STA302H5 Part 3

Al Nosedal

Fall 2018
"Simple can be harder than complex: You have to work hard to get your thinking clean to make it simple. But it's worth it in the end because once you get there, you can move mountains."

Steve Jobs.

MULTIPLE LINEAR REGRESSION (cont.)

Result

Let $Y=X \beta+\epsilon$, where X has full rank $r+1$ and ϵ is distributed as $N_{n}\left(0, \sigma^{2} I\right)$. Then,

$$
\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} Y \text { is distributed as } N_{r+1}\left(\beta, \sigma^{2}\left(X^{T} X\right)^{-1}\right)
$$

and is distributed independently of the residuals $\hat{\epsilon}=Y-X \hat{\beta}$. Further,
$\hat{\epsilon}^{T} \hat{\epsilon} \quad$ is distributed as $\sigma^{2} \chi_{n-r-1}^{2}$

Result

Let $Y=X \beta+\epsilon$, where X has full rank $r+1$ and ϵ is $N_{n}\left(0, \sigma^{2} l\right)$. Then a $100(1-\alpha) \%$ confidence region for β is given by

$$
(\hat{\beta}-\beta)^{T} X^{T} X(\hat{\beta}-\beta) \leq(r+1) s^{2} F_{r+1, n-r-1}(\alpha)
$$

where $F_{r+1, n-r-1}(\alpha)$ is the upper (100α) th percentile of an F-distribution with $r+1$ and $n-r-1$ d.f.

Proof

Under the assumption that ϵ_{i} 's are identically and independently distributed as $N\left(0, \sigma^{2}\right)$, the hypothesis $H_{0}: C \beta=\gamma$, where C is an $m \times(r+1)$ matrix of rank m with $m<(r+1)$, is rejected if

$$
\frac{m^{-1}(C \hat{\beta}-\gamma)^{T}\left[C\left(X^{T} X\right)^{-1} C^{T}\right]^{-1}(C \hat{\beta}-\gamma)}{s^{2}} \geq F_{m, n-r-1}(\alpha)
$$

where $F_{m, n-r-1}(\alpha)$ is the upper (100α) th percentile of an F-distribution with m and $n-r-1$ d.f.

Proof

Useful facts for proof

Let $M=C\left(X^{T} X\right)^{-1} C^{T}$.

- If A is a covariance matrix, then A is nonnegative definite.
- M is invertible, then its eigenvalues are different from zero.
- M is a real and symmetric matrix, then it can be diagonalized by an orthogonal matrix containing normalized eigenvectors of M, and the resulting diagonal matrix contains eigenvalues of $M .\left(B^{T} M B=D\right)$.
- M is positive definite.
- $M^{1 / 2}=B D^{1 / 2} B^{T}$.
- The square root matrix $M^{1 / 2}$ is symmetric.

Example

Fit the model $Y=\beta_{0} x_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon$ to the data points given in the following table

y	x_{0}	x_{1}	x_{2}
0	1	-2	2
0	1	-1	-1
1	1	0	-2
1	1	1	-1
3	1	2	2

$$
X^{T} X=\left(\begin{array}{ccc}
5 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 14
\end{array}\right)
$$

$$
X^{T} Y=\left(\begin{array}{l}
5 \\
7 \\
3
\end{array}\right)
$$

$$
\hat{\beta}_{3 \times 1}=\left(X^{\top} X\right)^{-1} X^{\top} Y=\left(\begin{array}{c}
1 \\
7 / 10 \\
3 / 14
\end{array}\right)
$$

$$
\hat{y}_{5 \times 1}=\left(X^{T} X\right)^{-1} X^{T} Y=\left(\begin{array}{l}
0.028 \\
0.086 \\
0.572 \\
1.486 \\
2.828
\end{array}\right)
$$

Test the validity of the regression model. Use $\alpha=0.05$. That is, test the hypothesis $H_{0}: \beta_{1}=\beta_{2}=0$ against the alternative hypothesis H_{a} : at least one of the parameters β_{1}, β_{2}, differs from zero.

One way (using our result)

C $\beta=\gamma$, where

$$
C_{2 \times 3}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
\gamma_{2 \times 1}=\binom{0}{0}
$$

$$
\frac{m^{-1}(C \hat{\beta}-\gamma)^{T}\left[C\left(X^{T} X\right)^{-1} C^{T}\right]^{-1}(C \hat{\beta}-\gamma)}{s^{2}} \geq F_{m, n-r-1}(\alpha)
$$

or

$$
\frac{2^{-1}(C \hat{\beta})^{T}\left[C\left(X^{T} X\right)^{-1} C^{T}\right]^{-1}(C \hat{\beta})}{s^{2}} \geq F_{2,5-2-1}(\alpha)
$$

$$
C \hat{\beta}=\binom{7 / 10}{3 / 14}
$$

and

$$
\begin{gathered}
C\left(X^{T} X\right)^{-1} C^{T}=\left(\begin{array}{cc}
1 / 10 & 0 \\
0 & 1 / 14
\end{array}\right) \\
(C \hat{\beta})^{T}\left[C\left(X^{T} X\right)^{-1} C^{T}\right]^{-1}(C \hat{\beta})=5.5428
\end{gathered}
$$

