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”essentially, all models are wrong, but some are useful”

George E. P. Box

(one of the great statistical minds of the 20th century).
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Customers’ Credit Card Ratings

A department store issues credit cards to its customers. Assume
three credit ratings for the card holders:
1. Good credit (pay on or before due date).
2. Delinquent (pay within one month of the due date).
3. Bad credit (did not pay within one month).
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Customers’ Credit Card Ratings

The due date is the 15th of every month for purchases of the
preceding month. The store has 10,000 card holders and checks
their credit ratings after the 15th of every month. For simplicity,
assume the same 10,000 holders remain for a certain period, say,
for 12 months.
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Customers’ Credit Card Ratings

Suppose the store found 7,000 good, 2,000 delinquent, and 1,000
bad customers for the due date of March 15th. Then one month
later, for April 15, it is very unlikely that specific customers in each
category in March will be reclassified completely ”at random” in
April. Instead, it is more likely that the majority of the customers
in each category will remain in the same category one month later.
This introduces an important idea in probability. The key point is
that the probability is not time independent, say, like coin tossing.
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More detailed information of the problem

The department store investigated more detailed structures of
credit ratings for customers in each category of each month. That
is, out of 100% of good credit customers in one month, what
percentage moved to good, delinquent, and bad in the next month;
out of 100% of delinquent in the same month, what percentage
moved to good, delinquent, and bad; out of 100% of bad in the
same month, what percentage moved to good, delinquent, and bad
in the next month.
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More detailed information of the problem

It is then found that practically all these percentage figures are
stationary or steady-state. For example, the percentages that
moved from good to good, from good to delinquent, and from
good to bad are about 80%, 10%, and 10%, respectively, for any
months, from January to February, from February to March, and so
on. The following matrix P shows the results:

P =

 0.8 0.1 0.1
0.4 0.5 0.1
0.2 0.3 0.5


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More detailed information of the problem

These entries are obtained from observations on a number of
customers. However, we can also interpret these figures as
representing probabilities that one customer in this month moves
to another category in the next month. For example, pick a good
customer in this month. Then the probability that he remains as a
good customer next month is 0.8.

Next month

Good Delinquent Bad
0.8 0.1 0.1 Good
0.4 0.5 0.1 Delinquent This month
0.2 0.3 0.5 Bad

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



Transition matrix

In general, a square matrix P is called a transition matrix when P
satisfies the following two conditions:
1. All the elements are between 0 and 1: 0 ≤ pij ≤ 1.
2. The sum of elements in each row is 1.
An element of a transition matrix is called a transition
probability. The categories are called states.
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Absorbing state

When a diagonal element pii is 1, the state i is called an absorbing
state. In the following P, state 4 is absorbing since p44 = 1.

Next month

Good Delinquent Bad Bankrupt
0.8 0.1 0.1 0 Good
0.4 0.5 0.08 0.02 Delinquent This month
0.2 0.3 0.4 0.1 Bad
0 0 0 1 Bankrupt

This absorbing state may indicate the fact that once a customer is
declared bankrupt, he cannot recover in the foreseeable future and
the probabilities of moving to other categories are zero.
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Markovian Property

1. Markovian Property - The probability depends only upon
the state one step before.
The rating probability in one month is completely determined by
the rating one month before; it does not depend on the ratings two
months before, three months before, and so on.
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Stationary Property

2. Stationary or Steady-State Property.
The second basic assumption made in the analysis of the credit
card rating problem is the stationary or steady-state property of
the transition matrix. In the credit card problem, we assumed the
transition matrices for different months are the same.
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Finite number of states

3. Finite number of states.
The third assumption made is that the number of states is finite
(in our example, it is 3 which corresponds to good, delinquent, and
bad ratings). When states are measured continuously instead of
discretely, the number of states will be infinite.
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Markov Chains and Markov Processes

A probability process under the three basic assumptions, 1, 2, and
3 is called a Markov Chain. That is, formally, a Markov chain is
defined as a probabilistic process in which
1. Its probability depends only upon the state one step before.
2. The probability is stationary; that is, time-independent
3. The number of states is finite.
Note that these properties 1, 2, and 3 are entirely independent. In
property 3, if the number of states is infinite, the process is called
a Markov process instead of a Markov chain.
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Derivation of various values

How many customers will turn out to be good, delinquent,
and bad one month later?

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



Derivation of various values

Suppose there were 7, 000 good, 2, 000 delinquent, and 1, 000 bad
customers for the due date of March 15. Then one month later,
for April 15, how many customers will turn out to be good,
delinquent, and bad?
According to our transition matrix, 0.8 of the 7, 000 good
customers this month - that is, 7, 000× 0.8 = 5, 600 customers -
will remain as good next month; 0.4 of the 2, 000 delinquent
customers this month - that is, 2, 000× 0.4 = 800 customers - will
move to good next month; 0.2 of the 1, 000 bad customers this
month - that is, 1, 000× 0.2 = 200 customers - will move to good
next month. Thus,
(7, 000× 0.8) + (2, 000× 0.4) + (1, 000× 0.2) = 6, 600 will be the
number of customers next month.
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Derivation of various values

This suggests that the following matrix multiplication, CP, gives
the number of good, delinquent, and bad customers next month,
April 15. Here matrix C represents the number of good,
delinquent, and bad customers in March as:

CP = (7000 2000 1000)

 0.8 0.1 0.1
0.4 0.5 0.1
0.2 0.3 0.5


CP = (6600 2000 1400)
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Derivation of various values

