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“Simple can be harder than complex: You have to work hard to get your
thinking clean to make it simple. But it's worth it in the end because once
you get there, you can move mountains.”

Steve Jobs.
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PART 1: LINEAR MODELS AND ESTIMATION BY LEAST SQUARES
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The kind of problem we want to solve.

Companies like Best Buy depend on large computer systems to manage
and store millions of customer transactions, inventory records, payroll
information, and other types of company data. So the company must have
enough computing power to be able to process and retrieve that data
quickly and efficiently. For a growing company, assuring enough
computing capacity and speed is critical.

Each year Best Buy purchases mainframe computing, measured in MIPS
(Millions of Instructions Per Second). For planning and budgeting purposes
they also want to forecast the number of MIPS needed the following year.
Figure 1 shows monthly mainframe computing use and the number of
stores Best Buy had between August 1996 and July 2000.
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Scatter plot (reading txt file)

#Step 1. Entering data;

# url of Best Buy;

best_url = "http://www.math.unm.edu/~alvaro/Best-Buy.txt"
# importing data into R;

best.buy= read.table(best_url, header = TRUE);

names (best . buy)

## [1] "Month" "MIPS" "Stores"
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Scatterplot

plot(best.buy$Stores,best.buy$MIPS,col="blue",pch=19);
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From the scatterplot, you can see that the relationship between computer
capacity and number of stores is positive, linear, and strong. But the
strength of the relationship is only part of the picture. In 2000,
management might have wanted to predict how many MIPS they'd need
to support the 419 stores they projected they'd have by the end of fiscal
2001. That's is a reasonable business question, but we can't read the
answer directly from the scatterplot. We need a model for the trend.
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Homework

This course uses R. R is an open-source computing package which has
seen a huge growth in popularity in the last few years. R can be
downloaded from https://cran.r-project.org

Please, download R and bring your laptop next time.
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https://cran.r-project.org

Functional Relation between Two Variables

A functional relation between two variables is expressed by a mathematical
formula. If X denotes the independent variable and Y the dependent
variable, a functional relation is of the form:

Y = f(X)

Given a particular value of X, the function f indicates the corresponding
value of Y.
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Statistical Relation between Two Variables

A statistical relation, unlike a functional relation, is not a perfect one. In

general, the observations for a statistical relation do not fall directly on the
curve of relationship.
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Basic Concepts

A regression model is a formal means of expressing the two essential
ingredients of a statistical relation:

1. A tendency of the response variable Y to vary with the predictor
variable X in a systematic fashion.

2. A scattering of points around the curve of statistical relationship.
These two characteristics are embodied in a regression model by
postulating that:

1. There is a probability distribution of Y for each level of X.

2. The means of these probability distributions vary in some systematic
fashion with X.
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LINEAR ALGEBRA (REVIEW)
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1. A vector u in N-dimensional space is an array of the form

Al Nosedal Fall 2018 14 / 223



2. Vector addition is defined componentwise by

uy Vi up+wvi
up %3 ux + vo
us + V3 = uz + v3
up Vi uy + vy
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If v=1[1,-3,2]" and w = [4,2,1]7, then

1 4 5
viw=| -3 |+]| 2 |=| -1
2 1 3
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3. Multiplication by a scalar c, is defined componentwise by

uq cuy
u» Cup
c us — cus
un cun
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If v=1[1,-3,2]" and w = [4,2,1]7, then

Note that v —w = v + (—w).
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4. The span of a set of vectors

u11 U1k
u21 Uk
Ul = U3]_ o Uk = U3]_
Un1 Unk

is the set of all vectors of the form

Ciu1 + Cuo + ... + Cuy

(that is, all linear combinations of uy,- -+ ,uk). Any such span is termed a
subspace of N-dimensional space.
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5. The squared length (norm) of a vector y is

I[P =y +y3+ - +yi

A unit vector u, is a vector of length (norm) 1; that is ||u|| = 1.
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The norm of the vector u = [-3,2,1]7 is

lull = llull2 = /(=32 + 27 + (12 = V6

The norm of the vector v = [1,1,1]7 is

V1 = /IVP = ()2 + ()2 + (1) = V3

= % is a unit vector.
W=
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6. The angle, 6, between two vectors u and v is given by

uivy + uavp + -+ - 4 UpVvp <U,V>
cosf = =

[ulllIv] ~lullliv]]

(u1vi + upvo + - - - + upv, is termed the dot product of u and v).
Vectors u and v are orthogonal if # = 90°. This occurs if and only if
(u,v) = 0.
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Consider the vectors u = [2,—1,1]" and v = [1,1,2]". Find (u,v) and
determine the angle 6 between u and v.
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<u,v) = vy + uxvo + u3zv3
(2)(1) + (=1)(1) + (1)(2)
= 2-1+2=3
HI.IH2 (u u> = uiUy + Ugluo + U3U3
= (22 + (-1 +(1)?
= 6
VI[P = (v,v) = vivi+wvv+ v
= (1)*+ (1) + (20
= 0
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cosf =

Thus, 6 = 60°.
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7. An orthonormal coordinate system for N-space is a set of N orthogonal
unit vectors ug, up, - -+, uy.
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Let vi =[1,1,1]7, vo = [-2,1,1]7, and v3 = [0, —1,1]7 and assume that
13 has the Euclidean inner product (dot product). It is easy to show that
the set of vectors S = {v1, v2,v3} is orthogonal since

(v1,v2) = (vi,v3) = (v2,v3) = 0.