$S S E=\hat{\epsilon}^{T} \hat{\epsilon}=0.457144$
$s^{2}=\frac{S S E}{n-r-1}=\frac{0.457144}{5-2-1}=0.228572$
Finally,

$$
\frac{2^{-1}(C \hat{\beta})^{T}\left[C\left(X^{T} X\right)^{-1} C^{T}\right]^{-1}(C \hat{\beta})}{s^{2}}=\frac{5.5428 / 2}{0.228572} \approx 12.1248
$$

Another way

Consider the situation where we have fit a model with r independent variables and wish to test the null hypothesis
$H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{r}=0$
that none of the independent variables in the model contribute substantial information for the prediction of Y.
The appropriate reduced model is of the form

$$
Y=\beta_{0}+\epsilon
$$

This reduced model contains $g=0$ independent variables.

Thus, a test for
$H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{r}=0$
can be based on the statistic

$$
F=\frac{\left(S S E_{R}-S S E_{C}\right) /(r-g)}{\left(S S E_{C}\right) /(n-r-1)}
$$

Example

$$
\begin{aligned}
& \mathrm{y}=\mathrm{c}(0,0,1,1,3) ; \\
& \mathrm{x} 0=\mathrm{c}(1,1,1,1,1) ; \\
& \mathrm{x} 1=\mathrm{c}(-2,-1,0,1,2) ; \\
& \mathrm{x} 2=\mathrm{c}(2,-1,-2,-1,2) ; \\
& \text { \# Reduced Model = modR } \\
& \operatorname{modR}=\operatorname{lm}\left(\mathrm{y}^{\sim} \mathrm{x} 0-1\right) ; \\
& \text { \# Complete Model = modC } \\
& \operatorname{modC=lm}\left(\mathrm{y}^{\sim} \mathrm{x} 0+\mathrm{x} 1+\mathrm{x} 2-1\right) ;
\end{aligned}
$$

Example

```
anova(modR)
## Analysis of Variance Table
##
## Response: y
\begin{tabular}{lrrrrr} 
\#\# & Df & Sum & Sq Mean \(S q\) & \(F\) & value \\
Pr \((>F)\) \\
\#\# x0 & 1 & 5 & 5.0 & 3.3333 & 0.1419 \\
\#\# Residuals & 4 & 6 & 1.5 & &
\end{tabular}
```


Example

```
anova(modC)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x0 1 5.0000 5.0000 21.8750 0.04280 *
## x1 1 4.9000 4.9000 21.4375 0.04362 *
## x2 1 1 0.6429 0.6429 2.8125 0.23553
## Residuals 2 0.4571 0.2286
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

$$
F=\frac{\left(S S E_{R}-S S E_{C}\right) /(r-g)}{\left(S S E_{C}\right) /(n-r-1)}=\frac{(6-0.457144) / 2}{0.457144 / 2}=12.1249672
$$

ANOVA (Analysis of Variance)

Consider the following model

$$
\left(\begin{array}{l}
y_{11} \\
y_{12} \\
y_{13} \\
y_{21} \\
y_{22} \\
y_{23}
\end{array}\right)=\left(\begin{array}{l}
\mu_{1} \\
\mu_{1} \\
\mu_{1} \\
\mu_{2} \\
\mu_{2} \\
\mu_{2}
\end{array}\right)+\left(\begin{array}{l}
\epsilon_{11} \\
\epsilon_{12} \\
\epsilon_{13} \\
\epsilon_{21} \\
\epsilon_{22} \\
\epsilon_{23}
\end{array}\right)
$$

where the $\epsilon_{i j}$'s are independent $N\left(0, \sigma^{2}\right)$ values.
a) Find the least squares estimates of μ_{1} and μ_{2}.
b) Test the hypothesis $H_{0}: \mu_{1}=\mu_{2}$ vs $H_{a}: \mu_{1} \neq \mu_{2}$, when $y^{\top}=[29.80,28.57,29.97,30.33,31.27,30.37]$.

Solution a)

$$
\hat{\beta}_{2 \times 1}=\binom{\sum_{j=1}^{3} y_{1 j}}{\sum_{j=1}^{3} y_{2 j}}=\binom{\bar{y}_{1} .}{\bar{y}_{2} .}
$$

Solution b)

$$
F_{1,4}^{*}=\frac{(29.447-30.657)^{2}}{(2 / 3)(0.4330835)} \approx 5.0709
$$

Problem

How does an MBA major affect the number of job offers received? An MBA student randomly sampled four recent graduates, one each in finance, marketing, and management, and asked them to report the number of job offers. Can we conclude at the 5% significance level that there are differences in the number of job offers between the three MBA majors?

Finance	Marketing	Management
3	1	8
1	5	5
4	3	4
1	4	6

HW?

A consumer organization was concerned about the differences between the advertised sizes of containers and the actual amount of product. In a preliminary study, six packages of three different brands of margarine that are supposed to contain 500 ml were measured. The differences from 500 ml are listed here. Do these data provide sufficient evidence to conclude that differences exist between the three brands? Use $\alpha=0.05$.

Brand 1	Brand 2	Brand 3
1	2	1
3	2	2
3	4	4
0	3	2
1	0	3
0	4	4

Solution

Step 1. State Hypotheses.
$\mu_{i}=$ population mean for differences from 500 ml (brand i, where $i=1,2,3$).
$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$
H_{a} : At least two means differ.

ANOVA Table (Step 2. Compute test statistic)

Source of Variation	Degrees of Freedom (df)	Sum of Square (SS)	Mean Sum of Squares (MSS)	F Ratio
Treatments	2	6.39	$\frac{6.39}{2}=3.195$	$\frac{3.195}{1.88}=1.70$
Error	15	28.20	$\frac{28.20}{15}=1.88$	
Total	17	34.59		

Solution

Step 3. Find Rejection Region.
We reject the null hypothesis only if

$$
F>F_{\alpha, k-1, n-k}
$$

If we let $\alpha=0.05$, the rejection region for this exercise is

$$
F>F_{0.05,2,15}=3.682
$$

Solution

Step 4. Conclusion.
We found the value of the test statistic to be $F=1.70$. Since $F=1.70<F_{0.05,2,15}=3.682$, we can't reject H_{0}. Thus, there is not evidence to infer that the average differences differ between the three brands.

R Code