Let us denote the number of good, delinquent, and bad customers
at month t as xt , yt , and zt , respectively.
xt+1 = 0.8xt + 0.4yt + 0.2zt
yt+1 = 0.1xt + 0.5yt + 0.3zt
zt+1 = 0.1xt + 0.1yt + 0.5zt
In matrix form, this may be written as Ct+1 = CtP where
Ct = (xt yt zt).
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Derivation of various values

How many customers will turn out to be good, delinquent
and bad, two, three, . . . , months later?
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Derivation of various values

The number of customers in each category for April 15 is evaluated
by:
[March figures] P = [April figures]
that is,
(7000 2000 1000)P = (6600 2000 1400)
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Derivation of various values

Therefore, the number of customers in each category for May 15
should be evaluated using the April figures in place of the March
figures in the preceding equation:
[April figures] P = [May figures]
that is,

(6600 2000 1400)

 0.8 0.1 0.1
0.4 0.5 0.1
0.2 0.3 0.5

 = (6360 2080 1560)
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Derivation of various values

Note that since the April figures are evaluated as CP, the May
figures are (CP)P = CP2. This leads to:
March (this month) C = (7000 2000 1000)
April (one month later) CP = (6600 2000 1400)
May (two months later) CP2 = (6360 2080 1560)
June (three months later) CP3 = (6232 2144 1624)
...
(t months later) CPt
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Derivation of various values

Transition probabilities for two months later (Two-step
Transition Probabilities), three months later, etc.

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



Derivation of various values

Can we evaluate just probabilities for different months? For
example, can we evaluate the probability that a good customer this
month turns out to be good two months later?
Remember, the transition matrix P represents the transition
probabilities for one month later, and it is used to evaluate the
figures for one month later as:

CP = (7000 2000 1000)

 0.8 0.1 0.1
0.4 0.5 0.1
0.2 0.3 0.5

 = (6600 2000 1400)

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



Derivation of various values

Now, the figures for two months later are evaluated as CP2.
Previously we evaluated CP2 as (CP)(P); however this should be
equal to C(P2) by the associative law. That is,

CP2 = (7000 2000 1000)

 0.8 0.1 0.1
0.4 0.5 0.1
0.2 0.3 0.5

2

CP2 = (7000 2000 1000)

 0.70 0.16 0.14
0.54 0.32 0.14
0.38 0.32 0.30

 = (6360 2080 1560)

which are the same May figures as before. Then what does this
mean? That P2 in this expression should represent the two-month
transition probabilities from March to May.
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Derivation of various values

It is not difficult to extend our discussion to P3, P4, , ...,Pt. In
general, Pt represents the t-month (t step) transition probabilities.
For example, we can easily see that P3 in our example represents
the three-month transition probabilities:

P3 = P2P =

 0.70 0.16 0.14
0.54 0.32 0.14
0.38 0.32 0.30

 0.8 0.1 0.1
0.4 0.5 0.1
0.2 0.3 0.5



P3 =

 0.652 0.192 0.156
0.588 0.256 0.156
0.492 0.288 0.220


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Homework

Assume that the transition probability matrix P shows the
probabilities of customers’ credit card ratings changing from one
month to the next. Matrix C0 give initial conditions.
1. Check all the elements in P to make sure that they are between
0 and 1 an that the sum of elements in each row is 1.
2. Determine C1, the number of customers in each category in the
next month.
3. Evaluate P2, the two-step transition matrix, and P3, the
three-step transition matrix. 4. Determine C2, and C3 using P2

and P3 obtained above
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Homework

C0 = (1000 10000 2000 100) = (Excellent, Good, Delinquent,
Bad)

P =


0.9 0.1 0 0
0.1 0.8 0.1 0
0 0.2 0.7 0.1
0 0.1 0.4 0.5


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Limiting Steady-State

Let us further continue to evaluate Pt in our example for larger t’s:

P11 =

 0.611 0.222 0.167
0.611 0.222 0.167
0.611 0.222 0.167



P12 =

 0.611 0.222 0.167
0.611 0.222 0.167
0.611 0.222 0.167



P13 =

 0.611 0.222 0.167
0.611 0.222 0.167
0.611 0.222 0.167


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Limiting Steady-State

You will notice two characteristics here:
1. After a certain value of t, Pt appears to stay the same
regardless of the value of t.
2. All the elements in each column have exactly the same value;
that is, all rows are identical.
More mathematically, we might say: when t →∞, Pt appears to
converge to a finite matrix Q such that:

P∞ = Q =

 q1 q2 q3
q1 q2 q3
q1 q2 q3


In general, such a transition matrix is called the limiting
steady-state transition matrix.
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A Regular Transition Matrix and a Related Theorem

A transition matrix P is called a regular transition matrix either
if all the elements are positive, as:

P =

 0.8 0.1 0.1
0.4 0.5 0.1
0.2 0.3 0.5


or, even if P contains zero elements, if Pt (for some t) has all
positive elements.
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A Regular Transition Matrix and a Related Theorem

The following are both regular transition matrices.

