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Milk and honey and hemoglobin

Animal experiments suggested that honey in a diet might raise
hemoglobin level.

A researcher designed a study involving four pairs of twins in a
children’s home.

The researcher then observed which twin in each pair had the
greater increase in hemoglobin.
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Conditional Probability

The conditional probability of B, given A, denoted by P(B|A), is
defined by

P(B|A) =
P(A ∩ B)

P(A)
if P(A) > 0.
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Law of Total probability

If the events B1, B2, ..., Bk constitute a partition of the sample
space S such that P(Bi ) 6= 0 for i = 1, 2, ..., k , then for any event
A of S ,

P(A) = P(B1 ∩ A) + P(B2 ∩ A) + ...+ P(Bk ∩ A)

which is equivalent to

P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ...+ P(A|Bk)P(Bk).
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Toy problem

Assume that we have an urn that contains a ”big” number of
chips. We are told that the chips placed in this urn come in one of
two colors, white or blue. Furthermore, we are informed that we
are dealing with one of three possible scenarios:

B1 = All chips are blue.

B2 = Half of these chips are blue and the other half are white.

B3 = All of them are white.

Suppose we are interested in assigning probabilities to each of
these three possible scenarios.
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Prior probabilities

We will assign a probability to each of these three scenarios,
according to our degree of belief. Given that we don’t have any
further information:

P(B1) = 1/3.

P(B2) = 1/3.

P(B3) = 1/3.

These values are referred to as ”a priori” probabilities and they
form an ”a priori” distribution for the random variable we are
interested in. A priori probabilities are called like that due to the
fact that they are determined prior to obtaining empirical evidence
(data).

Al Nosedal. University of Toronto. Using Probability to do Statistics.



Conditional Probabilities

Now, suppose that we are allowed to draw, randomly, one chip
from the urn in question and the chip drawn turns out to be blue.
Let D (for data) be the event ”the chip drawn is blue”. To
incorporate D into our solution we need to find the following
conditional probabilities:

P(B1|D) =
P(B1 ∩ D)

P(D)

P(B2|D) =
P(B2 ∩ D)

P(D)

P(B3|D) =
P(B3 ∩ D)

P(D)
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Likelihood

P(D|B1) = 1

P(D|B2) =
1

2
P(D|B3) = 0
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Numerators

P(B1 ∩ D) = P(D|B1)P(B1) = (1)(1/3) = 1/3

P(B2 ∩ D) = P(D|B2)P(B2) = (1/2)(1/3) = 1/6

P(B3 ∩ D) = P(D|B3)P(B3) = (0)(1/3) = 0
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Denominator

Applying the Law of Total Probability,

P(D) = P(B1 ∩ D) + P(B2 ∩ D) + P(B3 ∩ D)

= 1/3 + 1/6 + 0

= 1/2.

P(D) is sometimes referred to as the predictive probability.
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Posterior probabilities

Finally, we have:

P(B1|D) =
P(B1 ∩ D)

P(D)
=

1/3

1/2
= 2/3

P(B2|D) =
P(B2 ∩ D)

P(D)
=

1/6

1/2
= 1/3

P(B3|D) =
P(B3 ∩ D)

P(D)
=

0

1/2
= 0
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Another way of finding posterior distribution

Scenario Prior P(Bi ) P(D|Bi ) P(D ∩ Bi ) Posterior P(Bi |D)

B1 1/3 1 1/3 2/3
B2 1/3 1/2 1/6 1/3
B3 1/3 0 0 0

1 1/2 1
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Updating posterior distribution

Now, assume that we are allowed to draw a second chip and,
again, the chip drawn is blue; What are the probabilities for the
remaining two possible scenarios?
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Posterior probability after drawing a second chip

Scenario Prior P(Bi ) P(D|Bi ) P(D ∩ Bi ) Posterior P(Bi |D)

B1 2/3 1 2/3 4/5
B2 1/3 1/2 1/6 1/5

1 5/6 1
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Milk and honey and hemoglobin
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Random 
Assignment

(4 pairs)

Group 1
4 Subjects

Treatment 1
Honey

Compare
hemoglobin

increase

Group 2
4 Subjects

Treatment 2
NO Honey
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Scenarios

B0 = NONE of the honey twins have a greater hemoglobin
increase.

B1 = 25% of honey twins have a greater hemoglobin increase.