```
# Step 1. Entering data;
brand1=c(1,3,3,0,1,0);
brand2=c (2,2,4,3,0,4);
brand3=c(1,2,4,2,3,4);
differences=c(brand1,brand2,brand3);
brand=c(rep (1,6),rep (2, 6),rep (3,6));
```


R Code

```
# Step 2. ANOVA;
oneway.test(differences~brand,var.equal=TRUE);
##
## One-way analysis of means
##
## data: differences and brand
## F = 1.6864, num df = 2, denom df = 15, p-value = 0.2185
```


Example

Because of foreign competition, North American automobile manufacturers have become more concerned with quality. One aspect of quality is the cost of repairing damage caused by accidents. A manufacturer is considering several new types of bumpers. To test how well they react to low-speed collisions, 10 bumpers of each of four different types were installed on mid-size cars, which were then driven into a wall at 5 miles per hour. The cost of repairing the damage in each case was assessed. The data are shown below.
a. Is there sufficient evidence at the 5% significance level to infer that the bumpers differ in their reactions to low-speed collisions?
b. If differences exist, which bumpers differ? Apply Fisher's LSD method with the Bonferroni adjustment.

Data

Bumper 1	Bumper 2	Bumper 3	Bumper 4
610	404	599	272
354	663	426	405
234	521	429	197
399	518	621	363
278	499	426	297
358	374	414	538
379	562	332	181
548	505	460	318
196	375	494	412
444	438	637	499

Solution a)

The test statistic is $F_{*}=4.06$ and the P - value $=0.0139$. There is enough statistical evidence to infer that there are differences between some of the bumpers. The question is now, Which bumpers differ?

Fisher's Least Significant Difference Method

The test statistic to determine whether μ_{i} and μ_{j} differ is

$$
t_{i j}=\frac{\left(\bar{x}_{i}-\bar{x}_{j}\right)}{\sqrt{M S E\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)}}
$$

with degrees of freedom $\nu=n-k$, where $n=$ total number of observations and $k=$ number of samples (groups).

Fisher's Least Significant Difference Method

The confidence interval estimator is

$$
\left(\bar{x}_{i}-\bar{x}_{j}\right) \pm t_{\alpha / 2} \sqrt{M S E\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)}
$$

Least Significant Difference (definition)

We define the least significant difference LSD as

$$
L S D=t_{\alpha / 2} \sqrt{M S E\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)}
$$

A simple way of determining whether differences exist between each pair of population means is to compare the absolute value of the difference between their two sample means and LSD. In other words, we will conclude that μ_{i} and μ_{j} differ if

$$
\left|\bar{x}_{i}-\bar{x}_{j}\right|>L S D
$$

LSD will be the same for all pairs of means if all k sample sizes are equal. If some sample sizes differ, LSD must be calculated for each combination. It can be argued that this method is flawed because it will increase the probability of committing a Type I error. That is, it is more likely that the analysis of variance to conclude that a difference exists in some of the population means when in fact none differ.

The true probability of making at least one Type I error is called the experimentwise Type I error rate, denoted α_{E}. The experimentwise Type I error rate can be calculated as

$$
\alpha_{E}=1-(1-\alpha)^{C}
$$

Here C is the number of pairwise comparisons, which can be calculated by $C=\frac{k(k-1)}{2}$. It can be shown that

$$
\alpha_{E} \leq C \alpha
$$

which means that if we want the probability of making at least one Type I error to be no more than α_{E}, we simply specify $\alpha=\frac{\alpha_{E}}{C}$. The resulting procedure is called the Bonferroni adjustment.

Solution b)

Let's use our example to illustrate Fisher's LSD method and the Bonferroni adjustment. The four sample means and standard deviations are $\bar{y}_{1}=380$ and $s_{1}=130.0931$
$\bar{y}_{2}=485.9$ and $s_{2}=90.5396$
$\bar{y}_{3}=483.8$ and $s_{3}=102.1086$
$\bar{y}_{4}=348.2$ and $s_{4}=118.5268$

Solution b)

The pairwise absolute differences are
$\left|\bar{y}_{1}-\bar{y}_{2}\right|=|380-485.9|=105.9$
$\left|\bar{y}_{1}-\bar{y}_{3}\right|=|380-483.8|=103.8$
$\left|\bar{y}_{1}-\bar{y}_{4}\right|=|380-348.2|=31.8$
$\left|\bar{y}_{2}-\bar{y}_{3}\right|=|485.9-483.8|=2.1$
$\left|\bar{y}_{2}-\bar{y}_{4}\right|=|485.9-348.2|=137.7$
$\left|\bar{y}_{3}-\bar{y}_{4}\right|=|483.8-348.2|=135.6$

Solution b)

We have that $M S E=12,399$ and $\nu=n-k=40-4=36$.
If we perform the LSD procedure with the Bonferroni adjustment, the number of pairwise comparisons is 6 . We set $\alpha=0.05 / 6=0.0083$. Thus $t_{\alpha / 2, n-k}=t_{0.00415,36}=2.7935$ (using R) and
$q t(0.00415,36)$
\#\# [1] -2.793555
$L S D=t_{\alpha / 2} \sqrt{M S E\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)} \approx 2.7935 \sqrt{12399\left(\frac{1}{10}+\frac{1}{10}\right)}=139.1095$

Now no pair of means differ because all the absolute values of the differences between sample means are less than 139.1095.
The drawback to the LSD procedure is that we increase the probability of at least one Type I error. The Bonferroni adjustment corrects this problem.

Use Fisher's LSD method with the Bonferroni adjustment to determine which population means differ given the following statistics:
$k=5, n_{1}=5, n_{2}=5, n_{3}=5, n_{4}=5, n_{5}=5$
$M S E=125, \bar{x}_{1}=227, \bar{x}_{2}=205, \bar{x}_{3}=219, \bar{x}_{4}=248, \bar{x}_{5}=202$

Categorical Independent Variables.

Example

Johnson Filtration, Inc., provides maintenance service for water-filtration systems throughout southern Florida. Customers contact Johnson with requests for maintenance service on their water-filtration systems. To estimate the service time and the service cost, Johnson's managers want to predict the repair time necessary for each maintenance request. Hence, repair time in hours is the dependent variable. Repair time is believed to be related to two factors, the number of months since the last maintenance service and the type of repair problem (mechanical or electrical). Data for a sample of 10 service calls are are as follows:

Data

Service Call	Months since Last Service	Type of Repair	Repair time in Hours
1	2	electrical	2.9
2	6	mechanical	3
3	8	electrical	4.8
4	3	mechanical	1.8
5	3	electrical	2.9
6	7	electrical	4.9
7	9	mechanical	4.2
8	8	mechanical	4.8
9	4	electrical	4.4
10	6	electrica	4.5

Let y denote the repair time in hours and x_{1} denote the number of months since the last maintenance service. The regression model that uses only x_{1} to predict y is

$$
y=\beta_{0}+\beta_{1} x_{1}+\epsilon
$$

R Code