P =

(
0 1

1/3 2/3

)
and

P2 =

(
1/3 2/3
2/9 7/9

)
P has zero elements but P2 has all positive elements.
A unit matrix can be a transition matrix, but it is not regular
because Pt always contains zero elements: P = P2 = . . . = Pt.
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Theorem

When a transition matrix P is regular, P[t] always converges to a
limiting steady-state transition matrix as t →∞. All rows in the
limiting steady-state transition matrix are identical.
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Proof

Let us assume that all elements in P are strictly positive (when
there are some zero elements in P, redefine P [t] as the new P,
where all elements in P [t] are positive). Define p

[t]
ij as the ith row,

jth column element of P [t].
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Proof

0 < p
[t]
ij because we start from P where all elements are positive

and subsequent elements in P2,P3, ... are obtained as sums of
products of positive elements.

p
[t]
ij < 1 because the sum of elements in each row is 1 and the

elements are positive.

Also define u
[t]
j as the minimum element in the jth column of P [t],

and v
[t]
j as the maximum element in the jth column of P [t]
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Proof

Claim 1. The minimum value in each column, u
[t]
j , will increase as

t increases, while the maximum value in each column, v
[t]
j , will

decrease as t increases.
Claim 2. The difference between the maximum and the minimum
in each column approaches zero when t →∞.

(We conjecture that these two observations are true in general.
The entire proof of the theorem is complete when claims 1 and 2
are proved.)
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Proof of claim 1.

p
[t+1]
ij =

∑
k pikp

[t]
kj >

∑
k piku

[t]
j = u

[t]
j

∑
k pik = u

[t]
j

p
[t+1]
ij =

∑
k pikp

[t]
kj <

∑
k pikv

[t]
j = v

[t]
j

∑
k pik = v

[t]
j

That is, every element in the jth column of P [t+1] is greater than
the minimum and less than the maximum in the same column of
P [t]. This means that the new minimum should be greater than
the previous minimum and the new maximum should be less than

the previous maximum; that is u
[t]
j < u

[t+1]
j and v

[t+1]
j < v

[t]
j .
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Proof of claim 2.

Let us define wi as the minimum element in the ith row in P.
Since the sum of elements in each row must be 1, wi ≤ 1

n , where n
is the order of P, wi = 1

n when all the elements in the row have
the same value.
Let p

[t]
gj = v

[t]
j then

p
[t+1]
ij =

∑
k pikp

[t]
kj = pigv

[t]
j +

∑
k 6=g pikp

[t]
kj

p
[t+1]
ij ≥ pigv

[t]
j +

∑
k 6=g piku

[t]
j

p
[t+1]
ij ≥ pigv

[t]
j + u

[t]
j

∑
k 6=g pik
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Proof of claim 2.

p
[t+1]
ij ≥ pigv

[t]
j + (1− pig )u

[t]
j

p
[t+1]
ij ≥ pig [v

[t]
j − u

[t]
j ] + u

[t]
j

p
[t+1]
ij ≥ wi [v

[t]
j − u

[t]
j ] + u

[t]
j

p
[t+1]
ij ≥ wiv

[t]
j + (1− wi )u

[t]
j
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Proof of claim 2

Similarly, we can get

p
[t+1]
ij ≤ wiu

[t]
j + (1− wi )v

[t]
j .

Therefore, all elements of p
[t+1]
ij must satisfy the above two

inequalities. In particular,

u
[t+1]
j ≥ wiv

[t]
j + (1− wi )u

[t]
j

v
[t+1]
j ≤ wiu

[t]
j + (1− wi )v

[t]
j
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Proof of claim 2

v
[t+1]
j − u

[t+1]
j ≤ [wiu

[t]
j + (1− wi )v

[t]
j ]− [wiv

[t]
j + (1− wi )u

[t]
j ]

v
[t+1]
j − u

[t+1]
j ≤ (1− 2wi )[v

[t]
j − u

[t]
j ]

Thus,
v
[t+1]
j − u

[t+1]
j ≤ (1− 2wi )

t [v
[1]
j − u

[1]
j ]
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Proof of claim 2

Since wi > 0, 1− 2wi < 1. We assume n ≥ 2; hence
1− 2wi ≥ 1− 2

n ≥ 0. That is, 0 ≤ 1− 2wi < 1. Therefore,
(1− 2wi )

t → 0, as t →∞.

Hence limt→∞ v
[t+1]
j − u

[t+1]
j = 0.
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Evaluation of the Limiting Steady-State Transition Matrix

After P[t] converges to a finite matrix, a multiplication of P[t] by P
does not change P[t]; that is, P[t+1] = P[t]. Let us denote such
P[t] as Q. Then P[t+1] = P[t] will be
QP = Q, or , Q = QP.
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Evaluation of the Limiting Steady-State Transition Matrix

In our example, this expression becomes

 q1 q2 q3
q1 q2 q3
q1 q2 q3

 =

 q1 q2 q3
q1 q2 q3
q1 q2 q3

 0.8 0.1 0.1
0.4 0.5 0.1
0.2 0.3 0.5



Al Nosedal. University of Toronto. STA 313: Topics in Statistics



Evaluation of the Limiting Steady-State Transition Matrix

Note that it is sufficient to pick just one row:

(q1 q2 q3) = (q1 q2 q3)

 0.8 0.1 0.1
0.4 0.5 0.1
0.2 0.3 0.5


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Evaluation of the Limiting Steady-State Transition Matrix

This yields:
q1 = 0.8q1 + 0.4q2 + 0.2q3
q2 = 0.1q1 + 0.5q2 + 0.3q3
q3 = 0.1q1 + 0.1q2 + 0.5q3

or

0.2q1 − 0.4q2 − 0.2q3 = 0
−0.1q1 + 0.5q2 − 0.3q3 = 0
−0.1q1 − 0.1q2 + 0.5q3 = 0

Note that this set of equation is singular, or the three equations
are linearly dependent, and do not give a unique solution for q1, q2,
and q3. An additional equation is necessary to determine a unique
solution.
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Evaluation of the Limiting Steady-State Transition Matrix

As such additional equation, we can use
q1 + q2 + q3 = 1
which represents the fact that the sum of all possible probabilities
is 1. Solving these equations gives
q1 = 11

18 = 0.611, q2 = 4
18 = 0.222, and q3 = 3

18 = 0.167, which
coincides with our previous results.