The (Euclidean) norms of the vectors in our last example are: ||vi|| = v/3,

[Iva]| = V6, and [vs]| = V2.
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Let u; = %[1, L1, upy = %[72, 1,1]7, and uz = %[0, ~-1,1]".
| leave for you to verify that S = {uy, u2,us3} is orthonormal.
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8. The orthonormal decomposition of an arbitrary vector y in terms of
such a coordinate system is

y = (y,u1)us + (y,uz)uz + - - + (y,upjuy
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Letu; = L[1,1,1]7, up = 2 [-2,1,1]7, and uz = 1[0, —1,1]".
V3 V6 V2

Express the vector y = [1.1,1.4,1.4]7 as a linear combination of the vector
in S, and find the coordinate vector (y)s.
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(1.1+ 1.4 + 1.4)

Sl

<y’ U1> =

I
9518

1.3)
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(y,up) = (-22+14+14)

I
S5I8S-

0.1)
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<y’ U3> =

‘
[l
§
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Finally,
y = 13(v/3)u; 4+ 0.1(v6)uz + (0)us
The coordinate vector of y relative to S is

(y)S = [<ya U1>, <Y7 U2>, <y7 u3>]T
= [1.3V/3,0.1v6,0]"
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9. If u and a are vectors in N-space and if a # 0, then

a
projau = Ma
lal[?

(vector component of u along a)

wa),
fal

U — proj,u = u —

(vector component of u orthogonal to a)
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Example™™

Lety=[1.1,1.4,1.4]" and u; = %[1, 1,1]7. Find the vector component
of y along uy and the vector component of y orthogonal to uj.
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Al Nosedal

<Y7 U1>

(L1)(1) + (1.4)(1) + (1.4)(1)

- 13V3
= 3y

V3
3.9
V3
[lug [ =1
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Thus, the vector component of y along u; is

o = 15[t 3.4

= [1.3,1.3,1.3]7
[y.y.91"

Il
K I I
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The vector component of y orthogonal to u;j is

1 1 11"
— projuy = [1.1,1.4,1.4]7 —1.3V3 []
Y — Proju,y [ ] A B
= [1.1,1.4,1.4]7 —[1.3,1.3,1.3]7
= [-0.2,0.1,0.1]"
= [y1-%y2-¥.y3—¥]"
yi—y
= y2—y
y3—y

Note that (proju,y,y — proju,y) = 0.
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10. The nearest point of y in M, the span of {uy, - ,ux}, k <N, is

(y,up)ug + (y,uz)uz + - - + (y, u)uy

This vector is called the projection of y onto the subspace M.
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11. Pythagora's theorem in N-space says that

HYH2 = <y’ U1>2 + <Y7 U2>2 + e <y7 uN>2

That s,
(length)? = sum of squared lengths of projections.
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Example 1

Vi, Y2,Y3 ~ N(,u,a2) yis independent. Our aim is to estimate x and o
and to test the null hypothesis Hyp : t =0 vs H, : pu # 0.
Our observation vector is:

y = [1.1,1.4,1.4]7
1.1
= | 14
1.4
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H €1
y = B+ | e
H €3

where e; are independent N(0, 02).
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1.1 1 e
1.4 = u 1 —+ e
1.4 1 €3
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Model space M
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Fitting Model

We use the method of least squares and choose /i (the estimate of ) so
that [ is closest to y. We must project y onto M. From example™™, if
u; = %[1’ 1a 1]T

proju,y = 1.3\/§[
1
1
1

or y is the least squares approximation to p.
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%1 1 yi—y
V2 =yl 1 |+ -y
¥3 1 y3—y

or observation vector = mean vector + residual vector.
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1.1 1 -0.2
1.4 = 13| 1 |+ 0.1
1.4 1 0.1

Note that we have broken y into two orthogonal components, a model
vector and a residual vector.
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Y VS unit vector

00.51.01.52.02.53.0

0
G 0.0
.0 0510 15 20 25 3.0

&,
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y vs model space (M)

00.51.01.52.02.53.0

0
G 0.0
.0 0510 15 20 25 3.0

&,
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y Vs estimate (projection of y onto M)

00.51.01.52.02.53.0

30 0.5 1.0 1.5 2.0 2.5 3.0

&,
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Testing hypothesis

Suppose now that we wish to test Hy : 4t =0 vs H, : p # 0. We take any
orthonormal coordinate system for 3-space that includes u;. From
example™, u; = %[1, L1, u = %[—2, 1,1]7, and u3 = %[0,—1, 17
should work. The space spanned by uy and us we term the residual space,
since the residual vector always lies in this space.
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Testing hypothesis

Pythagora's theorem now tells us that

||y||2 = <y7 u1>2 + <ya u2>2 + <y7 U3>2

or

5.13 =5.07 + 0.06
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Testing hypothesis

We can easily show that

Yi+Yy2+y3 2
up) =222 o N(V3u, 0
you) = (V3p.o%)
—2y1+y2+y3 ’
7u = v NO,U

—yo+y3 2
,uz) = —=—7= ~ N(O,
(y,u3) = =222~ N(0,0%)
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Testing hypothesis

If Hy holds
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Test statistic

Assuming that (y,u;), (y,u2) and (y, u3) are independent and if Hp holds

> ({y,u1))?

~ F1»
ﬁ (<y7 U2>2 + <y7 U3>2)
which is equivalent to
<y7 U1>2 F.
1 2 2y L2
2 (<ya U2> + <y7 U3> )

For our data,

5.07 5.07

0% = ooz 00

Using an F table, we reject Hp : © = 0 at the 1% significance level.
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Showing independence of test statistic components

Using the Multivariate Transformation Method we can show that

(y,u1), (y,uz) and (y,us) are independent.

