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“Simple can be harder than complex: You have to work hard to get your
thinking clean to make it simple. But it’s worth it in the end because once
you get there, you can move mountains.”

Steve Jobs.
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MULTIPLE LINEAR REGRESSION
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Linear Algebra (background)
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Theorem A

Generalized Theorem of Pythagoras
If u and v are orthogonal vectors in an inner product space, then

||u + v||2 = ||u||2 + ||v||2
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Definition

Let W be a subspace of an inner product space V . A vector u in V is said
to be orthogonal to W if it is orthogonal to every vector in W , and the
set of all vectors in V that are orthogonal to W is called the orthogonal
complement of W .
Note. The orthogonal complement of a subspace W is denoted by W⊥
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Theorem B

Properties of Orthogonal Complements
If W is a subspace of finite-dimensional inner product space V , then:

1 W⊥ is a subspace of V

2 The only vector common to W and W⊥ is 0.

3 The orthogonal complement of W⊥ is W ; that is (W⊥)⊥ = W
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Theorem C

Geometric Link between Nullspace and Row Space
If A is an m × n matrix, then:

1 The nullspace of A and the row space of A are orthogonal
complements in <n with respect to the Euclidean inner product.

2 The nullspace of AT and the column space of A are orthogonal
complements in <m with respect to the Euclidean inner product.
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Theorem D

Projection Theorem
If W is a finite-dimensional subspace of an inner product space V , then
every vector u in V can be expressed in exactly one way as

u = w1 + w2

where w1 is in W and w2 is in W⊥.
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Theorem E

Best Approximation Theorem
If W is a finite-dimensional subspace of an inner product space V , and if u
is a vector in V , then projW u is the best approximation to u from W in
the sense that

||u− projW u|| < ||u−w||

for every vector w in W that is different from projW u.
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Least Squares Problem

Given a linear system Xβ = y of m equations in n unknowns, find a vector
β̂, if possible, that minimizes ||Xβ− y|| with respect to the Euclidean inner
product on <m. Such vector is called a least squares solution of Xβ = y.
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To solve the least squares problem, let W be the column space of X

W = C (X ) = {Xβ where β in <m}

Thus, for a vector β̂ to be a least squares solution of Xβ = y, this vector
must satisfy

X β̂ = projC(X )y.
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We could try to find least squares solutions of Xβ = y by first calculating
projC(X )y and then solving for β̂. But there is a better way.
We know that for any y in <n

y = [projC(X )y] + [y − projC(X )y]

where projC(X )y is in W = C (X ) and y − projC(X )y is in W⊥ = C (X )⊥.
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We know that y − projC(X )y is orthogonal to C (X ). Recalling that C (X )
represents the column space of X and, by Theorem C 2),
C (X )⊥ = N(XT ), we have that

XT (y − projC(X )y) = 0

XT (y − X β̂) = 0

XTy − XTX β̂ = 0

XTy = XTX β̂ (XTX invertible)

(XTX )−1XTy = β̂
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Theorem

If X is an m × n matrix with linearly independent column vectors, then for
every m× 1 matrix y, the linear system Xβ = y has a unique least squares
solution. This solution is given by

β̂ = (XTX )−1XTy

Moreover, if W is the column space of X , then the orthogonal projection
of y on W is

projW y = X β̂ = X (XTX )−1XTy
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Example 1. Simple Linear Regression

Consider regression model

yi = β0 + β1(xi − x̄) + εi , i = 1, 2, · · · , n,

E (εi ) = 0 and Var(εi ) = σ2.
y1

y2

y3
...
yn

 =


1 x1 − x̄
1 x2 − x̄
1 x3 − x̄
...
1 xn − x̄


(
β0

β1

)
+


ε1

ε2

ε3
...
εn


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XTX

XTX =

(
n

∑n
i=1 xi − nx̄∑n

i=1 xi − nx̄
∑n

i=1(xi − x̄)2

)
=

(
n 0
0
∑n

i=1(xi − x̄)2

)
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(XTX )−1

(XTX )−1 =

(
1
n 0
0 1∑n

i=1(xi−x̄)2

)
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XTY

XTY =

( ∑n
i=1 yi∑n

i=1(xi − x̄)yi

)
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β̂ = (XTX )−1XTY

β̂ = (XTX )−1XTY =

( ∑n
i=1 yi
n∑n

i=1(xi−x̄)yi∑n
i=1(xi−x̄)2

)
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Example 2. Simple Linear Regression (again...)