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



Number of Customers Corresponding to the Limiting
Steady-State Transition Matrix
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Suppose we start with the number of good, delinquent, and bad
customers as,

(7000 2000 1000)

Then after a sufficiently large number of months, it will end up:

CQ = (7000 2000 1000)

 0.611 0.222 0.167
0.611 0.222 0.167
0.611 0.222 0.167

 = (6110 2220 1670)

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



A surprising result is that even if we start from a different number
of customer distribution, we will always end up with the same
distribution. For example,

C1Q = (10000 0 0)

 0.611 0.222 0.167
0.611 0.222 0.167
0.611 0.222 0.167

 = (6110 2220 1670)
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We call the matrix C = (7000 2000 1000) an initial condition.
The preceding result implies that the limiting steady-state
distribution does not depend upon an initial condition.
Further, note that starting from a given initial condition, the
number of customer distribution converges to its limiting
steady-state distribution when t increases. For example,

t Distribution
1 (7000 2000 1000)
2 (6600 2000 1400)
3 (6360 2080 1560)
4 (6232 2144 1624)
...

...
...

...
10 (6112 2221 1666)
11 (6112 2221 1666)
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Finding the limiting distribution

We have
lim
n→∞

p
[n]
ij = πj and

p
[n+1]
ij =

∑
k

p
[n]
ik pkj .

So, letting n→∞,

πj =
∑
k

πkpkj

π = πP
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Finding the limiting distribution

We can find the limiting distribution by solving π = πP subject to:

πj ≥ 0 for all j

and ∑
j

πj = 1.
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Limiting distributions must satisfy
π = πP, π ≥ 0,

∑
πj = 1.

But satisfying these, does not mean there’s a limiting distribution.
Distributions satisfying the 3 conditions are stationary
distributions. So limiting implies stationary. ”Stationary”
because, if initial distribution is α[0] = π then α[n] = π always.
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Communicating classes

When does a Markov chain have a unique stationary
distribution?

Is this roughly the same as the distribution obtained when the
chain’s been running for a long time?
(These are extremely important in the context of MCMC).
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Definition

State j is accessible from state i if p
[n]
ij > 0 for some n ≥ 0. If two

states are each accessible from the other, they communicate:
i ↔ j .
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The state space of any Markov chain may be divided into
non-overlapping subsets of states such that two states are in the
same subset if and only if they communicate.
These subsets are communicating classes (or just ”classes”).
A Markov chain is irreducible if all the states communicate.
A ”closed” class is one that is impossible to leave, so pij = 0 if
i ∈ C , j /∈ C . Then an irreducible MC has only one class, which is
necessarily closed.
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Theorem

Every Markov Chain with a finite state space has a unique
stationary distribution unless the chain has two or more closed
communicating classes.
Note: two or more communicating classes but only one
closed → unique stationary distribution.

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



But, a finite MC with a unique stationary distribution may not
have a limiting distribution unless we satisfy one more condition...
Periodicity of states
A periodicity of state i is defined as

di = gcd{n ≥ 1 : p
[n]
ii > 0}.

If di = 1 then state i is called aperiodic.
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Theorem

If an irreducible MC with finite state space {0, 1, 2, ...,m} is
aperiodic, then for all states i and j

p
[n]
ij → πj as n→∞

where π = (π0, π1, . . . , πm) is the unique stationary distribution of
the chain.
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Return probabilities and return times

Recall,
p
[n]
ij = P(Xn = j |X0 = i)

p
[n]
ii = prob. of return to i in n transitions (not necessarily first

return)
p0ii = 1

f
[n]
ii = prob. of return to i for the first time after n transitions.

f
[0]
ii = by definition
fii = prob. that a return to i eventually occurs.

fii = f
[1]
ii + f

[2]
ii + . . .+ f

[n]
ii + . . .

State i is recurrent if fii = 1.
transient if fii < 1.
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Example

P =

(
1− α α
β 1− β

)
f
[1]
00 = 1− α

For n ≥ 2, f
[n]
00 = α(1− β)n−2β

It is not so difficult to show that f00 = 1. (Remember? We did it
in class).
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Theorem

Two states in the same communicating class are either both
recurrent or both transient.
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Mean recurrence times

{f [n]ii ; n ≥ 1} is the distribution of Ti , the time of first return to
state i .
µi = E (Ti ) = mean (first) return time of state i

= mean recurrence time of state i
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Recurrence states which have an infinite mean recurrence time are
null recurrent.
Recurrence states which have a finite mean recurrence time are
positive recurrent.
Every finite irreducible MC is positive recurrent.
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Example

For our example, it is not so hard to show that

µ0 =
∞∑
n=1

nf
[n]
00 =

α + β

β
.