LetXlz%,ngw,and Xaz%-

The random variables X7 X» and X3 are jointly continuous with joint
density function given by
., %o, x5 (X1 X2, X3) = vy vy, vs(y1s Yo, y3)ld(xa, %0, 33)| 7,
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Showing independence of test statistic components

Letting X1 = gl(_y17 y2, .y3)
x2 = g2(y1, y2, y3) =

Ox1
oy
[e2s
y2
Ox1
Jys

Shssh

Al Nosedal

—2Y1+ Yo+ Y3
NG

_ Nitya+ys
3

and

,and X3 =

we see that
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Showing independence of test statistic components

Letting X1 = gl(_y17 y2, .y3)
x2 = g2(y1, y2, y3) =

Oxp
oy
Oxp
y2
Oxp
Jys

S-S-S

=2

Al Nosedal

—2Y1+ Yo+ Y3
NG

_ Nitya+ys
3

and

,and X3 =

Y3—Yo
V2

we see that
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Showing independence of test statistic components

Letting x1 = g1(y1, y2, ¥3
x2 = g(y1, y2. ¥3)

Ox3
oy
Ox3
Oy>
Ox3
Jys

) = ntytys
3

— —2Y1+Yo+Ys B=Y2 \ye see that
5 2

Sl=SIL



J(x1, %0, x3)

(225
ay
4
ay
axé

oy1

Ox1
dy2
Ix
Oy:
9%

Oy»

Showing independence of test statistic components

Ox1

dys
(2293
ay

%
Jy3



Showing independence of test statistic components

1/vV/3  1/V/3 1/V3
J(X]_,X2,X3) = (2/\[6 1/\f6 1/\@)
0 —1/vV2 1/V2
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Showing independence of test statistic components

Hence

1 2 1 2
— _ —_ 7:1
‘J(Xl,Xz,X3)| 6 + 6 + 6 + 6

and

|J(x1, x2,x3)| L =1
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Showing independence of test statistic components

X1 1/v3  1/V3 1/V3 Y1
BREE I
0 —1/vV2 1/v2 Y3

X=QY
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Showing independence of test statistic components

Q" = (13 1 —1v2

1/vV3 —2/V6 0
<1N§ 1/V6 1/ﬁ)

It is easy to show that

Q'Q =I3,3
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Showing independence of test statistic components

Which means that the inverse transformations are given by

_ X1 2X2
=g, (x1, x, x3) =

NG

_ X1 X2 X3
2 =8 (Xl, X2, X3) 7 % - %

_ X X:
=g (x, x, x3)= f \% + 735

Al Nosedal

Fall 2018
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Showing independence of test statistic components

2 X12 4x22 dx1x

y2 _ Xf X22 n X1 X2 X% X1X3 X2 X3
3=+ -+ _

2 2 2

X X X X1 X X1X: X2 X
=3t 42 N 2

376 Vave ' Vav2 | Veva
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Showing independence of test statistic components

As the joint density function of Y7, Y2 and Y3 is

1

2o

3
fY1 Y> Y3(Y1a)/2,)/3) = < ) e—(y12+y22+y32)/202
we see that the joint density function of X1, X5, and Xj, is given by

1

2mo

3
X1, X, Xs (X1, X2, X3) = ( > o l(er )+ (g 1) +(g5 1)1 20°
(after using the expressions from our previous slide and a “little” algebra...)

1
\2mo

3
22 452) /202
fX1, X2, X3(X17 X2, X3) = ( > e (F+x5+x3)/20
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Showing independence of test statistic components

Hence, we have shown that if Y7, Y5, and Y3 are independent Normally
distributed random variables with mean zero and variance 2, then X1, X»,

and Xj are also independent Normally distributed random variables with

mean zero and variance 0'2.
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Example 2

Yi,Y2,¥3, Ya,y5 ~ N(Bo + Pixi, 02), where y;s independent and

x = [1,2,3,4,5]7. Our aim is to estimate 3y, 51 and o2 and to test the
null hypothesis Hy : 51 =0 vs H,: 51 # 0.

Our observation vector is:

y = [2.1,3.1,3.0,3.8,4.3]"
2.1
3.1
= 3.0
3.8
4.3
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yi = Bo+ Pixi + €

Bo + B1(1) e1
Bo + £1(2) &
y = Bo+P1(3) | +| e
Bo + B1(4) €4
Bo + B1(5) es

where ¢; are independent N(0, 02).
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yi = Bo+ Pixi + €

2.1 1 1 e
3.1 1 2 e
3.0 = Go| 1 [ +51]| 3 |+] es
3.8 1 4 €4
4.3 1 5 €5

where ¢; are independent N(0, 02).
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Re-writing Model

We are going to apply Gram-Schmidt method to find an orthogonal basis
for the Model space.

We have {vi,vo} = {[1,1,1,1,1]7,[1,2,3,4,5]"}. Now, let’s define
{w1,ws} as follows:

W1 = V1
and
. <V2>Wl>
W2 = V3 — 5 W1
[[wal|
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Re-writing Model

In this case,
1
1
W1 = 1
1
1
and
-2 X1 — X
-1 Xo — X
Wy = 0 == X3 — X
1 X4 — X
2 X5 — X
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“New” Model

yi =P+ B —X) + &

2.1 1 —2 e
3.1 1 -1 e
30 | = gl 1| +8| o|+]| g
3.8 1 1 e
43 1 2 e

where e’ are independent N(0, o2).
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Model space M

M = span

[ S =S S
N = O =
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Fitting Model

We use the same method as before and choose Ba‘ and Bi‘ (estimates of 35
and (7, respectively) so that ¥ is closest to y. We must project y onto M.