```
x0=c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1);
x1=c(2,6,8,3,2,7,9,8,4,6);
y=c(2.9,3,4.8,1.8,2.9,4.9,4.2,4.8,4.4,4.5);
mod0=lm(y~x0-1);
mod1=lm(y~
```


R Code (ANOVA)

```
anova(mod0);
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x0 1 145.924 145.924 125.36 1.386e-06 ***
## Residuals 9 10.476 1.164
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```


R Code (summary)

```
summary(mod0);
##
## Call:
## lm(formula = y ~ x0 - 1)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -2.020 & -0.895 & 0.480 & 0.905 & 1.080
\end{tabular}
##
## Coefficients:
## rerimate Std. Error t value Pr(>|t|)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
##

\section*{R Code (ANOVA)}
```

anova(mod1);

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x1 1 5.596 5.596 9.1739 0.01634 *

Residuals 8 4.880 0.610

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

\section*{R Code (summary)}
```

summary(mod1);

Call:

lm(formula = y ~ x1)

Residuals:

\#\#	Min	1Q	Median	3Q	Max
\#\#	-1.2597	-0.4772	0.1821	0.4509	1.0362

Coefficients:

| \#\# (Intercept) | Estimate | Std. Error | t value $\operatorname{Pr}(>\|t\|)$ | |
| :--- | ---: | ---: | ---: | ---: | :--- |
| \#\# (In | 0.1473 | 0.6050 | 3.549 | 0.00752 ** |
| \#\# x1 | 0.3041 | 0.1004 | 3.029 | 0.01634 * |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

To incorporate the type of repair into the regression model, we define the following variable:
\[
x_{2}=\left\{\begin{array}{lr}
1 & \text { if the type of repair is electrical } \\
0 & \text { otherwise }
\end{array}\right.
\]

In regression analysis \(x_{2}\) is called a dummy or indicator variable. Using this dummy variable, we can write the multiple regression model as
\[
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
\]

\section*{R Code}
```

x1=c(2,6,8,3,2,7,9,8,4,6);
y=c(2.9,3,4.8,1.8,2.9,4.9,4.2,4.8,4.4,4.5);
x2=c(1,0,1,0,1,1,0,0,1,1);
mod2=lm(y~x1+x2);

```

\section*{R Code (ANOVA)}
```

anova(mod2);