(Remember?, we did it in class, too).
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The basic limit theorem for Markov Chains

For each state i of a recurrent irreducible aperiodic Markov Chain

lim
n→∞

p
[n]
ii =

1∑∞
n=0 f

[n]
ii

=
1

µi

µi = mean return times.
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Recall, every finite irreducible MC has a unique stationary
distribution and if the chain is aperiodic then

lim
n→∞

p
[n]
ii = π for each i

So, for a finite irreducible aperiodic MC

πi =
1

µi
,

so we can find the mean return times from the stationary
distribution.
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We will consider time-invariant Markov chains that are irreducible
and aperiodic and where all states are positive recurrent. Chains
having these properties are called ergodic. This type of chain is
important as there are theorems which show that for this type of
chain, the time average of a single realization approach the
average of all possible realizations of the same Markov chain
(called the ensemble) at some particular time point. This means
that we can estimate long-run probabilities for this type chain by
taking the time average of a single realization of the chain. The
ergodic theorem for irreducible aperiodic Markov chains is:

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



Theorem

In an ergodic Markov chain the limits

uj = lim
n→∞

p
[n]
ij > 0

exist and are independent of the initial state i . Also∑
j

uj = 1

and

uj =
∑
i

uipij .

Conversely, if the chain has uj > 0 satisfying the conditions above,
then the chain is ergodic and uj = 1

mj
, the reciprocal of the mean

return time.
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Proof

A proof of this theorem is given in Feller (1968), An Introduction
to Probability Theory and its Applications, Volume 1, Third
edition, John Wiley and Sons, New York.
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Sampling from a Markov Chain

Example. First, we will notice that there are many Markov Chains
that will have the same long-run distribution. We have two
transition probability matrices P1 and P2 that describe the
movement through a finite state-space with five elements. They
are:
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# R Code;

c1=c(0.35,0.15,0.15,0.15,0.15);

c2=c(0.35,0.55,0.15,0.15,0.15);

c3=c(0.10,0.10,0.10,0.40,0.20);

c4=c(0.10,0.10,0.20,0.10,0.40);

c5=c(0.10,0.10,0.40,0.20,0.10);

P1=matrix(c(c1,c2,c3,c4,c5),nrow=5,ncol=5);
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# R Code;

c.star1=c(0.499850,0.299850,0.00015,0.00015,0.00015);

c.star2=c(0.499850,0.699850,0.00015,0.00015,0.00015);

c.star3=c(0.00010,0.00010,0.199900,0.499900,0.299900);

c.star4=c(0.000100,0.000100,0.299900,0.199900,0.499900);

c.star5=c(0.000100,0.000100,0.499900,0.299900,0.199900);

P2=matrix(c(c.star1,c.star2,c.star3,c.star4,c.star5),

nrow=5,ncol=5)
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We look at P
[n]
1 and P

[n]
2 where n = 32. They are:

# R code;

mat.mult=function(P,n){

old.P=P;

for (i in 1:(n-1) ){

new.P=P%*%old.P

old.P=new.P

}

return(old.P)

}

P1.n=mat.mult(P1,32);

P2.n=mat.mult(P2,32);

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



We see the second chain is far from convergence since the
”occupation” probabilities are very different for the different rows.
We let the second chain run further to . . . n = 65000!
After doing so, we see that the second chain has now converged to
the same long-run distribution as the first chain.
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Some comments

Many chains will have the same long-run distribution.

There is no way that we can set a burn-in time that will work
for all chains.
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MC=function(N,initial,P){

Xj=sample(length(initial),1,prob=initial)

res=c(Xj)

for (j in 1:N){

p=P[Xj, ]

Xj=sample(length(p),1,prob=p)

res=c(res,Xj)

}

return(res)

}
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# R code;

mu=c(0.2,0.2,0.2,0.2,0.2);

set.seed(2015);

path1=MC(1000,mu,P1);

path2=MC(1000,mu,P2);

#mu = initial distribution;
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## Traceplots;

par(mfrow=c(2,1));

plot(ts(path1),ylim=c(1,5));

plot(ts(path2),ylim=c(1,5));

## The traceplot shows the step-by-step history of

## a Markov chain as it moves through the states.
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# Histograms;

class=c(0,1,2,3,4,5);

par(mfrow=c(1,2));

hist(path1,breaks=class,freq=FALSE,ylim=c(0,0.65));

hist(path2,breaks=class,freq=FALSE,ylim=c(0,0.65));
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Histograms
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# Finding Limiting distribution of P1;

svd.P1=eigen(t(P1));

svd.P1$vec[ ,1];

limit.pi=(-1)*svd.P1$vec[ ,1];

limit.pi/sum(limit.pi);
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# Finding Limiting distribution of P2;

svd.P2=eigen(t(P2));

svd.P2$vec[ ,1];

limit.pi.2=(-1)*svd.P2$vec[ ,1];

limit.pi.2/sum(limit.pi.2);
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Time-reversible Markov Chains

So far, we have considered that we knew the one-step transition
probabilities pij for all values i and j , and found the long-run
distribution π for all values of i from that. Now, we look at this
the other way around. We start with the long-run distribution and
want to find a Markov chain with that distribution.
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Time-reversible Markov Chains

If we look at the states of a Markov chain in the reverse time order
they also form a Markov chain called the backwards chain. Let the
transition probabilities for the backwards chain be

qij = P(X [n] = j |X [n+1] = i)

qij =
P(X [n] = j ,X [n+1] = i)

P(X [n+1] = i)

qij =
P(X [n] = j)P(X [n+1] = i |X [n] = j)

P(X [n+1] = i)
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Time-reversible Markov Chains

When the chain is at steady state

qij =
πjpji
πi

.