B2 = 50% of honey twins have a greater hemoglobin increase.

B3 = 75% of honey twins have a greater hemoglobin increase.

B4 = ALL honey twins have a greater hemoglobin increase.
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a) What is the researcher’s posterior probability of B2? (which
can be interpreted as honey having no effect on hemoglobin
level.)

b) Consider a fifth set of twins (one receives honey in milk
and the other receives only milk). Find the researcher’s
predictive probability that the honey twin’s hemoglobin will
have a greater increase.
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Data

The researcher recorded the following increases in hemoglobin:

Pair 1 2 3 4

Honey 19 12 9 17
No honey 14 8 4 4
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Rethinking our Data

Chip 1 2 3 4

Color Blue Blue Blue Blue
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First posterior

Scenario Prior Likelihood Prior × Likelihood Posterior

B0 1/5 0 0 0
B1 1/5 1/4 1/20 1/10
B2 1/5 2/4 2/20 2/10
B3 1/5 3/4 3/20 3/10
B4 1/5 4/4 4/20 4/10

1 10/20 1
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Second posterior

Scenario Prior Likelihood Prior × Likelihood Posterior

B1 1/10 1/4 1/40 1/30
B2 2/10 2/4 4/40 4/30
B3 3/10 3/4 9/40 9/30
B4 4/10 4/4 16/40 16/30

1 30/40 1
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Third posterior

Scenario Prior Likelihood Prior × Likelihood Posterior

B1 1/30 1/4 1/120 1/100
B2 4/30 2/4 8/120 8/100
B3 9/30 3/4 27/120 27/100
B4 16/30 4/4 64/120 64/100

1 100/120 1
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Final posterior

Scenario Prior Likelihood Prior × Likelihood Posterior

B1 1/100 1/4 1/400 1/354
B2 8/100 2/4 16/400 16/354
B3 27/100 3/4 81/400 81/354
B4 64/100 4/4 256/400 256/354

1 354/400 1
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a) Solution

a) Posterior probability of B2 = 16/354 = 0.0452
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b) Solution

Scenario Prior Likelihood Prior × Likelihood

B1 1/354 1/4 1/1416
B2 16/354 2/4 32/1416
B3 81/354 3/4 243/1416
B4 256/354 4/4 1024/1416

1 0.9180791

b) Predictive probability that a ’new’ honey twin’s
hemoglobin will have a greater increase =
1300/1416 = 0.9180791
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A Few Remarks

We have discussed the basic elements of Bayesian Statistics.

Prior Distribution

Likelihood

Predictive Probability

Posterior Distribution
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Bayes’ Rule

If the events B1, B2, ..., Bk constitute a partition of the sample
space S, where P(Bi ) 6= 0 for i = 1, 2, ..., k, then for any event A
in S such that P(A) 6= 0,

P(Br |A) =
P(Br ∩ A)

P(B1 ∩ A) + P(B2 ∩ A) + ...+ P(Bk ∩ A)

which is equivalent to

P(Br |A) =
P(A|Br )P(Br )

P(A|B1)P(B1) + P(A|B2)P(B2) + ...+ P(A|Bk)P(Bk)

for r = 1, 2, . . . , k.
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Likelihood

Binomial distribution with parameters n and p.

f (y |p) =
n!

y !(n − y)!
py (1− p)n−y

for y = 0, 1, . . . , n.
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Our likelihoods

f (y = 4|p = 0, n = 4) = 4!
4!0!(0)4(1)0 = 0.

f (y = 4|p = 0.25, n = 4) = 4!
4!0!(0.25)4(0.75)0 =

(
1
4

)4
= 1

256 .

f (y = 4|p = 0.5, n = 4) = 4!
4!0!(0.5)4(0.5)0 =

(
1
2

)4
= 16

256 .

f (y = 4|p = 0.75, n = 4) = 4!
4!0!(0.75)4(0.25)0 =

(
3
4

)4
= 81

256 .

f (y = 4|p = 1, n = 4) = 4!
4!0!(1)4(0)0 = 1 = 256

256 .
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Posterior Probabilities

Scenario Prior Likelihood Prior × Likelihood Posterior

B0 1/5 0 0 0
B1 1/5 1/256 1/1280 1/354
B2 1/5 16/256 16/1280 16/354
B3 1/5 81/256 81/1280 81/354
B4 1/5 256/256 256/1280 256/354

1 354/1280 1

Exactly the same probabilities that we obtained using our
sequential approach.
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Definiton of mean

Let X be a random variable with probability distribution f (x). The
mean or expected value of X is

µ = E (X ) =
∑
x

xf (x)

if X is discrete, and

µ = E (X ) =

∫ ∞
∞

xf (x)dx

if X is continuous.