fur = J5lL 11,117 and wp = A5[-2,-1,0,1,2]7

ly,uy) = 283
y,u \/g

1

163 | 1

{yujup = —=11

1

1

1

1

= 326| 1

1

1

Al Nosedal Fall 2018 77 /223



Fitting Model

<Y7 u2> =

S ¢
ol—‘

o1
=

<y7 U2>U2 = —
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2.1 1 -2 —0.14
3.1 1 -1 0.35
3.0 = 326 1 | +051 0 |+ —026
3.8 1 1 0.03
4.3 1 2 0.02

Note that we have broken y into two orthogonal components, a model
vector and a residual vector.
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Testing hypothesis

Suppose now that we wish to test Hy : 5] =0 vs H, : 37 # 0.
We can easily show that under Hp : 87 =0,

—2y1 — Yo+ Y4+ 2y
yU2) =
<y 2> \/ﬁ

~ N(0,0?).
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Test statistic

So, if uz, ug, and us complete our coordinate system,

2 ((y,u2))?
322 ((y,us)? + (y,ue)? + {y, us)?)

which is equivalent to

~ F13

<y7 u2>2
Ty, usP + (v, 06 + (y,05)%)

~ Fi3
For our data,

26.01/10 _ 2.601 _ .
02l ™ 00703

Using an F table, we reject Hp : 81 = 0 at the 1% significance level.
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A few comments about decomposition and test statistic
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Alternative Decomposition

We claim that we can express y as a linear combination of uz, uy, us, ug,
and us, that is

y = c1u1 + Gup + C3u3 + Cauy + CsUs

Moreover, we claim that ¢; = (y, u;).
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Model space M

1/v/5 -2/4/10
1/V5 ~1/v10
M = span 1/v5 |, 0
1/v/5 1/v/10
1/v/5 2/1/10
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Residual space R

2/V/14 ~1//10 1/V/70

-1/V14 2/V10 —4/V/70

R = span —2/3/14 |, 0 |, 6/v/70
-1/V14 —2/V10 —4/V70

2/V14 1/V10 1/V/70
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Checking that it works

mi=c(1,1,1,1,1);
m2=c(-2,-1,0,1,2);

ri=c(2,-1,-2,-1,2);
r2=c(-1,2,0,-2,1);
r3=c(1,-4,6,-4,1);

M=cbind (ml,m2) ;
R=cbind(r1,r2,r3);
Q=cbind (M,R) ;

t (Q) %*%Q;
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Checking that it works

## ml m2 r1 r2 r3

##ml 5 0 0 O O
## m2 0 10 O O O
##rl1 O 014 O O
## r2 0 O 010 O
##r3 0 O O 0 70

Note. They are orthogonal to each other!
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Finding coefficients

sq.norms=t (Q) %*%Q;
sq.norms=diag(sq.norms) ;

y=c(2.1,3.1,3,3.8,4.3);
y=matrix(y,ncol=1);

coeffi1=t (y)%*%QL ,1];
coeff2=t (y)%*%QL ,2];
coeff3=t (y)%*%Ql[ ,31;
coeff4=t (y)%*%QL ,4];
coeffb=t (y)%*%QL ,5];

coeffl;
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Finding coefficients

#it [,1]
## [1,] 16.3
#it [,1]
## [1,] 5.1
#i#t [,1]
## [1,] -0.1
#i#t [,1]
## [1,] 0.8
## [,1]
## [1,] -3.2
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Finding projections and decomposition

projl=matrix(coeffl/sq.norms[1]1*Q[ ,1],ncol=1);
proj2=matrix(coeff2/sq.norms[2]*Q[ ,2],ncol=1);
proj3=matrix(coeff3/sq.norms[3]1*Q[ ,3],ncol=1);
proj4=matrix(coeff4/sq.norms[4]*Q[ ,4],ncol=1);
projb=matrix(coeff5/sq.norms[6]1*Q[ ,5],ncol=1);
decomp=projl+proj2+proj3+proj4+projs;

decomp;
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Finding projections and decomposition

#it [,1]
## [1,] 2.1
## [2,] 3.1
## [3,] 3.0
## [4,] 3.8
## [5,] 4.3

Note. Our decomposition yields y!
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Test statistic

We claim that we don’t need us, ug, and us to compute our test
statistic. To do so, we only need y, ug, and us.
Let § = (y,u1)us + (y, u2)uy (predicted vector) and
€ = (y,u3)uz + (y, us)us + (y, us)us (residual vector).
We have already established that
y = (y,u1)us + (y,u2)uz + (y,uz)us + (y, us)us + (y, us)us

Therefore,

Hy,|2 = <y7 U1>2 + <y7 U2>2 + <ya U3>2 + <y7 U4>2 + <Ya U5>2
Which implies that

o112 12
lly = 9lI* = [I€]|
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Checking that it works

y.hat=projl+proj2;
residual=proj3+proj4+projb5;
y.norm2=t (y) %*%y;

y.hat.norm2=t (y.hat)%*%y.hat;
res.norm2=t (residual) %*Y%residual;

res.norm?2;

t(y-y.hat) %% (y-y.hat) ;
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Checking that it works

#it [,1]
## [1,] 0.211
#it [,1]

## [1,] 0.211
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Show that E ({y,u)) = 0 for any vector u in the error space.
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SIMPLE LINEAR REGRESSION

Al Nosedal Fall 2018 97 / 223



@ The mean of an observation is assumed to depend on the x value
with which it is associated, via the straight line relationship
E(Y) = Bo+ Bi(x — X). Here 5y and [ are the unknown parameters
of the line.

@ For each x value, Y is assumed to be Normally distributed about this
mean.

© For each x value, Y is assumed to have a common variance of o2.

