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”essentially, all models are wrong, but some are useful”

George E. P. Box

(one of the great statistical minds of the 20th century).
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Pseudo random number generators

There are two fundamentally different classes of methods to
generate random numbers:
a) True random numbers are generated using some physical
phenomenon which is random. Generating such numbers requires
specialized hardware and can be expensive and slow.
b) Pseudo random numbers are generated by computer programs.
While these methods are normally fast and resource effective, a
challenge with this approach is that computer programs are
inherently deterministic and therefore cannot produce ”truly
random” output.
In this course we will only consider pseudo random number
generators.
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Definition 1.1

A pseudo random number generator (PRNG) is an algorithm which
outputs a sequence of numbers that can be used as a replacement
for an independent and identically distributed (i. i. d.) sequence of
”true random numbers”.
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In order to use a computer to initiate a simulation study, we must
be able to generate the value of a uniform (0, 1) random variable;
such variates are called random numbers. One way to do this
would be to take 10 identical slips of paper, numbered
0, 1, 2, . . . , 9, place them in a hat and then successively select n
slips, with replacement, from the hat. The sequence of digits
obtained (with a decimal point in front) can be regarded as the
value of a uniform (0, 1) random variable rounded off to the
nearest ( 1

10 )n. For instance, if the sequence of digits selected is
3, 8, 7, 2, 1, then the value of the uniform (0, 1) random
variable is 0.38721 (to the nearest 0.00001).
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However, this is not the way in which digital computers simulate
uniform (0, 1) random variables. In practice, they use pseudo
random numbers instead of truly random ones. Most random
number generators start with an initial value X0, called the seed,
and then recursively compute values by specifying positive integers
a, c, and m, and then letting

Xn+1 = (aXn + c) modulo m, n ≥ 0

where the preceding means that aXn + c is divided by m and the
remainder is taken as the value of Xn+1. It can be shown that
subject to suitable choices for a, c , m, the preceding gives rise to
a sequence of numbers that looks as if it were generated from
independent uniform (0, 1) random variables.
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Example

For parameters m = 8, a = 5, c = 1 and seed X0 = 0, the
algorithm described above gives the following output:

n 5Xn−1 + 1 Xn

1 1 1
2 6 6
3 31 7
4 36 4
5 21 5
6 26 2
7 11 3
8 16 0
9 1 1

10 6 6
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Pseudo random number generators in practice

It is normally a bad idea to implement your own PRNG.
Therefore, it is advisable to use a well-established method for
random number generation, typically the random number
generator built into a well-known software package or provided
by a well-established library.

While different PRNGs differ greatly in implementation
details, they all use a seed to initialise the state of the random
number generator. Often, when non-predictability is required,
it is useful to set the seed to some volatile quantity to get a
different sequence of random numbers for different runs of the
program. At other times it can be more useful to get
reproducible results, for example to aid debugging. In these
cases, the seed should be set to a known, fixed value.
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Problem

Let U be a uniform random variable on the interval (0, 1).
a) Find the cumulative distribution function of U.
b) Find the density function of Y = −βln(1− U).
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Problem

Let U be a uniform random variable on the interval (0, 1). Find a
transformation G (U) such that G (U) possesses an exponential
distribution with mean β.
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Solution

If U possesses a uniform distribution on the interval (0, 1), then
the distribution function of U is given by

FU(u) =


0, u < 0,
u, 0 ≤ u ≤ 1,
1 u > 1.
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Solution

Let Y denote a random variable that has an exponential
distribution with mean β. Then Y has distribution function

FY (y) =

{
0, y < 0,

1− e−y/β y ≥ 0.
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Solution

Notice that FY (y) is strictly increasing on the interval [0, ∞). Let
0 < u < 1 and observe that there is a unique value y such that
FY (y) = u. Thus, F−1

Y (u), 0 < u < 1, is well defined. In this case,
FY (y) = 1− e−y/β = u if and only if y = −βln(1− u) = F−1

Y (u).
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Solution

Consider the random variable F−1
Y (U) = −βln(1− U) and observe

that, if y > 0,
P(F−1

Y (U) ≤ y) = P[−βln(1− U) ≤ y ]
= P[ln(1− U) ≥ − y

β ]

= P[U ≤ 1− e−y/β]
= 1− e−y/β.