Al Nosedal. University of Toronto. Using Probability to do Statistics.



Another way of finding predictive probability

Scenario Model Posterior Model × Posterior

B0 p0= 0 0 0
B1 p1= 1/4 1/354 1/1416
B2 p2= 2/4 16/354 32/1416
B3 p3= 3/4 81/354 243/1416
B4 p4= 4/4 256/354 1024/1416

1300/1416

Posterior mean = 1300
1416 = 0.9180791 (Exactly the same number we

obtained before).
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Using a continuous uniform prior

Prior: f (p) = 1 for 0 ≤ p ≤ 1.

Likelihood: f (y |p) = n!
y !(n−y)!p

y (1− p)n−y for for y = 0, 1, . . . , n.

Product = Prior × Likelihood = n!
y !(n−y)!p

y (1− p)n−y
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Product in our particular case

Product = Prior × Likelihood = n!
y !(n−y)!p

y (1− p)n−y

Product = 4!
4!(4−4)!p

4(1− p)0 = p4.
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Finding ”sum” of all products

∫ 1

0
p4dp =

(1)5

5
− (0)5

5
=

1

5
.

Recall that our posterior distribution is given by:

Posterior = (Prior × Likelihood) / (1/5) = 5p4
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Graph of posterior distribution
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Predictive Probability

E (p|data) =

∫ 1

0
p f (p|data)dp.

E (p|data) =

∫ 1

0
p(5p4)dp = 5

∫ 1

0
p5dp = 5

(
1

6

)
=

5

6
= 0.8333

Posterior mean = Predictive probability = 83.33%.
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Problem

On March 15, 2002, the Iowa City Press Citizen carried an article
about the intended 19% tuition increase to go into effect at the
University of Iowa (UI) for the next academic year.

Your research question is as follows: What is the unknown
population parameter π - the proportion in the entire population of
UI students who would be likely to quit school if tuition is raised
19%?
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Problem

You do not have the time or resources to locate and interview all
28,000+ students, so you cannot evaluate π exactly. Instead, you
will pick a simple random sample of n = 50 students from the
student directory and ask each of them whether she or he would be
likely to quit school if tuition were raised by 19%. You wish to use
your sample data to estimate the population proportion π and to
determine the amount of uncertainty in your estimate.
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Define a random variable Y as the count of the number of
successes in your sample. Y meets the definition of a binomial
random variable - it is the count of the number of successes in
n-independent Bernoulli trials, all with the same success
probability. We can write

Y ∼ Binomial(n, π).
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If we knew π, we could use the binomial probability mass function
to compute the probability of obtaining any one of the possible
values y that the random variable Y could take on in our sample:

P(y |π) =

(
n

y

)
πy (1− π)n−y , y = 0, 1, 2, ..., n.
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Likelihood

But we don’t know π.
Instead, after you interview the 50 students, you will know how
many said yes. That is, you will know which value y the random
variable Y actually took on. Suppose this number turns out to be
y = 7. We will want to use this information to estimate π. In this
case, we may change perspective and regard the expression in
P(y |π) as a function of the unknown parameter π given the now
known (fixed) data value y . When viewed in this way, the
expression is called the likelihood function. If y were 7, it would
look like

L(π) =

(
50

7

)
π7(1− π)43, 0 < π < 1.

We could compute this likelihood for different values of π.
Intuitively, values of π that give larger likelihood evaluations are
more consistent with the observed data.
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Likelihood
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Now we are interested in evaluating the likelihood L(π) for
changing values of π, not of y . Consequently, the

(50
7

)
is now

considered just a constant, and only the πy (1− π)43, which varies
with π, is the kernel. That is, we can write

L(π) ∝ π7(1− π)43, 0 < π < 1.

or more generically

L(π) ∝ πy (1− π)n−y , 0 < π < 1.
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The prior

To carry out a Bayesian analysis to learn about the unknown
population proportion π, we need to assess our previous knowledge
or belief about π before we observe the data from the survey.
The Bayesian approach to expressing prior knowledge about a
population parameter is to put a probability distribution on the
parameter - that is, to treat the unknown population parameter as
if it were a random variable.
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The prior

Because it is a proportion, the parameter π hypothetically could
take on any value in the interval (0, 1), although most of us realize
that some ranges of values are much more likely than others.
Because π can take on any of a continuum of values, we quantify
our knowledge or belief most appropriately by means of a
probability density function.
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The prior

A person who has little or no knowledge about university students
might consider all values in (0, 1) equally plausible before seeing
any data. A uniform density on (0,1) describes this belief (or state
of ignorance!) mathematically

π ∼ U(0, 1)

P(π) = 1, 0 < π < 1.