@ We assume that in sampling, our errors, the deviation of our
observations from the line, are independent values from a N(0, o2)
distribution.
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Initial Model

yi =By + Bixi+ €

B + Bi(x) e
Box + 57 (x2) &
Box + B3 (x3) 2
Y = | Box+8i0a) || &
Box + B2 (xn) e

where e are independent N(0, o2).
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yi = B + Bixi + €

1 1 X1 ef
y2 1 X2 e
s | = G| L [+8| 8 [+ S
Vn 1 Xn er

where e are independent N(0, o2).
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Re-writing Model

We are going to apply Gram-Schmidt method to find an orthogonal basis
for the Model space.

We have {vi,vo} = {[1,1,1,1,1]7, [x1, x2, X3, - - - , xn] " }. Now, let’s
define {w1,ws} as follows:

W1 = V1
and
o <V2>Wl>
W2 = V3 — 5 W1
[[wal|
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Re-writing Model

In this case,
1
1
W = 1
1
and
X1 1 X1 — X
X2 1 X — X
X' -
wy = X3 — Zn ! 1 = X3 — X
Xp 1 Xp — X
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“New” Model

yi = Bo + Bi(x; —X) + e

n 1 X1 — X e
¥ 1 Xp — X €
Bl o= fo| L |[+6| =X |[+]| &
: 1 : :
Yn 1 Xn - )_< en

where e; are independent N(0, 2).
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Model space M

1 Xl—)_<

1 Xp — X
M = span 1|, =%

1

1 Xn — X
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Fitting Model

We must project y onto M. Note that u; and uy form an orthonormal
coordinate system for our model space, where

1
) 1
— 1
up \/ﬁ |
1
Xl—)_(
Xo — X
1 2
> (xi = %)?
Xp — X
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Fitting Model

(o) = %

=

N
<
S-SI-S-

<y,U1>U1 — \/E .
1
NG
1
1
=yl 1
1

Al Nosedal Fall 2018 106 / 223



Fitting Model

<y,U2> _ Z(Xi — )?)yi
V2 (xi = X)?

X1 — X
X2 — X
2= X)yi | ek
= =" 3 —X
<y7 u2>u2 Z(X,‘ — )_()2
Xp — X
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i 1 X1 — X €1
¥2 1 X2 — X é&
3 = BO 1 4 Bl x3—X | + &

. 1 . .
Yn 1 Xp — X én

Note that we have broken y into two orthogonal components, a model
vector and a residual vector.
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Testing hypothesis

The hypothesis Hy : 1 =0 vs H; : 51 # 0 can be tested using the test
statistic

<y’ U2>2

(y,u3)24(y,uq)2+--4(y,un)?
n—2

which comes from Fy ,_o if Hp is true.
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Testing hypothesis (equivalent test statistic)

The hypothesis Hy : 1 =0 vs H; : 51 # 0 can be tested using the test

statistic

Bllx — |2
|residual vector||?
n—2

which comes from Fy ,_o if Hp is true.
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Distribution of test statistic under Hy

First, recall that

<y7 u2> \;Xlxjij):/’ Z CiYi

If Ho is true (81 = 0), y; ~ N(Bo, 02),
El(y,u2)] = E[>_cyi
= Z Elciyi]
= Z ciBo
= Bo Z Ci
N rx - xu 2.0
0
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Distribution of test statistic under Hy

Again, recall that

<y7 u2> \;Xlxjij):/’ Z CiYi

If Ho is true (81 = 0), yi ~ N(fBo, 02),
V[{y,u2)] = V[Z ciyi] (using independence)
= > Ve
= ) Vil
= > o’

DY Cr i
20 — %2
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Distribution of test statistic under Hy

Therefore, if Hy holds, we have that

<Y7 u2> ~ N(07 02)

and
(y, u2)
> N(0,1)
and
2
y,u
< 022> ~x*(1)
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Distribution of test statistic under Hy

Using result from your homework problem, it is easy to show that

<Y7 U3>2
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Showing independence of test statistic components

Using the Multivariate Transformation Method and generalizing ideas
presented in Example 1, we can show that

(y, up)?

are independent.
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ANOVA table

The fitted model is

y = (y,u1)uj + (y,up)uy + residual vector
y=y-+ Bl(x — X) + residual vector

y = ¥ + residual vector

Al Nosedal Fall 2018 116 / 223



Al Nosedal Fall 2018 117 / 223



ANOVA table (simplified decomposition)

y—y= Bl(x — X) + residual vector
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ANOVA table

The simplified orthogonal decomposition leads to

lly — || = 5?||x — X||> + ||residual vector||2.

ly — ¥ = B2lIx — x[|> + |ly — 91>
This in turn leads to the ANOVA table shown below.
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Calculations (example 2, again)

Step 1. Find X, x — %, and ||x — X||2.

%= 1+2+g+4+5 —3

1-3 -2
2-3 -1
X—X = 3-3 | = 0
4-3 1
5-3 2

Ix — %[> = 10
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Calculations (example 2, again)

Step 2. Find y, y — ¥, and ||y — y||°.

y= 2.1+3.1+350+3.8+4.3 — 3.9
2.1-3.26 ~1.16
3.1-3.26 —0.16
y-y = | 30-326 | =| —0.26
3.8—3.26 0.54
43-3.26 1.04
ly — §I? = 2.812
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Calculations (example 2, again)

Step 3. Find f; and j32.