The Markov chain is said to be time reversible when the backwards
Markov chain and the forward Markov chain have the same
transition probabilities. In other words qij = pij for all states i and
j . Then it follows that the transition probabilities satisfy

πipij = πjpji for all states i and j .

This is called ”detailed balance”.
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Theorem

A set of transition probabilities satisfying the detailed balance
condition will have steady state distribution π.
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Proof

∑
i

πipij =
∑
i

πjpji∑
i

πipij = πj
∑
i

pji∑
i

πipij = πj

which is the steady state probability of state j . This holds for all
states i and j .
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The Metropolis Algorithm

Start from the transition probabilities pij and the desired
steady state probabilities πi .

For each pair of states i and j , define the acceptance

probability αij = min
[
πjpji
πipij

, 1
]

Then for each i and j 6= i let p
′
ij = αijpij

Let p
′
ii = 1−

∑
j 6=i p

′
ij .

Then π is the steady state distribution for the Markov chain with
transition probabilities given by p

′
ij .
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Theorem

The Markov chain having transition probabilities given by p
′
ij

satisfies the detailed balance condition, and thus it has the desired
steady state distribution.
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Example

Suppose we have a transition matrix given by

P =


0.1 0.2 0.3 0.4
0.1 0.2 0.3 0.4
0.3 0.4 0.2 0.1
0.3 0.4 0.2 0.1


and we want to achieve the steady state distribution
π = (0.2, 0.3, 0.4, 0.1).
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Solution

α12 = min
(
0.3×0.1
0.2×0.2 , 1

)
= 3

4 α13 = min
(
0.4×0.3
0.2×0.3 , 1

)
= 1

α14 = min
(
0.1×0.3
0.2×0.4 , 1

)
= 3

8 α21 = min
(
0.2×0.2
0.3×0.1 , 1

)
= 1

α23 = min
(
0.4×0.4
0.3×0.2 , 1

)
= 1 α24 = min

(
0.1×0.4
0.3×0.4 , 1

)
= 1

3

α31 = min
(
0.2×0.3
0.4×0.3 , 1

)
= 1

2 α32 = min
(
0.3×0.3
0.4×0.4 , 1

)
= 9

16

α34 = min
(
0.1×0.2
0.4×0.1 , 1

)
= 1

2 α41 = min
(
0.2×0.4
0.1×0.3 , 1

)
= 1

α42 = min
(
0.3×0.4
0.1×0.4 , 1

)
= 1 α43 = min

(
0.4×0.1
0.1×0.2 , 1

)
= 1
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Solution

Then for each j 6= i let p
′
ij = αij × pij , and let p

′
ii = 1

∑
j 6=i p

′
ij .

This gives

P
′

=


0.40 0.15 0.30 0.15
0.10 0.466667 0.30 0.133333
0.15 0.225 0.575 0.05
0.30 0.40 0.20 0.10


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MCMC Sampling

We want to find a Markov chain that has the target distribution as
its long-run distribution. Thus the support of the target will be the
state space of the Markov chain. We know that the long-run
distribution of a ergodic Markov chain is a solution of the steady
state equation. That means that the long-run distribution π of a
finite ergodic Markov chain with one-step transition matrix P
satisfies the equation

π = Pπ.
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MCMC Sampling

The comparable steady state equation that π(θ), the long-run
distribution of a Markov chain with a continuous state space,
satisfies is given by∫

A
π(θ)dθ =

∫
π(θ)P(θ,A)dθ

for all A where P(θ,A) is the transition kernel of the chain.
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Finding a MC that has the target as its long-run
distribution

We need to find a probability transition kernel P(θ,A) that satisfies∫
g(θ)P(θ,A)dθ =

∫
A
g(θ)dθ for all A.

where we know that g(θ) except for the scale factor needed to
make it an exact density.
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Theorem

Let q(θ, θ
′
) be a candidate distribution that generates a candidate

θ
′

given starting value θ. If for all θ, θ
′

the candidate distribution
q(θ

′
, θ) satisfies the reversibility condition

g(θ)× q(θ, θ
′
) = g(θ

′
)× q(θ

′
, θ) for all θ, θ

′

then g(θ) is the long-run distribution for the Markov Chain with
probability kernel

P(θ,A) =

∫
A
q(θ, θ

′
)dθ

′
+ r(θ)δA(θ)

where r(θ) = 1−
∫
q(θ, θ

′
)dθ

′
is the probability the chain remains

at θ, and where δA(θ) is the indicator function of set A.
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Metropolis-Hastings Algorithm for a single parameter

Unfortunately, most candidate distributions don’t satisfy the
reversibility condition. For some θ and θ

′

g(θ)q(θ, θ
′
) 6= g(θ

′
)q(θ

′
, θ)

the probability of moving from θ to θ
′

is not the same as the
probability of moving in the reverse direction. Metropolis et al.
(1953) supplied the solution. They restored the balance by
introducing a probability of moving

α(θ, θ
′
) = min

[
1,

g(θ
′
)q(θ

′
, θ)

g(θ)q(θ, θ′)

]
.