This continuous uniform distribution is called a ”vague” or
”noninformative” prior.
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Other Possible Prior Distributions

If a person has knowledge or belief regarding the value of π, his or
her prior will be informative.
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Using the Data to Update the Prior: The Posterior
Distribution

The possible ways of choosing a prior for an unknown proportion
are endless. For the moment, let’s see what happens if we use the
”noninformative” continuous uniform prior for our analysis.
At last, you may select your sample and conduct your survey! It
turns out that 7 of the 50 students say they would quit school if
tuition were raised 19%. Thus, the sample proportion of yesses in
your observed data is π̂ = 7

50 = 0.14 Note that this is the value of
π at which the likelihood function in L(π) attained its maximum.
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For the quitting-school example and binomial likelihood, combining
the prior density on π with the likelihood yields

P(y |π) ∝ p(π)πy (1− π)n−y , 0 < π < 1.
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Having chosen the uniform prior, p(π) = 1, 0 < π < 1, and having
observed y = 7 ”successes” out of n = 50 people surveyed

P(π|y) ∝ 1× π7(1− π)43, 0 < π < 1.

We can graph this function to see what the posterior density
p(π|y) looks like
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Posterior
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Posterior

Note that the mode (highest peak) is at π = 0.14, and most of the
area under the curve is above values of π in the interval (0.05,
0.35).
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Conjugate priors

A common way to construct a prior distribution is to designate
that the prior is a member of a particular parametric family of
densities. One then chooses the parameters of the prior density so
as to reflect as closely as possible his or her beliefs about the
unknown parameter being studied. When possible, it is very
convenient analytically to choose the prior from a parametric
family that has the same functional form as the likelihood function.
Such a prior is called a conjugate prior.
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Beta family

A beta family of densities, with fixed parameters α and β and with
the random variable called π would be written as follows:

π ∼ Beta(α, β).

or

p(π) ∝ πα−1(1− π)β−1, 0 < π < 1.

The kernel of the beta density is πα−1(1− π)β−1.
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Computing the Posterior Distribution with a Conjugate
Prior

Recall the relationship of the posterior distribution to the prior and
likelihood:

P(y |π) ∝ p(π)L(π; y).

Al Nosedal. University of Toronto. Using Probability to do Statistics.



Computing the Posterior Distribution

So in the case of a beta prior and a binomial likelihood,

P(π|y) ∝ πα+y−1(1− π)β+n−y−1

This is the kernel of another beta density!

Since the beta family of priors is conjugate for the binomial
likelihood, the posterior distribution is also beta - a member of the
same parametric family as the prior distribution.
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Choosing the Parameters of a Beta Distribution to Match
Prior Beliefs

Here are several ways to think about choosing the parameters of a
beta distribution to express prior beliefs or knowledge about an
unknown proportion:
Strategy 1: Graph some beta densities until you find one that
matches your beliefs.
Strategy 2: Note that a Beta(α, β) prior is equivalent to the
information contained in a previously observed dataset with α− 1
successes and β − 1 failures.
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Choosing the Parameters of a Beta Distribution to Match
Prior Beliefs

Strategy 3: Solve for the values of α and β that yield:
a)The desired mean (The mean of a Beta(α, β) density is α

α+β ).
b)The desired equivalent prior sample size, which for a Beta(α, β)
prior is α + β − 2. When you use this method, you are saying that
your knowledge about π is as strong as if you’d seen a previous
sample consisting of α− 1 successes and β − 1 failures.
Strategy 4: Choose values of α and β that produce a prior
probability interval that reflects your belief about π.
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We will apply the four strategies to the
quitting-school-because-of-rising tuition example.We are
attempting to construct a reasonable prior before we see the
results of the actual survey of 50 UI students. (Forget about what
we said earlier - you have not yet collected your data!)
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We wish to use any relevant data available before we do our
survey. Suppose that we read that such a survey has already been
taken at Iowa State University in which:

50 students were interviewed.

