But the effect of the data was
much greater than the effect of their priors and their credible
intervals are quite similar.
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# R Code;

qnorm( c(0.025, 0.975), 31.96, 0.5714 );

# Arnie’s CI;

qnorm( c(0.025, 0.975), 32, 0.5774 );

# Barb’s CI;
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Predictive Density for next observation

Let yn+1 be the next random variable drawn after the random
sample y1, y2, ..., yn. The predictive density of yn+1|y1, y2, ..., yn is
the conditional density

f (yn+1|y1, y2, ..., yn).
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Predictive Density for next observation

The conditional distribution we want is found by integrating µ out
of the joint posterior distribution.

f (yn+1|y1, y2, ..., yn) =

∫
f (yn+1|µ)× g(µ|y1, y2, ..., yn)dµ.
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Predictive Density for next observation

After a ”little bit” of calc and algebra, we have that

f (yn+1|y1, y2, ..., yn) ∝ exp

[
− 1

2(σ2 + s2
n)

(yn+1 −mn)2

]
We recognize this as a Normal density with mean mn and variance
σ2 + s2

n , where mn and s2
n denote the posterior mean and precision

(after observing y1, y2, ..., yn). Thus, the predictive mean for the
observation yn+1 is the posterior mean of µ given the observations
y1, y2, ..., yn. The predictive variance is the observation variance σ2

plus the posterior variance of µ given the observations y1, y2, ..., yn.
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Bayesian One-sided Hypothesis Test about µ

The posterior distribution g(µ|y1, ..., yn) summarizes our entire
belief about the parameter, after viewing the data. Sometimes we
want to answer a specific question about the parameter. This could
be: Given the data, can we conclude the parameter µ is greater
than µ0? The answer to the question can be resolved by testing

H0 : µ ≤ µ0 vs H1 : µ > µ0.

This is an example of a one-sided hypothesis test.
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Bayesian One-sided Hypothesis Test about µ

Testing a one-sided hypothesis in Bayesian statistics is done by
calculating the posterior probability of the null hypothesis. When
the posterior distribution g(µ|y1, y2, ..., yn) is Normal(m

′
, (s
′
)2)

this can easily be found from Standard Normal tables.

P(H0 : µ ≤ µ0|y1, ..., yn) = P
(
µ−m

′

s′
≤ µ0−m

′

s′

)
= P

(
Z ≤ µ0−m

′

s′

)
where Z is a Standard Normal random variable.
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Example

Arnie and Barb read in a journal that the mean length of yearling
rainbow trout in a typical stream habitat is 31 cm. Then each
decide to determine if the mean length of trout in the stream they
are researching is greater than that by testing

H0 : µ ≤ 31 vs H1 : µ > 31.
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Solution

Arnie and Barb have Normal posteriors, so they use

P(H0 : µ ≤ µ0|y1, ..., yn) = P
(
Z ≤ µ0−m

′

s′

)
Arnie’s Posterior N(31.96, 0.57142).
P(µ ≤ 31|y1, y2, ..., yn) = P

(
Z ≤ 31−31.96

0.5714

)
= 0.0465

Barb’s Posterior N(32, 0.57742).
P(µ ≤ 31|y1, y2, ..., yn) = P

(
Z ≤ 31−32

0.5774

)
= 0.0416
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# R Code;

pnorm(31, 31.96, 0.5714);

# Arnie’s posterior probability of H0;

pnorm(31, 32, 0.5774);

# Barb’s posterior probability of H0;
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Bayesian Two-sided Hypothesis Test about µ

Sometimes the question we want to have answered is: Is the mean
for the new population µ, the same as the mean for the standard
population which we know equals µ0? A two-sided hypothesis test
attempts to answer this question. We set this up as

H0 : µ = µ0 vs Ha : µ 6= µ0.
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Bayesian Two-Sided Hypothesis Test about µ

If we wish to test the two-sided hypothesis

H0 : µ = µ0 vs Ha : µ 6= µ0.

in a Bayesian manner, and we have a continuous prior, we can’t
calculate the posterior probability of the null hypothesis as we did
for the one-sided hypothesis. We know that the probability of any
specific value of a continuous random variable always equals 0.
The posterior probability of the null hypothesis H0 : µ = µ0 will
equal zero.
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Bayesian Two-Sided Hypothesis Test about µ

Instead, we calculate a (1−α)× 100% credible interval for µ using
our posterior distribution. If µ0 lies inside the credible interval, we
conclude that µ0 still has credibility as a possible value. In that
case we will not reject the null hypothesis H0 : µ = µ0.
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