Also, P[F−1(U) ≤ y ] = 0 if y ≤ 0. Thus, F−1(U) = −βln(1− U)
possesses an exponential distribution with mean β, as desired.
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Definition 1.12

Let F be a distribution function. Then the inverse of F is defined
by

F−1(u) = inf {x ∈ <|F (x) ≥ u}

for all u ∈ (0, 1).
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Proposition 1.14

Let F : < → [0, 1] be a distribution function and U ∼ U[0, 1].
Define X = F−1(U). Then X has distribution function F .
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Proof

Using the definitions of X and F−1 we find
P(X ≤ a) = P(F−1(U) ≤ a) = P(inf {x |F (x) ≥ U} ≤ a).
Since inf {x |F (x) ≥ U} ≤ a holds if and only if F (a) ≥ U, we can
conclude
P(X ≤ a) = P(F (a) ≥ U) = F (a).
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Example

Let X have density

f (x) =

{
3x2 x ∈ [0, 1] and
0 otherwise
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Example (cont.)

Then

F (a) =

∫ a

−∞
f (x)dx =


0 if a < 0
a3 if 0 ≤ a < 1
1 for 1 ≤ a
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Example (cont.)

F−1 is given by the usual inverse function and consequently
F−1(u) = u1/3 for all u ∈ (0, 1). Thus, by proposition 1.14, if
U ∼ U[0, 1], the cubic root U1/3 has the same distribution as X .
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R code

U=runif(10000);

X=U(̂1/3);

# runif generates random numbers from U[0,1];

# in this case, 10000 of them;

# X contains 10000 random numbers from r.v. X;
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R code

hist(X, freq=FALSE);

x=seq(0,1,by=0.01);

f=3*x(̂2);

lines(x,f,lty=2);

# hist makes a histogram of X;

# freq = FALSE is telling R to use relative;

# frequencies;

# lines adds the pdf we want;

# lty = 2 tells R that we want a dotted line;
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Exercise E1.4

Write a program which uses the inverse transform method to
generate random numbers with the following density:

f (x) =

{
1/x2 if x ≥ 1
0 otherwise.

To test your program, plot a histogram of 10 000 random numbers
together with the density f .
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Lemma 1.8

Let U ∼ U[0, 1] and n ∈ N. Define a random variable X by
X = bnUc, where b·c denotes rounding down. Then
X ∼ U{0, 1, ..., n − 1}.
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Proof

By the definition of X we have
P(X = k) = P(bnUc = k) = P(nU ∈ [k, k + 1)) =
P
(
U ∈

[
k
n ,

k+1
n

))
= k+1

n −
k
n = 1

n
for all k = 0, 1, ..., n − 1. This completes the proof.
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Problem

Suppose that Y is a random variable that takes on only integer
values 1, 2, ... and has distribution function F (y). Show that the
probability function p(y) = P(Y = y) is given by

p(y) =

{
F (1), y = 1,
F (y)− F (y − 1), y = 2, 3, ...
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Solution

For y = 2, 3, ...,
F (y)−F (y−1) = P(Y ≤ y)−P(Y ≤ y−1) = P(Y = y) = p(y).

Also,
F (1) = P(Y ≤ 1) = P(Y = 1) = p(1).
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Problem

Suppose that Y is a random variable that takes on only integer
values 1, 2, .... Let F (y) denote the cumulative distribution
function of this random variable. Let U be a continuous random
variable that is uniformly distributed on the interval (0, 1). Define
a variable X such that X = k if and only if F (k − 1) < U ≤ F (k),
k = 1, 2, .... Recall that F (0) = 0 because Y takes on only
positive integer values. Show that
P(X = i) = F (i)− F (i − 1) = P(Y = i), i = 1, 2, .... That is, X
has the same distribution as Y .
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Solution

By definition,
P(X = i) = P[F (i − 1) < U ≤ F (i)] = F (i)− F (i − 1), for
i = 1, 2, ....
From a previous problem, we know that
P(Y = i) = F (i)− F (i − 1), for i = 1, 2, ....
Thus, X and Y have the same distribution.
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Example. The Geometric Distribution