Recall that> o5

_ yx X Xi—X)Yi
b= 55 = S
(y, x—X)=>5.1

B =5t =051
B2 = 0.51 = 0.2601

Step 4. Use ANOVA table.
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ANOVA table

Source of  df SS MS F
Variation
. A2 —12 Bx=x2  Bx—=xI?
Regression 1 ff|[x —X|| |1| 1A||2 Hyiifllz/"—2
o112 y—
Error n-2 |y —9ll 2

Total n-1 |y — |
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ANOVA table

Source of df SS MS F
Variation
Regression 1 2.601 2.601 % = 37
Error 5-2 =3 2.812-2.601 = 0.211 % =0.0703
Total 5-1=4 2.812
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Estimation of o2

We have transformed the original independent set of random variables
yi ~ N(Bo + P1(x; — X),02), into a new independent set of Normal
random variables, (y,u;). With this new set, (y,u;) and (y, us) are used
to estimate parameters By and (31, the remaining n — 2 random variables
are used to estimate o2.
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Estimating o2

Let's define U—V‘z/ as follows

w <y7 U3>2 <ya U4>2 <ya un>2 2
;: o2 + 2 + -+ 2 ~x“(n—2)
Then,
w 1
E(2>_2E(W):n—2
o o
Therefore,

W ST a(y,uj)?  |residual vector ||?

n—2 n—2 n—2

is an unbiased estimator of 2.

Al Nosedal Fall 2018 127 / 223



We have that :

52

idual vector |2 RN . E
62:||re5| ual vector || 22(\/,‘—3/)2:55 _

n—2 n— n—2

i=1
The quantity SSE is also called the sum of squares for error.
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PROPERTIES OF LEAST-SQUARES ESTIMATORS:
SIMPLE LINEAR REGRESSION
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We know that :

A _Z(X,‘—)_()Y,‘_Z(Xi_)_()yi_ Ve
Pr= Z(X;—X)z B Six _ZCIYI
(xi=%)  _ (xi=%)

where ¢; = S5 = Sa
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E(B1) = E[> aVi]

= > GE[Yi
= ) cilBo + Bi(xi — X)]

= ) Boci+ B Y ci(xi—X)
Y

= ZBOQ"‘/BIZ()Z-)O(X)

= Bo) ci+h

= b

Note that

R
2 Sp "

Al Nosedal Fall 2018 131 / 223



V(f1) = V[Z ¢;Yi] (Yis are independent)
= Z 2 V[Yi]
= Z co?
= o° Z c?
\72
e
>o(xi —%)?

— 2

52

XX
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COV(BO? Bl)

We know that :

.o Y
fo=Y =—.
n
Then,
A A 1
= 7\/1" i\/i
cov(Bo, f1) = cov (Zn Zc )
where ¢; = XL — (=X

T Xa—x)? S T
We can easily show that cov(fp, 51) = 0... Homework?
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INFERENCES CONCERNING THE PARAMETERS p;.
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Testing the hypothesis of no linear relationship

We can also test hypotheses about the slope 1. The most common
hypothesis is

HoZ,B;[:O.

A regression line with slope 0 is horizontal. That is, the mean of y does
not change at all when x changes. So this Hy says that there is no true
linear relationship between x and y.
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Significance test for regression slope

To test the hypothesis Hp : 51 = 0, compute the t statistic

b1 Sil
t, = s = 5 -
fo)_(H VSxx

In terms of a random variable T having the t(n — 2) distribution, the
P-value for a test of Hy against H, : 8 # 0is 2P(T > |t.|).
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Development (numerator)

If Y1, Y5,--- Y, constitute a random sample from a Normal population
with mean By + B1(x; — X) and variance o2 then,

2
n N , o‘_ )
2 (51 Tx P

equivalent to
2
A o
B~ N (ﬁl, ) :
SXX

A

p1— B

Which implies that

~ N(0,1).

[Ix—=x[|
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Development (denominator)

Now, recall that

w _ <y7 U3>2 <ya U4>2 <ya un>2
(o g g
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Note that

(BL=B1)?(Ix—x[?
o2

1
n—2 g2
A2llx — X[ |2
ly—9l[2
2

S

~ F(num =1,denom = n — 2)

n—
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INFERENCES CONCERNING LINEAR FUNCTIONS OF MODEL
PARAMETERS:
SIMPLE LINEAR REGRESSION
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Function of model parameters ()

Suppose that we wish to make an inference about the linear function

0 = aofo + a1,

where ag and a; are constants.
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Estimator (0)

6= aoﬁAo + 31/5?1'
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Al Nosedal

E(aofo + a151)
a0E(Bo) + a1 E(/1)
aofo + a1f1

= 0

Fall 2018
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V() = V(aofo+ a1p1)
= 23V(Bo) + aiV(B1) + 2apay cov(fo, £1)
(by hw problem cov(ﬁAo,ﬁAl) =0)

= a3V(fo) + a1V (5)
2
20 2 0
e 307-}—317_
n [Ix — x|[2
= [a(z)_l_a% ]02

n o fx=x|P?
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Distribution of

Recalling that (o and $; are Normally distributed, it is clear that 8 is
Normally distributed with mean 6 and standard deviation

2 2

90 91
Op =0\ — + 77—=5
= A

S ‘omm
0

U
&
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To test the hypothesis Hy : 0 = 0y, compute the test statistic

o 0—06 -0
a3 a A A
S\R T Ve T

In terms of a variable T having the t(n — 2) distribution, the P-value for a
test of Hy against

Hy:p > pois P(T > t).

Hy:p < pois P(T < t*).

Hy @ p # pois 2P(T > |t¥]).
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Development (Numerator)

We know that theta is Normally distributed with mean # and standard
deviation oy, then

-9

%4

Z

has a Normal distribution with mean 0 and standard deviation 1.
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Development (Denominator)

We also know that U—Vg = 21%3"’)2 has a x?(n — 2) and that
52 _ W

75 Is an unbiased estimator of o?.
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Development (t*)

(using definition of T distribution)
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Confidence Interval for 6

A 100(1 — «)% Confidence Interval for § = ap5p + a151

2 2

~ a a
04+t ,5/ 0 4 1
22\ T xR

a
Sxx

where the tabulated t, 5 is based on n — 2 df.