Consider regression model

yi = β0 + β1xi + εi , i = 1, 2, · · · , n,

E (εi ) = 0 and Var(εi ) = σ2.
y1

y2

y3
...
yn

 =


1 x1

1 x2

1 x3
...
1 xn


(
β0

β1

)
+


ε1

ε2

ε3
...
εn


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XTX

XTX =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

)
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(XTX )−1

(XTX )−1 =
1

n
∑n

i=1 x
2
i −

(∑n
i=1 x

2
i

) ( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

)
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(XTX )−1

(XTX )−1 =
1

n
∑n

i=1(xi − x̄)2

( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

)
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XTY

XTY =

( ∑n
i=1 yi∑n

i=1 xiyi

)
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β̂ = (XTX )−1XTY

β̂ =
1

n
∑n

i=1(xi − x̄)2

( [∑n
i=1 x

2
i

]
[
∑n

i=1 yi ]− [
∑n

i=1 xi ] [
∑n

i=1 xiyi ]
n
∑n

i=1 xiyi − [
∑n

i=1 xi ] [
∑n

i=1 yi ]

)
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β̂ = (XTX )−1XTY

β̂ =
1∑n

i=1(xi − x̄)2

( [∑n
i=1 x

2
i

]
[ȳ ]− [x̄ ] [

∑n
i=1 xiyi ]∑n

i=1 xiyi − n [x̄ ] [ȳ ]

)
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β̂ = (XTX )−1XTY

β̂ =
1∑n

i=1(xi − x̄)2

( [∑n
i=1 x

2
i

]
[ȳ ]− nx̄2ȳ + nx̄2ȳ − [x̄ ] [

∑n
i=1 xiyi ]∑n

i=1(xi − x̄)(yi − ȳ)

)
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β̂ = (XTX )−1XTY

β̂ =

 ȳ − x̄
∑n

i=1(xi−x̄)(yi−ȳ)∑n
i=1(xi−x̄)2∑n

i=1(xi−x̄)(yi−ȳ)∑n
i=1(xi−x̄)2


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Classical Linear Regression Model

Y︸︷︷︸
(n×1)

= X︸︷︷︸
n×(r+1)

β︸︷︷︸
(r+1)×1

+ ε︸︷︷︸
(r+1)×1

,

E (ε) = 0︸︷︷︸
(n×1)

and Cov(ε) = σ2I︸︷︷︸
(n×n)

,

where β and σ2 are unknown parameters and the design matrix X has jth
row [1, xj1, · · · , xjr ].
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Proposition

Let A and B be matrices of appropriate dimensions.

(A−1)−1 = A

(AT )−1 = (A−1)T

(AB)−1 = B−1A−1

The last equality only holds when A and B both have inverses. The
second to the last property implies that the inverse of a symmetric matrix
is symmetric.
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Result 1

Let X have full rank r + 1 ≤ n. The least squares estimate of β in the
Classical Linear Regression Model is given by

β̂ = (XTX )−1XT y

Let ŷ = X β̂ = Hy denote the fitted values of y , where
H = X (XTX )−1XT is called “hat” matrix. Then the residuals

ε̂ = y − ŷ = [I − X (XTX )−1XT ]y = (I − H)y

satisfy XT ε̂ = 0 and ŷT ε̂ = 0. Also, the

residual sum of squares = ε̂T ε̂

= y t [I − X (XTX )−1XT ]y

= yT y − yTX β̂
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Mean Vectors

A random vector is a vector whose elements are random variables. The
expected value of a random vector is the vector consisting of the expected
values of each of its elements.
Let y represent a random vector of p variables measured on a sampling
unit (subject or object). The mean of y over all possible values in the
population is called the population mean vector or expected value of y. It
is defined as a vector of expected values of each variable,

E (y) = E


y1

y2
...
yp

 =


E (y1)
E (y2)

...
E (yp)

 =


µ1

µ2
...
µp


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Covariance Matrices

If y is a random vector taking on any possible value in a multivariate
population, the population covariance matrix is defined as

Σ = cov(y) =


σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p
...

...
...