Suppose that independent trials each of which results in a
”success” with probability p, 0 < p < 1, are continually performed
until a success occurs. Letting X denote the number of necessary
trials, then
P(X = k) = (1− p)k−1p, k ≥ 1.
The random variable X is said to be a Geometric random variable
with parameter p.
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Example. The Geometric Distribution

Using the formula for geometric sums we find

F (k) =
∑k

j=1 P(X = j) = p
∑k

j=1(1− p)j−1 = p 1−(1−p)k

p =

1− (1− p)k .
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Example. The Geometric Distribution

We can simulate such a random variable by generating a random
number U and then setting X equal to that value k for which
1− (1− p)k−1 < U ≤ 1− (1− p)k or, equivalently, for which
(1− p)k ≤ 1− U < (1− p)k−1.
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Example. Geometric Distribution

Since 1− U has the same distribution as U, we can thus define X
by
X = min{k : U ≥ (1− p)k}

= min{k : logU ≥ klog(1− p)}
= min{k : logU

log(1−p) ≤ k} (recall that log(1− p) is negative)
Thus, the value

X = ak = K =

⌈
logU

log(1− p)

⌉
,

where d·e denotes the operation of rounding up a number to the
nearest integer, is geometrically distributed with parameter p.
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R code

U=runif(20000);

p=1/5;

X= ceiling(log(U)/log(1-p));

# p =1/5 probability of success;

# ceiling tells R to round up;

# X contains 20000 random numbers from Geometric(p);
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R code

sample<-table(X)/20000;

plot(sample);

# table creates a frequency table for X;
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Lemma 1.9

Let p ∈ [0, 1] and U ∼ U[0, 1] and define the event E as
E = {U ≤ p}. Then P(E ) = p.
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Proof

We have
P(E ) = P(U ≤ p) = P(U ∈ [0, p]) = p − 0 = p.
This completes the proof.
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Lemma 1.10

Assume A = {ai |i ∈ I} where either I = {1, 2, ..., n} for some
n ∈ N or I = N, and where ai 6= aj whenever i 6= j . Let pi ≥ 0 be
given for i ∈ I with

∑
i∈I pi . Finally let U ∼ U[0, 1] and define

K = min

{
k ∈ I |

k∑
i=1

pi ≥ U

}
Then X = ak ∈ A satisfies P(X = ak) = pk for all k ∈ I .
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Proof

P(X = ak) = P(K = k) = P
(∑k−1

i=1 pi < U,
∑k

i=1 pi ≥ U
)

= P
(
U ∈

(∑k−1
i=1 pi ,

∑k
i=1 pi

])
=
∑k

i=1 pi −
∑k−1

i=1 pi = pk .
for all k ∈ I , where we interpret the sum

∑0
i=1 pi for k = 1 as 0.

This completes the proof.
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Beta Probability Distribution

A random variable Y is said to have a beta probability
distribution with parameters α > 0 and β > 0 if and only if the
density function of Y is

f (y) =

{
Γ(α+β)

Γ(α)Γ(β)y
α−1(1− y)β−1, 0 ≤ y ≤ 1,

0, elsewhere.

where Γ(α) =
∫∞

0 yα−1e−ydy .
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Gamma Function

The quantity Γ(α) is known as the gamma function. Direct
integration will verify that Γ(1) = 1. Integration by parts will verify
that Γ(α) = (α− 1)Γ(α− 1) for any α > 1 and that
Γ(n) = (n − 1)!, provided that n is an integer.
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Beta random variable generation

Suppose the goal is to generate Y ∼ Beta(a, b). For definitness,
set a = 2.7 and b = 6.3. Below we have put the beta density
fY (y) inside a box with sides 1 and c ≥ max fY (y).
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Beta random variable generation

Now consider the following method of calculating P(Y ≤ y). If
(U,V ) are independent uniform (0, 1) random variables, then the
probability of the shaded area is

P(V ≤ y ,U ≤ 1
c fY (V )) =

∫ y
o

∫ fY (v)/c
0 dudv

= 1
c

∫ y
0 fY (v)dv

= 1
cP(Y ≤ y).