10 said they would quit school; 40 said they would not.
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By strategy 2, this might suggest a beta(11, 41) prior. However,
we need to be very cautious here because the sample on which the
prior distribution is to be based was not drawn from the same
population (UI students) in which we are interested and from
which we will draw our sample. The question is whether ISU
students might be different from UI students in ways that would be
likely to affect their probability of dropping out in response to a
tuition increase - that is, is a sample of ISU students exchangeable
with a sample of UI student for our purposes?
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Some relevant facts are that the UI has a medical school and a law
school, which ISU does not, while ISU has a veterinary school and
a College of Agriculture, which UI does not. At the UI, the
majority of the student body (53.5%) are women, whereas at ISU,
only 43.5% of students are women. Undergraduate tuition is a bit
higher at the UI ($6,544 for Iowa residents, $20,658 for
nonresidents) than at ISU ($6,360 and $17,350) for the 2008 -
2009 year. These and other factors suggest that, for drawing
inference about UI students, the information in a sample of ISU
students is not equivalent to the information contained in a sample
of the same number of UI students. Thus, the beta(11,41) prior
most likely is not appropriate.
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On the other hand, there presumably is some relevant information
for us in the ISU survey. We want to make use of that, but give it
less weight than we would give to 50 observations from the UI
population. One of many valid approaches to specifying a prior in
this case is to say that we want a prior mean of 0.2, the same as
the sample proportion π̂ISU from the ISU data, but an ”equivalent
prior sample size” (remember, for a beta prior that is
α− 1 + β − 1) that is smaller than 50. One possibility is to look at
the graphs of several different beta distributions, all with the same
mean 0.2 but with smaller and smaller equivalent prior sample
sizes, and seek one that matches our beliefs.
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0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

π

P
rio

r d
en

si
ty

Beta(10,40)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

π

P
rio

r d
en

si
ty

Beta(5,20)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

π

P
rio

r d
en

si
ty

Beta(2.5,10)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

π

P
rio

r d
en

si
ty

Beta(1.25,5)

Al Nosedal. University of Toronto. Using Probability to do Statistics.



# R Code;

p=seq(0,1,by=0.001);

prior1=dbeta(p,10,40);

prior2=dbeta(p,5,20);

prior3=dbeta(p,2.5,10);

prior4=dbeta(p,1.25,5);
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# R Code;

plot(p,prior1,type="l",xlab=expression(pi),

ylab="Prior density",ylim=c(0,8));

title("Beta(10,40)");

plot(p,prior2,type="l",xlab=expression(pi),

ylab="Prior density",ylim=c(0,8));

title("Beta(5,20)");
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plot(p,prior3,type="l",xlab=expression(pi),

ylab="Prior density",ylim=c(0,8));

title("Beta(2.5,10)");

plot(p,prior4,type="l",xlab=expression(pi),

ylab="Prior density",ylim=c(0,8));

title("Beta(1.25,5)");
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Priors

We can also consider whether the central prior intervals produced
by any of these prior densities match our knowledge.
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# R Code;

interval.1=c(qbeta(0.025,10,40),qbeta(0.975,10,40));

interval.1

interval.2=c(qbeta(0.025,5,20),qbeta(0.975,5,20));

interval.2

interval.3=c(qbeta(0.025,2.5,10),qbeta(0.975,2.5,10));

interval.3

interval.4=c(qbeta(0.025,1.25,5),qbeta(0.975,1.25,5));

interval.4
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Computing and Graphing the Posterior Distribution

Suppose you chose the Beta(10,40) prior because it best
represented your beliefs. You then gathered your own data on n =
50 UI students, and you got y =7 ”successes” and n-y= 43
”failures.” Then your posterior distribution of π given your Beta
prior and the new data is

P(π|y) ∝ π17−1(1− π)83−1

This is the kernel of a Beta(17, 83) density.
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# R Code;

p=seq(0,1,by=0.001);

posterior=dbeta(p,17,83);

plot(p,posterior,type="l",xlab=expression(pi),

ylab="Posterior density");

title("Beta(17,83)");

interval=c(qbeta(0.025,17,83),qbeta(0.975,17,83));

interval
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