...
σp1 σp2 . . . σpp


The diagonal elements σjj = σ2

j are the population variances of the y ’s,
and the off-diagonal elements σjk are the population covariances of all
possible pairs of y ’s.
The population covariance matrix can also be found as
Σ = E [(y − E (y))(y − E (y))

′
]
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Correlation Matrices

The population correlation matrix is defined as

Pρ = (ρjk) =


1 ρ12 . . . ρ1p

ρ21 1 . . . ρ2p
...

...
...

...
ρp1 ρp2 . . . 1


where ρjk =

σjk
σjσk

.
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Proposition

Let A be a fixed r × n matrix, let c be a fixed r × 1 vector, and let Y be
an n × 1 random vector, then

1 E (AY + c) = AE (Y ) + c

2 Cov(AY + c) = ACov(Y )AT

Al Nosedal STA302H5 Fall 2018 36 / 97



Proposition

Let X and Y be random matrices of the same dimension, and let A and B
be conformable matrices of constants.

1 E (X + Y ) = E (X ) + E (Y )

2 E (AXB) = AE (X )B
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Definition

Let A = {aij} be a k × k square matrix. The trace of the matrix A,
written tr(A), is the sum of the diagonal elements; that is,

tr(A) =
k∑

i=1

aij
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Proposition

Let A and B be k × k matrices and c be a scalar.

tr(cA) = c tr(A)

tr(A± B) = tr(A)± tr(B)

tr(AB) = tr(BA)

tr(B−1AB) = tr(A)
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Proposition

Let A be a k × k symmetric matrix and x be a k × 1 vector. Then

xTAx = tr(xTAx) = tr(AxxT )

Al Nosedal STA302H5 Fall 2018 40 / 97



Result 2

Under the general linear regression model, the least squares estimator
β̂ = (XTX )−1XTY has E (β̂) = β and Cov(β̂) = σ2(XTX )−1.
The residuals ε̂ have the properties E (ε̂) = 0 and Cov(ε̂) = σ2[I − H].
Also, E (ε̂T ε̂) = (n − r − 1)σ2, so defining

s2 =
ε̂T ε̂

n − (r + 1)
=

Y T [I − H]Y

n − r − 1

we have E (s2) = σ2.
Moreover, β̂ and ε̂ are uncorrelated.
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E (β̂)

E (β̂) = E
(

(XTX )−1XTY
)

= (XTX )−1XTE (Y )

= (XTX )−1XTXβ

= β
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Cov(β̂)

Cov(β̂) = Cov
(

(XTX )−1XTY
)

=
[
(XTX )−1XT

]
Cov(Y )

[
(XTX )−1XT

]T
=

[
(XTX )−1XT

]
Cov(Y )X

[
(XTX )−1

]T
= (XTX )−1XTCov(Y )X (XTX )−1

= σ2(XTX )−1XTX (XTX )−1

= σ2(XTX )−1
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Gauss-Markov theorem

Let Y = Xβ + ε, where E (ε) = 0 and Cov(ε) = σ2I , and X has full rank
r + 1. For any c , the estimator

cT β̂ = c0β̂0 + c1β̂1 + · · ·+ cr β̂r

of cTβ has the smallest possible variance among all linear estimators of
the form

aTY = a1Y1 + a2Y2 + · · ·+ anYn

that are unbiased for cTβ.
(Note. β̂ represents the least squares estimator)
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Multivariate Normal Distribution.
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Univariate Normal (Definition)

A random variable X1 has the Normal distribution with mean µ1 and
variance σ2

1, denoted X1 ∼ N(µ1, σ
2
1) whose density is given by

f (x1) =
1√

2πσ1

exp

{
−1

2

(
x1 − µ1

σ1

)2
}

where −∞ < x1 <∞.
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The joint density of two independent Normal variates is thus
f (x1, x2) = f (x1)f (x2).

f (x1, x2) =
1

2πσ1σ2
exp

{
−1

2

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2
]}
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x =

(
x1

x2

)
2×1

µ =

(
µ1

µ2

)
2×1

Σ =

(
σ2

1 0
0 σ2

2

)
2×2

Σ−1 =

(
1/σ2

1 0
0 1/σ2

2

)
2×2

|Σ| = det(Σ) = σ2
1σ

2
2.
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Note that

(x− µ)
′
Σ−1(x− µ) =

(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

.