So we can calculate the beta probabilities from the uniform
probabilities, which suggests that we can generate the beta
random variable from the uniform random variables.
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Beta random variable generation

If we set y = 1, then we have 1
c = P(U < 1

c fY (V )), so

P(Y ≤ y) =
P(V≤y , U≤ 1

c
fY (V )

P(U≤ 1
c
fY (V ))

= P(V ≤ y |U ≤ 1
c fY (V )),

which suggests the following algorithm.
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Beta random variable generation

To generate Y ∼ beta(a, b):
Step 1. Generate (U, V ) independent uniform (0, 1).
Step 2. If U < 1

c fY (V ), set Y = V ; otherwise, return to step 1.
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R code.

Step 0. Find c such that fY (y)
cgV (y) ≤ 1. Note that, in this case, it

is equivalent to finding fY (y) ≤ c .

x=seq(0,1,0.001);

a=2.7;

b=6.3;

f=dbeta(x,a,b);

# dbeta gives you the pdf of a beta;

plot(x,f,type="l")

c=max(f);

c;
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fY (y) and fY (y)/cgV (y)
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R code

Step 1. Generate U and V, independent uniform random
variables.

set.seed(0);

U=runif(10000);

V=runif(10000);

# V = candidates;

# U is used to "decide" which ones we keep;

# by using set.seed, we will have the same samples;
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R Code

Step 2. Determine which ”candidates” you keep.

weights<-dbeta(V,a,b)/c;

# weights=f(x)/c*g(x);

(This is not the ”final version” of Step 2. First we need to
understand how it works).
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Explanation of how Step 2 works

Now that we have U, V , and weights, let us see how this works,
step-by-step. The first value drawn from the candidate density
gV (y) is V [1] = 0.652677 and the ”weight” function at V [1] will
be weights[1] = 0.08632485. The next step is comparing
weights[1] to U[1] = 0.8966972. Since U[1] > weights[1], we
reject V [1] = 0.652677 as a number coming from a
Beta(a=2.7,b=6.3).
Let us see a graph of this situation.
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Rejected candidate

From the graph, it makes sense that V [1] was rejected. It is not
very likely to draw a 0.65 from a Beta(2.7,6.3) distribution, Right?
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Explanation of how Step 2 works

Let us see what happens with another candidate. The 919th value
drawn from the candidate density gV (y) is V [919] = 0.2426574
and the ”weight” function at V [919] will be
weights[919] = 0.9999996. The next step is comparing
weights[919] to U[919] = 0.7188601. Since
U[919] < weights[919], we accept V [919] = 0.2426574 as a
number coming from a Beta(a=2.3,b=6.7).
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Accepted candidate

From the graph, it makes sense that V [919] was accepted. It is
very likely to draw a 0.24 from a Beta(2.7,6.3) distribution, Right?
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R Code

Step 2. Determine which ”candidates” you keep.

weights<-dbeta(V,a,b)/c;

random.sample=V[U<weights];

# weights=f(x)/c*g(x);
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A few comments about our last example

Note that we generated 10, 000 candidates but we only ended up
with a random sample of size 3707 (you can verify this by typing
length(random.sample).
Another thing worth mentioning is that the proportion of accepted
candidates is p = 1

c ≈
1

2.67 = 0.3745. Thus, the expected number
of candidates you have to draw, until your first accepted candidate
is 1

p ≈ 2.67.
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Algorithm 1.22

Envelope Rejection Sampling.
input: a function f with values in [0,∞) (the non-normalized
target density),
a probability density g (the proposal density),
a constant c > 0 such that f (x) ≤ cg(x) for all x
randomness used:
Xn i. i. d. with density g (the proposals),
Un ∼ U[0, 1] i. i. d.
output: a sequence of i. i. d. random variables with density
f̂ (x) = 1

Zf
f (x) where Zf =

∫
f (x)dx .
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The Rejection Method

Suppose that we have a method for simulating a random variable
having density function g(x). We can use this as the basis for
simulating from the continuous distribution having density f (x) by
simulating Y from g and then accepting this simulated value with
a probability proportional to f (Y )/g(Y ). Specifically, let c be a
constant such that

f (y)

g(y)
≤ c for all y

We then have the following technique for simulating a random
variable having density f .
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Rejection Method