Analysis of Variance Table

Response: y

D

x1 1 5.5960 5.5960 26.556 0.001319 **

x2 1 3.4049 3.4049 16.158 0.005062 **

Residuals 7 1.4751 0.2107

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

\section*{R Code (summary)}
```

summary(mod2);

Call:

lm(formula = y ~ x1 + x2)

Residuals:

\#\#	Min	1Q	Median	3Q	Max
\#\#	-0.49412	-0.24690	-0.06842	-0.00960	0.76858

Coefficients:

\#\#	Estimate	Std. Error t value Pr $(>\|\mathrm{t\mid}\|)$		
\#\# (Intercept)	0.93050	0.46697	1.9930 .086558 .	
\#\# x1	0.38762	0.06257	6.195	0.000447
\#\# x2	1.26269	0.31413	4.020	0.005062 **

```

Recall that a test for
\(H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{r}=0\)
can be based on the statistic
\[
F_{*}=\frac{\left(S S E_{R}-S S E_{C}\right) /(r-g)}{\left(S S E_{C}\right) /(n-r-1)}
\]

In this case,
\[
F_{*}=\frac{(10.476-1.4751) /(2)}{(1.4751) /(7)} \approx 21.3566
\]

\section*{Interpreting parameters}

The multiple regression equation for the Johnson Filtration example is
\[
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
\]

To understand how to interpret the parameters \(\beta_{0}, \beta_{1}\), and \(\beta_{2}\) when a categorical variable is present, consider the case when \(x_{2}=0\) (mechanical repair).
\[
\begin{equation*}
E(y \mid \text { mechanical })=\beta_{0}+\beta_{1} x_{1}+\beta_{2}(0)=\beta_{0}+\beta_{1} x_{1} \tag{1}
\end{equation*}
\]

\section*{Interpreting parameters}

Similarly, for an electrical repair \(\left(x_{2}=1\right)\), we have
\[
\begin{equation*}
E(y \mid \text { electrical })=\beta_{0}+\beta_{1} x_{1}+\beta_{2}(1)=\left(\beta_{0}+\beta_{2}\right)+\beta_{1} x_{1} \tag{2}
\end{equation*}
\]

Comparing equations (1) and (2), se see that the slope of both equations is \(\beta_{1}\), but the \(y\)-intercept differs. The interpretation of \(\beta_{2}\) is that it indicates the difference between the mean repair time for an electrical repair and the mean repair time for a mechanical repair.

\section*{R Code}
```

plot(x1[x2==1],y[x2==1],pch=19, col="red",
ylim=c(0,6),xlim=c (0,10),
xlab="Months since last service",
ylab="Repair time (hours)");
points(x1[x2==0], y[x2==0],pch=19,col="blue");
legend("topleft",c("electrical","mechanical"),pch=c(19, 19),
col=c("red","blue"), bty="n");

```


\section*{R Code}
```

plot(x1[x2==1],y[x2==1],pch=19, col="red",
ylim=c(0,6),xlim=c (0,10),
xlab="Months since last service",
ylab="Repair time (hours)");
abline(a=2.1932, b= 0.3876,col="red",lty=2);
points(x1[x2==0], y[x2==0],pch=19,col="blue");
abline(a=0.9305, b=0.3876, col="blue",lty=2);
legend("topleft",c("electrical", "mechanical"),pch=c(19, 19),
col=c("red","blue"), bty="n");

```


\section*{Example}

Car dealers across North America use the so-called Blue Book to help them determine the value of used cars that their customers trade in when purchasing new cars. It provides alternative values for each car model according to its condition and optional features. The values are determined on the basis of the average paid at recent used-car auctions, the source of supply for many used-car dealers. However, the Blue Book does not indicate the value determined by the odometer reading, despite the fact that a critical factor for used-car buyers is how far the car has been driven. To examine this issue, a used-car dealer randomly selected 100 3-year old Toyota Camrys that were sold at auction during the past month. The dealer recorded the price \((\$ 1,000)\) and the number of miles (thousands) on the odometer. Suppose that the dealer also believed that the color of a car is a factor in determining its auction price. Suppose the dealer believes the colors that are most popular, white and silver, are likely to lead to different prices than other colors.
\[
\begin{aligned}
& I_{1}=\left\{\begin{array}{lr}
1 & \text { if color is white } \\
0 & \text { if color is not white }
\end{array}\right. \\
& I_{2}=\left\{\begin{array}{lr}
1 & \text { if color is silver } \\
0 & \text { if color is not silver }
\end{array}\right.
\end{aligned}
\]

\section*{R Code}
```

\#Step 1. Entering data;

importing data;

url of camrys;

camrys_url =
"https://mcs.utm.utoronto.ca/~nosedal/data/camrys.txt"
camrys= read.table(camrys_url,header=TRUE);
names(camrys);
camrys[1:4,];