The joint density can be written as

f (x1, x2) =
1

(2π)2/2|Σ|1/2
exp

{
−1

2
(x− µ)

′
Σ−1(x− µ)

}
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Multivariate Normal Density

It can be shown that a p-dimensional Normal density for the random
vector x

′
= (x1, x2, ..., xp) has the form

f (x) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(x− µ)

′
Σ−1(x− µ)

}
We say that x is distributed as Np(µ,Σ), or simply x is Np(µ,Σ).
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Example. Bivariate Normal Density

Let us evaluate the p = 2 variate Normal density in terms of the individual
parameters µ1 = E (X1), µ2 = E (X2), σ2

1 = Var(X1), σ2
2 = Var(X2),

cov(X1,X2) = σ12, and ρ = σ12
σ1σ2

= cor(X1,X2).

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
2×2

|Σ| = σ2
1σ

2
2(1− ρ2)

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
2×2
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Note that

(x− µ)
′
Σ−1(x− µ)

=
1

1− ρ2

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)]
.
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Hence,

f (x1, x2) =
1

2π
√
σ2

1σ
2
2(1− ρ)

×

e

{
− 1

2(1−ρ2)

[(
x1−µ1

σ1

)2
+
(

x2−µ2
σ2

)2
−2ρ

(
x1−µ1

σ1

)(
x2−µ2

σ2

)]}
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This last expression is useful for discussing certain properties of the
Normal Distribution. For example, if the random variables X1 and X2 are
uncorrelated, so that ρ = 0, the joint density can be written as the
product of two univariate Normal densities, that is f (x1, x2) = f (x1)f (x2).
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Definition

A p − vector X has a p-variate Normal distribution iff aTX has a
univariate Normal distribution for all constant p-vectors a.
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Proposition

i) Any linear transformation of a Multinormal p-vector is Multinormal.
ii) Any vector of elements from a Multinormal p-vector is Multinormal. In
particular, the components are univariate Normal.
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Proof

Al Nosedal STA302H5 Fall 2018 57 / 97



Definition

The moment generating function of a multivariate random variable X is
given by

MX(t) = E [etT X]

provided this expectation exists in a rectangle that includes the origin.
More precisely, there exists hi > 0, i = 1, · · · , p, so that the expectation
exists for all t such that −hi < ti < hi , i = 1, · · · , p.

The following two results, which will not be proven, provide the rules for
handling multivariate mgf’s.
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Result

If moment generating functions for two random vectors X1 and X2 exist,
then the cdf’s for X1 and X2 are identical iff the mgf’s are identical in an
open rectangle that includes the origin.
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Result

Assume the random vectors X1, X2, · · · ,Xp each have mgf’s MXj
(tj),

j = 1, · · · , p, and that X = (XT
1 ,X

T
2 , · · · ,XT

p )T has mgf MX(t), where t
is partitioned similarly. Then X1, X2, · · · ,Xp are mutually independent iff

MX(t) = MX1(t1)×MX2(t2)× · · · ×MXp(tp)

for all t in an open rectangle that includes the origin.
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Theorem

If X is p-variate Normal with mean µ and covariance matrix Σ, its MGF is

M(t) = exp

[
tTµ+

1

2
tTΣt

]
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Proof
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Corollary

The components of X are independent iff Σ is diagonal.
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Proof
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Corollary

Let X ∼ Np(µ,Σ), and Y1 = a1 + B1X , Y2 = a2 + B2X , then Y1 and Y2

are independent iff B1ΣBT
2 = 0.
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Recall from Linear Algebra that λ is an eigenvalue of a matrix A with
eigenvector x(6= 0) if

Ax = λx

(x is normalized if xT x =
∑

i=1 x
2
i = 1).
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Recall also that if A is a real symmetric matrix, then A can be
diagonalized by an orthogonal transformation B, to D, say:

BTAB = D

(it can be shown that if λ is an eigenvalue of A, then λ is an eigenvalue of
D too).
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Then a quadratic form in Normal variables with matrix A is also a
quadratic form in Normal variables with matrix D, as

xTAx = xTBDBT x = yTDy , (define y = BT x)
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Proposition

If P is idempotent, its eigenvalues λ are 0 or 1.
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Definition

The rank of a matrix A is the dimension of the row space of A.
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Proposition