Step 1. Simulate Y having density g and simulate a random
number U, where U is a uniform (0, 1) random variable.
Step 2. If U ≤ f (Y )/cg(Y ), set X = Y . Otherwise return to step
1.
We now prove that it works.
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Proof

Let X be the value obtained and let N denote the number of
necessary iterations. Then
P[X ≤ x ] = P[YN ≤ x ]

= P
[
Y ≤ x |U ≤ f (Y )

cg(Y )

]
=

P
[
Y≤x ,U≤ f (Y )

cg(Y )

]
K

where K = P[U ≤ f (Y )/cg(Y )]. Now the joint density function of
Y and U is, by independence,
fY ,U(y , u) = g(y) 0 < u < 1
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Proof

so, we have
P[X ≤ x ] = 1

K

∫ x
−∞

∫ f (y)/cg(y)
0 dug(y)dy

= 1
cK

∫ x
−∞ f (y)dy

Letting X approach ∞ and using the fact that f is a density gives
1 = 1

cK

∫∞
−∞ f (y)dy = 1

cK .
Hence we obtain that

P[X ≤ x ] =

∫ x

−∞
f (y)dy

which completes the proof.
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Example

We can use rejection sampling to generate samples from the
half-normal distribution with density

f (x) =

{
2√
2π
exp

(
− x2

2

)
, x ≥ 0,

0, otherwise.
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Example

If we assume that the proposals are Exp(λ)-distributed, then the
density of the proposals is

g(x) =

{
λexp (−λx) , x ≥ 0,
0, otherwise.
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Example

In order to apply algorithm 1.22 we need to determine a constant
c > 0 such that f (x) ≤ cg(x) for all x ∈ <. For x < 0 we have
f (x) = g(x) = 0. For x ≥ 0 we have

f (x)

g(x)
=

2√
2πλ

exp

(
−x2

2
+ λx

)
.

It is easy to check that the quadratic function −x2/2 + λx attains
its maximum at x = λ.
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Example

Thus we have f (x)
g(x) ≤ c∗ for all x ≥ 0, where

c∗ =
2√
2πλ

exp

(
−λ

2

2
+ λ · λ

)
=

√
2

πλ2
exp(λ2/2).

(we should choose c as small as possible and c = c∗ is the optimal
choice).
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Example

Given our choice of g and c , the acceptance criterion from
algorithm 1.22 can be simplified as follows:
cg(x) U ≤ f (x)√

2
πλ2 exp

(
λ2

2

)
λexp(−λx)U ≤ 2√

2π
exp

(
− x2

2

)
U ≤ exp

(
− x2

2 + λx − λ2

2

)
U ≤ exp

(
−1

2 (x − λ)2
)
.
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Example

This leads to the following algorithm for generating samples from
the half-normal distribution:
1. for n = 1, 2, 3, ... do
2. generate Xn ∼ Exp(λ)
3. generate Un ∼ U[0, 1]
4. if Un ≤ exp(−1

2 (Xn − λ)2) then
5. output Xn

6. end if
7. end for

Al Nosedal. University of Toronto. STA 313: Topics in Statistics



Exercise E1.6

Implement the rejection method from example 1.24 to generate
samples from a half-Normal distribution from Exp(1)-distributed
proposals. Test your program by generating a histogram of the
output and by comparing the histogram with the theoretical
density of the half-Normal distribution.
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Method of Transformations

Let Y have probability density function fY (y). If h(y) is either
increasing or decreasing for all y such fY (y) > 0, then U = h(Y )
has density function

fU(u) = fY [h−1(u)]

∣∣∣∣dh−1

du

∣∣∣∣ ,
where dh−1

du = d [h−1(u)]
du .
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Bivariate Transformation Method

Let X1 and X2 be jointly continuous random variables with joint
probability density function fX1, X2 . It is sometimes necessary to
obtain the joint distribution of the random variables Y1 and Y2,
which arise as functions of X1 and X2. Specifically, suppose that
Y1 = g1(X1,X2) and Y2 = g2(X1,X2) for some functions g1 and
g2. Assume that the functions g1 and g2 satisfy the following
conditions:
1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be
uniquely solved for x1 and x2 in terms of y1 and y2 with solutions
given by, say, x1 = h1(y1, y2), x2 = h2(y1, y2).
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Bivariate Transformation Method