```

\section*{R Code}
\begin{tabular}{lrrrrrr} 
\#\# [1] & "Price" & "Odometer" "I.1" & "I.2" \\
\#\# & Price & Odometer & I.1 1 & I.2 & & \\
\#\# & 1 & 14.6 & 37.4 & 1 & 0 & \\
\#\# 2 & 14.1 & 44.8 & 1 & 0 & & \\
\#\# 3 & 14.0 & 45.8 & 0 & 0 & & \\
\#\# 4 & 15.6 & 30.9 & 0 & 0 & &
\end{tabular}

\section*{R Code}
```


Step 2. Fitting model;

mod=lm(camrys\$Price~.,data=camrys);
summary(mod);

```

\section*{R Code}
```


Call:

lm(formula = camrys\$Price ~ ., data = camrys)

Residuals:

\#\#	Min	1Q	Median	3Q	Max
\#\#	-0.7047	-0.2022	-0.0133	0.1961	0.6450

Coefficients:

\#\#	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
\#\# (Intercept)	16.837248	0.197105	85.423	$<2 \mathrm{e}-16$	$* * *$
\#\# Odometer	-0.059123	0.005065	-11.672	$<2 \mathrm{e}-16$	$* * *$
\#\# I.1	0.091131	0.072892	1.250	0.214257	
\#\# I.2	0.330368	0.081650	4.046	0.000105	$* * *$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

Thus, for a nonwhite and nonsilver car, the equation becomes
\[
\hat{y}=16.837-0.0591 x+0.0911(0)+0.3304(0)
\]
which is
\[
\hat{y}=16.837-0.0591 x
\]

For a white car, the regression equation is
\[
\hat{y}=16.837-0.0591 x+0.0911(1)+0.3304(0)
\]
which is
\[
\hat{y}=16.928-0.0591 x
\]

For a silver car, the regression equation is
\[
\hat{y}=16.837-0.0591 x+0.0911(0)+0.3304(1)
\]
which is
\[
\hat{y}=17.167-0.0591 x
\]

\section*{Test of coefficient of \(I_{1}\)}
\[
\begin{aligned}
& H_{0}: \beta_{2}=0 \\
& H_{a}: \beta_{2} \neq 0
\end{aligned}
\]

Test statistic: \(t=1.25\)
P -value: 0.2143 .

\section*{Test of coefficient of \(I_{2}\)}
\[
\begin{aligned}
& H_{0}: \beta_{3}=0 \\
& H_{a}: \beta_{3} \neq 0
\end{aligned}
\]

Test statistic: \(t=4.046\) P-value: 0.000105 .

\section*{Another example}

File sbp.txt contains observations on systolic blood pressure, age, and gender for a sample of 69 individuals. These data seem to support the commonly found observation that blood pressure increases with age. Another question that can be answered by such data is whether an interaction exists between age and sex: Does the slope of the straight line relating systolic blood pressure to age significantly differ for males and for females?

\section*{R Code}
```

\#Step 1. Entering data;

importing data;

url of systolic blood pressure;

sbp_url =
"https://mcs.utm.utoronto.ca/~nosedal/data/sbp.txt"
sbp= read.table(sbp_url,header=TRUE);
names(sbp);
sbp[1:4,];
y=sbp$SBP;
x1=sbp$AGE;
x2=sbp\$SEX;
x3=x1*x2;

```

\section*{R Code}
```


[1] "SEX" "SBP" "AGE"

SEX SBP AGE

1 0 158 41

2 0 185 60

3 0 152 41

4 0 159 47

```

\section*{Complete Model}

Consider the following regression model
\[
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} \times 2+\beta_{3} x_{3}+\epsilon
\]
where \(x_{1}=\operatorname{AGE}, x_{2}=\operatorname{SEX}\left(x_{2}=0\right.\), if male, \(x_{2}=1\) if female \()\) and \(x_{3}\) is the product between AGE and SEX.

\section*{Complete Model}

When \(x_{2}=0\),
\[
E(y)=\beta_{0}+\beta_{1} x_{1}
\]

When \(x_{2}=1\),
\[
E(y)=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) x_{1}
\]

\section*{Fitting Complete Model}
```

modC=lm(y~x1+x2+x3);
summary(modC);

```

\section*{Fitting Complete Model}
```


Call:

lm(formula = y ~ x1 + x2 + x3)

Residuals:

\#\#	Min	1Q	Median	3Q	Max
\#\#	-20.647	-3.410	1.254	4.314	21.153

Coefficients:

\#\#	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
\#\# (Intercept)	110.03853	4.73610	23.234	$<2 \mathrm{e}-16$	$* * *$
\#\# x1	0.96135	0.09632	9.980	$9.63 \mathrm{e}-15$	$* * *$
\#\# x2	-12.96144	7.01172	-1.849	0.0691	.
\#\# x3	-0.01203	0.14519	-0.083	0.9342	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

\section*{Fitting Complete Model}

When \(x_{2}=0\) :
\(\hat{y}_{m}=110.0385+0.9614 x_{1}\)

When \(x_{2}=1\) :
\(\hat{y}_{f}=97.0771+0.9494 x_{1}\)

\section*{Test of Parallelism}

We know the null hypothesis that the two regression lines are parallel is equivalent to \(H_{0}: \beta_{3}=0\), then the slope for females simplifies to \(\beta_{1}\).