(The algorithm only requires that we know the unscaled target).
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Steps of Metropolis-Hastings Algorithm

1. Start at an initial value θ[0].
2. Do for n = 1, . . . ,N.
a) Draw θ

′
from q(θ[n−1], θ

′
).

b) Calculate the probability α(θ[n−1], θ
′
).

c) Draw u from U(0, 1).
d) If u < α(θ[n−1], θ

′
) then let θ[n] = θ

′
, else let θ[n] = θ[n−1].
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Example: Standard Normal Stationary Distribution

Here is a simple example of a Markov chain that can be used with
a uniform random number generator to produce samples of a
standard Normal distribution. The chain is defined with a tuning
parameter A: any value A > 0 will work, but some will work better
than others.
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norm=function (n, A) {

vec = vector("numeric", n);

x = 0;

vec[1] = x;

for (i in 2:n) {

innov = runif(1, -A, A);

can = x + innov;

aprob = min(1, dnorm(can)/dnorm(x));

u = runif(1);

if (u < aprob)

x = can

vec[i] = x

}

return(vec)

}
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Example (cont.)

At each time step, the chain either remains at its current value or
moves incrementally to a randomly generated candidate value. The
increment has a U(−A,A) distribution, so the candidate value is
sample uniformly over an interval centered at the current value,
that is, Xcand |Xt−1 ∼ U(Xt−1 − A,Xt−1 + A). The values Xt are
clearly a Markov chain: the distribution of Xt given all previous
values Xt−1,Xt−2, . . . ,X1 depends only on the most recent value
Xt−1.
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# Effect of Tuning Parameter;

set.seed(99);

normvec_0.5<-norm(1000,0.5);

normvec_1<-norm(1000,1);

normvec_3.7<-norm(1000,3.7);

normvec_15<-norm(1000,15);
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# Traceplots;

par(mfrow=c(2,2));

plot(ts(normvec_0.5),ylim=c(-3.5,3.5));

plot(ts(normvec_1),ylim=c(-3.5,3.5));

plot(ts(normvec_3.7),ylim=c(-3.5,3.5));

plot(ts(normvec_15),ylim=c(-3.5,3.5));
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Effect of Tuning Parameter

The history plot or traceplot for Markov chain Xt is obtained by
plotting Xt against t. Our figures give us history plots for the first
1000 values of four Markov chains generated according to our
Algorithm.
All four chains have a standard Normal stationary distribution, but
their history plots reveal obvious differences. The chains with
A = 0.5 and 1 move slowly over the range of the standard Normal
distribution, taking many small steps. The chain with A = 15
takes occasional large steps but stalls frequently.
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Effect of starting value

Let us modify our algorithm, slightly. Now, our Markov chains
start with X1 = 20.
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norm=function (n, A) {

vec = vector("numeric", n);

x = 20;

vec[1] = x;

for (i in 2:n) {

innov = runif(1, -A, A);

can = x + innov;

aprob = min(1, dnorm(can)/dnorm(x));

u = runif(1);

if (u < aprob)

x = can

vec[i] = x

}

return(vec)

}
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# Effect of Starting Value;

set.seed(99);

normvec_1<-norm(1000,1);

# Traceplots;

plot(ts(normvec_1),xlab="t",ylab="Xt");

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



Traceplot

t

X
t

0 200 400 600 800 1000

0
5

10
15

20

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



Effect of Starting Value

The chain with A = 1 and starting value X1 = 20 moves slowly but
deliberately down into the range of typical values of a standard
Normal random variable. Its first 100 values would typically be
discarded as a ”burn-in”, values not representative of the
stationary distribution.
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Autocorrelation function (ACF)

These differences are reflected in the strength of association
among values of Xt . For h = 1, 2, . . . , the correlation ρ(Xt ,Xt+h)
between Xt and Xt+h is called the autocorrelation at lag h, and
R(h) = ρ(Xt ,Xt+h) is called the autocorrelation function (ACF).
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norm=function (n, A) {

vec = vector("numeric", n);

x = 0;

vec[1] = x;

for (i in 2:n) {

innov = runif(1, -A, A);

can = x + innov;

aprob = min(1, dnorm(can)/dnorm(x));

u = runif(1);

if (u < aprob)

x = can

vec[i] = x

}

return(vec)

}
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set.seed(99);

normvec_0.5<-norm(1000,0.5);

normvec_1<-norm(1000,1);

normvec_3.7<-norm(1000,3.7);

normvec_15<-norm(1000,15);
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par(mfrow=c(2,2))

acf(ts(normvec_0.5))

acf(ts(normvec_1))

acf(ts(normvec_3.7))

acf(ts(normvec_15))
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With A = 3.7, the autocorrelation drops off quickly, falling below
0.01 by lag 14; one could treat every 14th observation as nearly
independent. The same is true for A = 15 at lag 20. The chain
with A = 0.5 is highly autocorrelated, with the same value at lag
23 as the A = 3.7 chain at lag 3.
The consequence of high autocorrelation is diminished accuracy
and precision in estimating features of the target distribution. The
ergodicity theorem guarantees that sample features of the Markov
chains will approximate corresponding features of the Normal
distribution as chain length, n, gets larger. The sample mean will
approach zero, the sample standard deviation will approach 1. For
finite n, however, the sample features are only estimates of the
features of the stationary distribution and may be biased or
imprecise. The bias and precision of the various chains depends on
the choice of A.
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Finding a reasonable A