If P is symmetric and idempotent, its trace is its rank.
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We will be interested in symmetric projection (so idempotent) matrices P.
Because their eigenvalues are 0 or 1, we can diagonalize them by
orthogonal transformations to a diagonal matrix of 0s and 1s. So if P has
rank r , a quadratic form xTPx can be reduced to a sum of r squares of
standard normal variates. By relabelling variables,

xTPx = y2
1 + y2

2 + · · ·+ y2
r
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Result

Let Y = Xβ + ε, where X has full rank r + 1 and ε is distributed as
Nn(0, σ2I ). Then,

β̂ = (XTX )−1XTY is distributed as Nr+1(β, σ2(XTX )−1)

and is distributed independently of the residuals ε̂ = Y − X β̂. Further,

ε̂T ε̂ is distributed as σ2χ2
n−r−1
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Let Y0 denote the value of the response when the predictor variables have
values xT0 = [1, x01, · · · , x0r ]. According to the model Y = Xβ + ε, where
X has full rank r + 1 and ε is distributed as Nn(0, σ2I ), the expected value
of Y0 is

E (Y0|x0) = β0 + β1x01 + · · ·+ βrx0r = xT0 β

Its least squares estimate is xT0 β̂.
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Result

For the linear regression model Y = Xβ + ε, where X has full rank r + 1
and ε is distributed as Nn(0, σ2I ), xT0 β̂ is the unbiased linear estimator of
E (Y0|x0) with minimum variance, Var(xT0 β̂) = xT0 (XTX )−1x0σ

2. A
100(1− α)% confidence interval for E (Y0|x0) = xT0 β is provided by

xT0 β̂ ± tn−r−1

(α
2

)√
xT0 (XTX )−1x0s2

where tn−r−1

(
α
2

)
is the upper 100(α/2)th percentile of a t-distribution

with n − r − 1 d.f.
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Prediction of a new observation, such as Y0 at xT0 = [1, x01, · · · , x0r ]. is
more uncertain than estimating the expected value of Y0. According to
our regression model

Y0 = xT0 β + ε0

where ε0 is distributed as N(0, σ2) and is independent of ε and, hence, of
β̂ and s2.
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Result

Given the linear regression model Y = Xβ + ε, where X has full rank r + 1
and ε is distributed as Nn(0, σ2I ), a new observation Y0 has the unbiased
predictor

xT0 β̂ = β̂0 + β̂1x01 + · · ·+ β̂rx0r

The variance of the forecast error of Y0 − xT0 β̂ is

Var(Y0 − xT0 β̂) = σ2(1 + xT0 (XTX )−1x0)

A 100(1− α)% confidence interval for E (Y0|x0) = xT0 β is provided by

xT0 β̂ ± tn−r−1

(α
2

)√
(1 + xT0 (XTX )−1x0)s2

where tn−r−1

(
α
2

)
is the upper 100(α/2)th percentile of a t-distribution

with n − r − 1 d.f.
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Examples
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Example

Let Y1 and Y2 be independent, Normal random variables (E (Y1) = µ1,
E (Y2) = µ2, V (Y1) = σ2

1, and V (Y2) = σ2
2. Let a1 and a2 denote known

constants. Find the probability distribution of the linear combination
U = a1Y1 + a2Y2.

Al Nosedal STA302H5 Fall 2018 79 / 97



Solution

The MGF for a random variable X that has a Normal distribution with
parameters µ and σ2 is MX (t) = exp{µt + σ2t2/2}.

MU(t) = E [eUt ] = E [e(a1Y1+a2Y2)t ] = E [ea1Y1t ]E [ea2Y2t ]

= E [eY1(a1t)]E [eY2(a2t)] = MY1(a1t)MY2(a2t)

= exp{µ1a1t + σ2
1a

2
1t

2/2}exp{µ2a2t + σ2
2a

2
2t

2/2}

MU(t) = exp{(a1µ1 + a2µ2)t + (a2
1σ

2
1 + a2

2σ
2
2)t2/2}

Therefore U has a Normal distribution with mean a1µ1 + a2µ2 and
variance a2

1σ
2
1 + a2

2σ
2
2.
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Result

If x is distributed as Np(µ,Σ), then any linear combination of variables
a
′
x = a1x1 + a2x2 + ...+ apxp is distributed as N(a