\section*{Fitting Reduced Model}
```


Test of parallelism: beta3=0;

mod2=lm(y~}\textrm{x}1+\textrm{x}2)
anova(mod2)

```

\section*{Fitting Reduced Model}
```


Analysis of Variance Table

Response: y

\#\#	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$			
\#\# x1	1	14951.3	14951.3	189.693	$<2.2 \mathrm{e}-16$	***
\#\# x2	1	3058.5	3058.5	38.805	$3.701 \mathrm{e}-08$	***
\#\# Residuals	66	5202.0	78.8			

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

\section*{Computing Test Statistic}
```

anova(modC);

```

\section*{Computing Test Statistic}
```


Analysis of Variance Table

Response: y

\#\#	Df	Sum Sq	Mean Sq	F value		$\operatorname{Pr}(>F)$	
\#\# x1	1	14951.3	14951.3	186.8390	<	$2.2 \mathrm{e}-16$	6
\#\# x2	1	3058.5	3058.5	38.2210		692e-08	8
\#\# x3	1	0.5	0.5	0.0069		0.9342	
\#\# Residuals		5201.4	80.				

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

In this case,
\[
F_{*}=\frac{(5201.99-5201.44) /(1)}{(5201.44) /(65)} \approx 0.0069
\]

\section*{Computing Test Statistic (another way)}
```

anova(mod2,modC);

```

\section*{Computing Test Statistic (another way)}
```


Analysis of Variance Table

Model 1: y ~ x1 + x2

Model 2: y ~ x1 + x2 + x3

Res.Df RSS Df Sum of Sq F Pr(>F)

1 66 5202.0

2 65 5201.4 1 0.54936 0.0069 0.9342

```

\section*{Test of Equal Intercepts}

We know the null hypothesis that the two regression lines are parallel is equivalent to \(H_{0}: \beta_{2}=0\). The test compares the model
\[
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
\]
to the reduced model
\[
y=\beta_{0}+\beta_{1} x_{1}+\epsilon
\]
(Note that this test presumes equal slopes.)

\section*{Fitting Reduced Model}
```


Test of equal intercepts: beta2=0;

mod1=lm(y~
anova(mod1);

```

\section*{Fitting Reduced Model}
```


Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x1 1 14951.3 14951.3 121.27 < 2.2e-16 ***

Residuals 67 8260.5 123.3

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

\section*{Computing Test Statistic}
```

anova(mod2);

```

\section*{Computing Test Statistic}
```


Analysis of Variance Table

Response: y

\#\#	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$			
\#\# x1	1	14951.3	14951.3	189.693	$<2.2 \mathrm{e}-16$	***
\#\# x2	1	3058.5	3058.5	38.805	$3.701 \mathrm{e}-08$	***
\#\# Residuals	66	5202.0	78.8			

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

In this case,
\[
F_{*}=\frac{(8260.51351-5201.99) /(1)}{(5201.99) /(66)} \approx 38.8049
\]

\section*{Computing Test Statistic (another way)}
```

anova(mod1,mod2);

```

\section*{Computing Test Statistic (another way)}
```


Analysis of Variance Table

Model 1: y ~ x1

Model 2: y ~ x1 + x2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 67 8260.5

2 66 5202.0 1 3058.5 38.805 3.701e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

\section*{Test of Coincidence}

The hypothesis that the two regression lines coincide is \(H_{0}: \beta_{2}=\beta_{3}=0\). When both \(\beta_{2}\) and \(\beta_{3}\) are 0 , the model for females reduces to \(y_{f}=\beta_{0}+\beta_{1} x_{1}+\epsilon\), the model for males (i.e. the two lines coincide). The two models being compared are
\[
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\epsilon
\]
and
\[
y=\beta_{0}+\beta_{1} x_{1}+\epsilon
\]

\section*{Computing Test Statistic (another way)}
```

anova(mod1,modC)

```

\section*{Computing Test Statistic (another way)}
```


Analysis of Variance Table

Model 1: y ~ x1

Model 2: y ~ x1 + x2 + x3

Res.Df RSS Df Sum of Sq F Pr(>F)

1 67 8260.5

2 65 5201.4 2 3059.1 19.114 2.96e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

\section*{Linear Algebra (background)}

\section*{Definition}

A real symmetric matrix \(A\) is said to be
(1) Positive definite if \(v^{T} A v>0\) for all nonzero \(v\) in \(\Re^{n}\)
(2) Positive semidefinite if \(v^{T} A v \geq 0\) for all nonzero \(v\) in \(\Re^{n}\)

\section*{Theorem}

Let \(x\) be a random \(n\)-vector. The matrix \(\Sigma=\operatorname{cov}(x)\) is at least positive semi-definite.

\section*{Definition}

A matrix \(B\) is said to be a square root of a matrix \(A\) if \(B B=A\).