We identified the value A = 3.7 as reasonable by comparing its lag
1 autocorrelation with those of chains with other values of A. On
the next slide, we show lag 1 autocorrelations of chains produced
with values of A ranging from 0 to 16. Small values of A result in
small increments for the candidate values and high acceptance
probabilities because nearby values have nearly identical probability.
The chain moves slowly, an there is high autocorrelation. Larger
values of A lead to larger increments for the candidate values and
lower acceptance probabilities. The autocorrelation of the chains is
minimized for A near 3.7. (Conventional wisdom is that
acceptance rates in the range 30− 50% are near optimal.
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# Finding a good A;

alpha=seq(0.01,16,by=0.05);

n=length(alpha);

auto.cor=numeric(n);

for (i in 1:n){

auto.cor[i]= acf(ts(norm(10000,alpha[i])),

lag.max=1,plot=FALSE)$acf[2];

}

plot(alpha,auto.cor,type="l",lty=2,ylim=c(0,1),

xlab="A",ylab="Lag 1 autocorrelation");
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A reasonable A.
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Single Parameter with a Random-Walk Candidate Density

Metropolis et al. (1953) considered Markov chains with a
random-walk candidate distribution. For a random-walk candidate
generating distribution the candidate is drawn from a symmetric
distribution centered at the current value. Thus the candidate
density is given by

q(θ, θ
′
) = q1(θ

′ − θ)

where q1() is a function symmetric about 0. Because of the
symmetry q1(θ

′ − θ) = q1(θ − θ′), so for a random-walk candidate
density, the acceptance probability simplifies to be

α(θ, θ
′
) = min

[
1,

g(θ
′
)q(θ

′
, θ)

g(θ)q(θ, θ′)

]
= min

[
1,

g(θ
′
)

g(θ)

]
.
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Example

Suppose we have a unscaled target density given by

g(θ) = 0.8× e−
1
2
θ2 + 0.2× 1

2
e
− (θ−3)2

2×22

Let us use the Normal candidate density with variance σ2 = 1
centered around the current value as our random-walk candidate
density distribution.
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target=function(theta){

y=0.8*exp(-(1/2)*theta^2) + 0.1*exp(-(1/8)*(theta-3)^2)

return(y)

}

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



norm2<-function (n, sigma)

{

vec =vector("numeric", n);

x =0;

vec[1] <- x;

for (i in 2:n) {

innov <- rnorm(1,mean=0, sd=sigma);

can <- x + innov;

aprob <- min(1, target(can)/target(x));

u <- runif(1);

if (u < aprob)

x =can

vec[i] =x

}

return(vec)

}
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# Effect of Tuning Parameter;

set.seed(99);

normvec_0.5b<-norm2(1000,0.5);

normvec_1b<-norm2(1000,1);

normvec_5b<-norm2(1000,5);

normvec_10b<-norm2(1000,10);
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# Traceplots;

par(mfrow=c(2,2));

plot(ts(normvec_0.5b));

plot(ts(normvec_1b));

plot(ts(normvec_5b));

plot(ts(normvec_10b));
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# Autocorrelation functions

par(mfrow=c(2,2));

acf(ts(normvec_0.5b));

acf(ts(normvec_1b));

acf(ts(normvec_5b));

acf(ts(normvec_10b));
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# Finding a good sigma;

sigma.vec=seq(5,30,by=0.5);

n=length(sigma.vec);

auto.cor=numeric(n);

for (i in 1:n){

auto.cor[i]= acf(ts(norm2(10000,sigma.vec[i])),

lag.max=1,plot=FALSE)$acf[2];

}

plot(sigma.vec,auto.cor,type="l",lty=2,ylim=c(0,1),

xlab=expression(sigma),ylab="Lag 1 autocorrelation");
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min.index=seq(1:n)[auto.cor==min(auto.cor)];

sigma.min=sigma.vec[min.index];

sigma.min;
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Single Parameter with an Independent Candidate Density

Hastings (1970) introduced Markov chains with candidate
generating density that did not depend on the current value of the
chain. These are called independent candidate distribution

q(θ, θ
′
) = q2(θ

′
)

for some function q2(θ) that must dominate the target in the tails.
(We can make sure this requirement is met by graphing logarithms
of the target and the candidate density).
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Single Parameter with an Independent Candidate Density

For an independent candidate density, the acceptance probability
simplifies to be

α(θ, θ
′
) = min

[
1,

g(θ
′
)q(θ

′
, θ)

g(θ)q(θ, θ′)

]
= min

[
1,

g(θ
′
)

g(θ)
× q2(θ)

q2(θ′)

]
.
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Example

Suppose we have a unscaled target density given by

g(θ) = 0.8× e−
1
2
θ2 + 0.2× 1

2
e
− (θ−3)2

2×22

Let us use the Normal with mean µ = 0 and variance σ2 = 32 as
the independent candidate density. Let the starting value be θ = 0.
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target=function(theta){

y=0.8*exp(-(1/2)*theta^2) + 0.1*exp(-(1/8)*(theta-3)^2)

return(y)

}
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norm3<-function (n, sigma) {

vec=vector("numeric", n);

x =0;

vec[1] = x;

for (i in 2:n) {

innov =rnorm(1,mean=0, sd=sigma);

can = 0 + innov;

r1=(target(can)/target(x));

r2=(dnorm(x,0,sigma)/dnorm(can,0,sigma) );

r=r1*r2;

aprob = min(1,r);

u =runif(1);

if (u < aprob)

x = can

vec[i] = x

}

return(vec)

}
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set.seed(99);

normvec_3c=norm3(1000,3);

par(mfrow=c(2,1));

# Traceplots;

plot(ts(normvec_3c));

# Autocorrelation functions;

acf(ts(normvec_3c));
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Traceplot and ACF
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