′
x, a

′
Σa).
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Example

Consider the linear combination a
′
x of a Multivariate Normal random

vector determined by the choice a
′

= (1, 0, 0, ..., 0) with

E (x) = (µ1, µ2, ..., µp)
′

and

V (x) = Σp×p

Find the distribution of a
′
x.
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Solution

E (a
′
x) = a

′
E (x) = µ1

V (a
′
x) = a

′
V (x)a = a

′
Σa = σ2

1

More generally, the marginal distribution of any component xi of x is
N(µi , σ

2
i ).
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Result

If xp×1 is distributed as Np(µp×1,Σ), the q linear combinations

Aq×pxp×1 =

 a11x1 + a12x2 + ...+ a1pxp
a21x1 + a22x2 + ...+ a2pxp
...aq1x1 + aq2x2 + ...+ aqpxp


q×1

are distributed as Nq(Aµ,AΣA
′
). Also, xp×1 + dp×1 where d is a vector

of constants, is distributed as Np(µ+ d,Σ).
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Example

For x distributed as N3(µ,Σ), find the distribution of

(
x1 − x2

x2 − x3

)
=

(
1 −1 0
0 1 −1

) x1

x2

x3



Al Nosedal STA302H5 Fall 2018 85 / 97



Solution

Mean.

Aµ =

(
µ1 − µ2

µ2 − µ3

)
Covariance matrix.

AΣA
′

=

(
σ2

1 + σ2
2 − 2σ12 σ12 − σ13 + σ23 − σ2

2

σ12 − σ13 + σ23 − σ2
2 σ2

2 + σ2
3 − 2σ23

)
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Example

If x is distributed as N5(µ,Σ), find the distribution of(
x2

x4

)
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Solution

µ =


µ1

µ2

µ3

µ4

µ5



Σ =


σ11 σ12 σ13 σ14 σ15

σ12 σ22 σ23 σ24 σ25

σ13 σ23 σ33 σ34 σ35

σ14 σ24 σ34 σ44 σ45

σ15 σ25 σ35 σ45 σ55


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Solution

Let us rearrange x

x∗ =


x2

x4

x1

x3

x5


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Solution

µ∗ =


µ2

µ4

µ1

µ3

µ5



Σ∗ =


σ22 σ24 σ21 σ23 σ25

σ24 σ44 σ41 σ43 σ45

σ21 σ41 σ11 σ13 σ15

σ23 σ43 σ13 σ33 σ35

σ25 σ45 σ15 σ35 σ55


A =

(
1 0 0 0 0
0 1 0 0 0

)
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Solution

Mean.

E (Ax∗) = AE (x∗) =

(
µ2

µ4

)
Covariance matrix.

V (Ax∗) = AV (x∗)A
′

= AΣ∗A
′

=

(
σ22 σ24

σ24 σ44

)
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Result

All subsets of x are Normally distributed. If we respectively partition x, its
mean vector µ, and its covariance matrix Σ as

xp×1 =

(
x1

x2

)

µp×1 =

(
µ1

µ2

)
where x1 and µ1 are q × 1 vectors and x2 and µ2 are (p − q)× 1 vectors.
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Result (cont.)

Σp×p =

(
Σ11 Σ12

Σ21 Σ22

)
where Σ11 is q × q, Σ12 is q × (p − q), Σ21 is (p − q)× q, and Σ22 is
(p − q)× (p − q)
then x1 is distributed as Nq(µ1,Σ11).
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Result

If x1 (q1 × 1) and x2 (q2 × 1) are independent, then cov(x1, x2) = 0, a
q1 × q2 matrix of zeros.
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Example

Let x3×1 be N3(µ,Σ) with

Σ =

 4 1 0
1 3 0
0 0 2


Are x1 and x2 independent? What about (x1, x2) and x3?
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Solution

Since x1 and x2 have covariance σ12 = 1, they are not independent.
Partitioning x and Σ we see that x1 = (x1, x2)

′
and x3 have covariance

matrix

Σ12 =

(
0
0

)
Therefore, (x1, x2) and x3 are independent.
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Result

If

x(q1+q2)×1 =

(
x1

x2

)
is Normally distributed with mean

x(q1+q2)×1 =

(
µ1

µ2

)
and covariance matrix (

Σ11 Σ12

Σ21 Σ22

)
then x1 and x2 are independent if and only if Σ12 = 0.
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