2. The functions g1 and g2 have continuous partial derivatives at
all points (x1, x2) and are such that the following 2× 2 determinant

J(x1, x2) = det

[
∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

]
6= 0

at all points (x1, x2).
Under these two conditions it can be shown that the random
variables Y1 and Y2 are jointly continuous with joint density
function given by
fY1, Y2(y1, y2) = fX1, X2(x1, x2)|J(x1, x2)|−1,
where x1 = h1(y1, y2), x2 = h2(y1, y2) and |J(x1, x2)| is the
absolute value of the Jacobian.

(We will not prove this result, but it follows from Calculus results
used for change of variables in multiple integration.)
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Homework?

Let X1 and X2 be jointly continuous random variables with
probability density function fX1,X2 . Let Y1 = X1 + X2,
Y2 = X1 − X2. Find the joint density function of Y1 and Y2 in
terms of fX1,X2 .
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Example

Let (X , Y ) denote a random point in the plane and assume that
the rectangular coordinates X and Y are independent standard
random Normal random variables. We are interested in the joint
distribution of R and Θ, the polar coordinate representation of this
point (see Figure below).
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Example

Letting r = g1(x , y) =
√
x2 + y2 and θ = g2(x , y) = tan−1

( y
x

)
,

we see that
∂g1
∂x = x√

x2+y2

∂g1
∂y = y√

x2+y2

∂g2
∂x = 1

1+(y/x)2

(
− y

x2

)
= −y

x2+y2

∂g2
∂y = 1

x[1+(y/x)2]
= x

x2+y2
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Example

Hence
J = x2

(x2+y2)3/2 + y2

(x2+y2)3/2 = 1√
x2+y2

= 1
r .

As the joint density function of X and Y is

fX , Y (x , y) =
1

2π
e−(x2+y2)/2

we see that the joint density function of R =
√

x2 + y2,
Θ = tan−1(y/x), is given by

fR, Θ(r , θ) =
1

2π
re−r

2/2 0 < θ < 2π, 0 < r <∞.
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Example

As this joint density factors into the marginal densities for R and
Θ, we obtain that R and Θ are independent random variables, with
Θ being uniformly distributed over (0, 2π) and R having the
Rayleigh distribution with density

fR(r) = re−r
2/2 0 < r <∞.
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Example

If we wanted the joint distribution of R2 and Θ, then, as the
transformation d = h1(x , y) = x2 + y2 and
θ = h2(x , y) = tan−1(y/x) has a Jacobian

J = det

[
2x 2y
−y

x2+y2
x

x2+y2

]
= 2

we see that

fD, Θ(d , θ) =
1

2
e−d/2 1

2π
0 < d <∞, 0 < θ < 2π.

Therefore, R2 and Θ are independent, with R2 having an
exponential distribution with parameter β = 2.
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Box-Muller Approach

The preceding result can be used to simulate Normal random
variables by making a suitable transformation on uniform random
variables. Let U1 and U2 be independent random variables each
uniformly distributed over (0, 1). We will transform U1, and U2

into two independent unit Normal random variables X1 and X2 by
first considering the polar coordinate representation (R,Θ) of the
random vector (X1, X2).
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Box-Muller Approach

From the above, R2 and Θ will be independent, and, in addition,
R2 = X 2

1 +X 2
2 will have an exponential distribution with parameter

β = 2. But −2log(U1) has such a distribution since, for x > 0,

P[−2log(U1) < x ] = P
[
logU1 > − x

2

]
= P

[
U1 > e−x/2

]
= 1− e−x/2
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Box-Muller Approach

Also, as 2πU2 is a uniform (0, 2π) random variable, we can use it
to generate Θ. That is, if we let

R2 = −2logU1

Θ = 2πU2.
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Box-Muller Approach

Then R2 can be taken to be the square of the distance from the
origin and Θ as the angle of orientation of (X1, X2). As
X1 = Rcos Θ, X2 = Rsin Θ, we obtain that

X1 =
√
−2log(U1)cos(2πU2)

X2 =
√
−2log(U1)sin(2πU2)

are independent standard Normal random variables.
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