\section*{Our last example...}

La Quinta Motor Inns is a moderately priced chain of motor inns located across the United States. Its market is the frequent business traveler. The chain recently launched a campaign to increase market share by building new inns. The management of the chain is aware of the difficulty in choosing locations for new motels. Moreover, making decisions without adequate information often results in poor decisions. Consequently, the chain's management acquired data on 100 randomly selected inns belonging to La Quinta. The objective was to predict which sites are likely to be profitable. To measure profitability, La Quinta used operating margin, which is the ratio of the sum of profit, depreciation, and interest expenses divided by total revenue. La Quinta defines profitable inns as those with an operating margin in excess of \(50 \%\).

Column 1: Operating margin, in percent.
Column 2: Total number of motel and hotel rooms within 3 miles of La Quinta inn
Column 3: Number of miles to closest competition.
Column 4: Office space in thousands of square feet in surrounding community
Column 5: College and university enrollment (in thousands) in nearby university or college
Column 6: Median household income (in thousands) in surrounding community
Column 7: Distance (in miles) to the downtown core.
a. Develop a regression analysis.
b. Test to determine whether there is enough evidence to infer that the model is valid.
c. Test each of the slope coefficients.
d. Interpret the coefficients.
e. Predict with \(95 \%\) confidence the operating margin of a site with the following characteristics. There are 3815 rooms within 3 miles of the site, the closest other hotel or motel is 0.9 miles away, the amount of office space is 476000 square feet, there is one college and one university with a total enrollment of 24500 students, the median income in the area is \(\$ 35000\), and the distance to the downtown core is 11.2 miles.
f. Refer to part e). Estimate with \(95 \%\) confidence the mean operating margin of all La Quinta inns with those characteristics.

\section*{R Code}
```

\#Step 1. Entering data;

importing data;

url of La Quinta Inns;

quinta_url =
"https://mcs.utm.utoronto.ca/~nosedal/data/quinta.txt"
quinta= read.table(quinta_url,header=TRUE);
names(quinta);
quinta[1:4,];

```

\section*{R Code}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \#\# & [1] & ] "Marg & in" & "Number & & "Nearest" & "OfficeSpace' \\
\hline \#\# & [6] & ] "Inco & me" & "Distan & ce" & & \\
\hline \#\# & & Margin & Number & Nearest O & DfficeSpace & Enrollment & Income Dist \\
\hline \#\# & 1 & 55.5 & 3203 & 4.2 & 549 & 8.0 & 37 \\
\hline \#\# & 2 & 33.8 & 2810 & 2.8 & 496 & 17.5 & 35 \\
\hline \#\# & 3 & 49.0 & 2890 & 2.4 & 254 & 20.0 & 35 \\
\hline \#\# & 4 & 31.9 & 3422 & 3.3 & 434 & 15.5 & 38 \\
\hline
\end{tabular}

\section*{R Code}
```


a) Develop a regression model

model<-lm(quinta\$Margin~ .,data=quinta);

```

\section*{R Code}
```


b) test to determine whether there is enough evidence to in

model0<-lm(quinta\$Margin~1,data=quinta);
anova(model0,model)

```

\section*{R Code}
```


Analysis of Variance Table

Model 1: quinta\$Margin ~ 1

Model 2: quinta\$Margin ~ Number + Nearest + OfficeSpace +

Income + Distance

Res.Df RSS Df Sum of Sq F Pr(>F)

1 99 5949.5

2 93 2825.6 6 3123.8 17.136 3.034e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

```

\section*{R Code}
```


c) test each of the slope coefficients

summary(model)

```

\section*{R Code}
```


Call:

lm(formula = quinta\$Margin ~ ., data = quinta)

Residuals:

\#\#	Min	1Q	Median	3Q	Max
\#\#	-12.267	-3.022	-0.086	4.234	13.596

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	38.138575	6.992948	5.454	$4.04 \mathrm{e}-07$	***
Number	-0.007618	0.001255	-6.069	$2.77 \mathrm{e}-08$	**
Nearest	1.646237	0.632837	2.601	0.0108	*
OfficeSpace	0.019766	0.003410	5.796	$9.24 \mathrm{e}-08$	***
Enrollment	0.211783	0.133428	1.587	0.1159	
Income	0.413122	0.139552	2.960	0.0039	**

```

\section*{R Code}
\#\# e) predict with 0.95 confidence the operating margin of \#\# a site with the following characteristics.
attach(quinta);
x0=data.frame(Number=3815, Nearest=0.9,
OfficeSpace=476,Enrollment=24.5,
Income=35,Distance=11.2);
predict(model, x0,interval="prediction");

\section*{R Code}
```


fit lwr upr

1 37.09149 25.39525 48.78772

```

\section*{R Code}
\#\# f) Estimate with 0.95 confidence the mean operating margin
\#\#La Quinta Inns with those characteristics.attach(quinta);
x0=data.frame(Number=3815, Nearest=0.9,
OfficeSpace=476, Enrollment=24.5,
Income=35, Distance=11.2) ;
predict(model, x0,interval="confidence");

\section*{R Code}
```


The following objects are masked from quinta (pos = 3):

Distance, Enrollment, Income, Margin, Nearest,

Number,

OfficeSpace

\#\#	fit	lwr	upr
\#\#	1	37.09149	32.96972

```
```