=N

6+ Z‘a/25 +

S ‘omm
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Confidence Interval for E(Y) = 5o + (1(x. — X)

A 100(1 — «)% Confidence Interval for E(Y) = Sy + fB1(x« — X)

PN _ [1 (% — X)?

(6 — %)

~ ~ _ 1
BO+51(X* _X):l: ta/25 ; + SXX

where the tabulated ¢, is based on n — 2 df.
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PREDICTING A PARTICULAR VALUE OF Y BY USING SIMPLE
LINEAR REGRESSION
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Confidence Interval for Y when x = x,

A 100(1 — «)% Prediction Interval for Y when x = x,

(x — X)?

A 1
50+51(X*—>_<)ita/25\/1+ +|| =

(e = %)

A A 1
50+51(X*—7<)ita/25\/1+n+ 5

where the tabulated ¢, ; is based on n — 2 df.
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Development

Note that Y, = Y, + (Y — \A/*) = prediction + error. Then,

Var(Y,) = Var(prediction + error)
= Var(prediction) + Var(error) 4+ 2 Cov(prediction, error)

It can be shown that Cov(prediction, error) = — Var(prediction).
Therefore,

Var(Y,) = Var(error) — Var(prediction)

Var(Y,) + Var(prediction) = Var(error)
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Cov/(prediction, error)

We will show that

Cov(prediction, error) = — Var(prediction)
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Cov/(prediction, error)

cov[U,V - U] = E{[U—-pdl(V—U)-(pv—pul}
E{[U = pu]l(V — pv) = (U — po)l}
E{[U — pull(V = pv)] = [U — pul®}
= cov(U, V) — Var(U)

Let U = \A/* and V =Y,, then

A

cov( Yy, Ye — Y.) = cov(Ys, Y.) — Var(Y,) = —Var(Y,)

(recall that Y, and Y, are independent).
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Var(error)

We will show that

1 _2\2
Var(error) = |14+ = + M o?
n o fx =Xl
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Var(error)

Var(error) = V [Y* - \A/*}

= V[Y.] + V[Yi] = 2cov]Ys, Yi]
= V[Y.]+ V[Y.] (Y. and Y, are independent)
Y
S S St
noflx—x]?
1 . — X)?
= [1 o (Xf)z} o2
n o |x =Xl
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CORRELATION
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The correlation coefficient, r, is defined as the cosine of the angle between
the vectors y — ¥ and x — X.

(x_)_(7y_Y>

r = cosf = — =
|[x = x][[[ly — ¥l
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Note that

sl =[S = Vo

ly =¥l = \ d i—y)?= V/Syy

Therefore,
cosf) = Sxy
VSxxV/Syy
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We think of r as an estimator of the true correlation coefficient p, where

o= E[(X — px)(Y = py)] _ Cov(X,Y)
VEIX = mx)2IVEIY — py)?] oXOy
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The square of the correlation coefficient, r?. is known as the coefficient of
determination; r? is the proportion of the total corrected sum of squares
explained by the regression.
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By rewriting the regression sum of squares as

ly =311 = lly = 311> + (1 = 2)lly - 3I1*.
Therefore, the test statistic used for testing Hy : 1 = 0 can be written in
terms of r? as follows:

f Py (-2)2
_ i _
=y - §IP/n-2) ~ 17
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Exercise

Archaeopterix is an extinct beast having feathers like a bird but with teeth
and a long bony tail like a reptile. Here are the lengths in centimeters of
the femur (a leg bone) and the humerus (a bone in the upper arm) for the
five fossil specimens that preserve both bones:

Femur
Humerus

38 56 59 64 74
41 63 70 72 84

Test the hypothesis Hyp : 81 = 0 vs H, : 1 # 0. Use femur length as the
explanatory variable and « = 0.05.
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Summary statistics

% = 58.2

7 =66

S (% — >-<)2 = 696.8

> (vi —y)* = 1010

> (xi = X)(yi — y) = 834
> (xi — %)(v, ) =834
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Calculations (exercise)

Step 1. Find X, x — %, and ||x — X||2.

X =58.2
-20.2
2.2
X—X = 0.8
5.8
15.8
||x — X||? = 696.8
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Calculations (exercise)

Step 2. Find y, y — ¥, and ||y — y||°.

7 = 66
-25
-3
y-y = 4
6
18
ly - §I[> = 1010
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Calculations (example 2, again)

Step 3. Find f; and j32.

Recall that
B _ yx=%) _ Y (xi=X)yi
Al [[x—x]|2 > (x—x)?

834
32 = 0.51 = 1.4325699

Step 4. Use ANOVA table.
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Method 1. ANOVA Table

Using our four-step procedure, you should be able to construct the
following table:

## Analysis of Variance Table

##

## Response: y

## Df Sum Sq Mean Sq F value Pr (>F)

## x 1 998.21 998.21 254.1 0.0005368 *xx*

## Residuals 3 11.79 3.93

## ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 '
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Method 2. T test

Using our t test, you should get something like this:

#it Estimate Std. Error t value Pr(>|tl)
## (Intercept) -3.659587 4.45896232 -0.8207261 0.4719439905
## x 1.196900 0.07508543 15.9405098 0.0005368404
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Method 3. Using correlation coefficient, r

Using our t test, you should get something like this:

## value numdf dendf
## 254.0999 1.0000 3.0000
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R CODE
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One effect of global warming is to increase the flow of water into the
Arctic Ocean from rivers. Such an increase might have major effects on
the world’s climate. Six rivers (Yenisey, Lena, Ob, Pechora, Kolyma, and
Severnaya Dvina) drain two-thirds of the Arctic in Europe and Asia.
Several of these are among the largest rivers on earth. File arctic-rivers.txt
contains the total discharge from these rivers each year from 1936 to
19992, Discharge is measured in cubic kilometers of water.
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Reading our data

riv_url = "http://www.math.unm.edu/ alvaro/arctic-rivers.txt"

arctic_rivers = read.table(riv_url, header = TRUE);
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Scatterplot (R code)

plot(arctic_rivers$Year,arctic_rivers$Discharge);
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Scatterplot (R code)

ge

1900

arctic_rivers$Dischar
1600
|
8

1940 1960 1980 2000

arctic_rivers$Year
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Scatterplot (R code)

plot(arctic_rivers$Year,arctic_rivers$Discharge,
pch=19,col="blue");
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Scatterplot (R code)

ge

1900

arctic_rivers$Dischar
1600
|
e

1940 1960 1980 2000

arctic_rivers$Year
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Scatterplot (R code)

plot(arctic_rivers$Year,arctic_rivers$Discharge,
pch=19,col="blue", xlab="Year",
ylab="Discharge");
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Scatterplot (R code)

1900

Discharge
|
]

1600

1940 1960 1980 2000

Year
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Scatterplot (using ggplot2)

install.packages("ggplot2", dependencies=TRUE);

library(ggplot2) ;
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Scatterplot (R code)

plot=gplot(arctic_rivers$Year,arctic_rivers$Discharge,
colour=I("blue"),xlab="Year",ylab="Discharge",
main="Scatterplot");

plot;
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Scatterplot (R code)

Scatterplot
2000 - o ° °
O [ ) [ ] [ ]
[ ] ° L ]
[ ] °
1900 - . . * e e
o °
8_, ° - . ° . ° ° ° oo
a e e
& 1800- .
8 L] o ¢ 4 -.
5 ] . o ° o . .
1700- ° ° ¢ .
e ® o °
1600 - . - .
1 1 1 1
1940 1960 1980 2000
Year
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The scatterplot shows a weak positive, linear relationship.

Al Nosedal Fall 2018 186 / 223



explanatory=arctic_rivers$Year;

response=arctic_rivers$Discharge

rivers.reg=lm(response~explanatory) ;
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names (rivers.reg);

## [1] "coefficients" '"residuals" "effects" "rank'
## [6] "fitted.values" "assign" "qr" "df . re
## [9] "xlevels" "call" "terms" "mode!
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rivers.reg$coef;

## (Intercept) explanatory
## -2056.769460 1.966163
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Scatterplot with least-squares line

plot (explanatory,response,
pch=19,col="blue", xlab="Year",
ylab="Discharge");

abline(rivers.reg$coef, col="red");
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Scatterplot with least-squares line

1900

Discharge

1600

1940 1960 1980 2000

Year
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Scatterplot with least-squares line (with ggplot2)

plot=gplot(arctic_rivers$Year,arctic_rivers$Discharge,
colour=I("blue") ,xlab="Year",ylab="Discharge",
main="Scatterplot with least-squares line");

new.plot=plot+stat_smooth(method="1m",
se=FALSE, colour=I("red"));
new.plot;
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Scatterplot with least-squares line (with ggplot2)

Scatterplot with least-squares line

2000 - o o
1900 -

1800 -

Discharge

1700 -

1600 - °

1 1 1 1
1940 1960 1980 2000
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A residual is the difference between an observed value of the response
variable and the value predicted by the regression line. That is,

residual = observed y — predicted y =y — y.
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Scatterplot with residual line segments

plot (explanatory,response,
pch=19,col="blue", xlab="Year",
ylab="Discharge");

abline(rivers.reg$coef, col="red");

segments (explanatory, fitted(rivers.reg),
explanatory,response, 1lty=2, col="black");
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Residual Plots

A residual plot is a scatterplot of the regression residuals against the
explanatory variable. Residual plots help us assess the fit of a regression
line.

A residual plot magnifies the deviations of the points from the line and
makes it easier to see unusual observations and patterns.
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Residual plot

plot(explanatory,resid(rivers.reg),
pch=19,col="blue", xlab="Year",
ylab="Residual") ;

abline(h=0, col="red",lty=2);
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Residual plot
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The Method of Least Squares

The Method of Least Squares can be illustrated simply by fitting a straight
line to a set of data points. Suppose that we wish to fit the model

E(Y) = Bo + Bix.
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The least-squares procedure for fitting a line through a set of n data
points is similar to the method that we might use if we fit a line by eye;
that is, we want the differences between the observed values and
corresponding points on the fitted line to be “small” according to some
criterion. A convenient way to accomplish this is to minimize the sum of
squares of the vertical deviations from the fitted line.
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Thus, if

$i = Bo+ Pixi
is the predicted value of the ith y value, then the deviation of the

observed value y; from y; is the difference y; — y; and the sum of squares
of deviations to be minimized is

n

SSE=> (vi—9) = Z[y, (Bo + Brxi)I*.
i=1
The quantity SSE is also called the sum of squares for error.
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If SSE possesses a minimum, it will occur for values of 8y and (31 that

satisfy the equations, 8855'5 =0 and ngE = 0. These equations are called
0 1
the least-squares equations for estimating the parameters of a line.
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You can verify that the solutions are

>oimi (i = X) i — %)
Y —x)2

Bo =7 - Hix.

(Further, it can be shown that the simultaneous solution for the two

least-squares equations yields values of Bo and 31 that minimize SSE. |
leave this for you to prove).

b=
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Least-Squares Estimators for Simple Linear Regression

Model

~ Sy
/81 = 57;7

where S, = >0 (% — X)(vi — ¥) and Sy = 37 (xi — X)2.
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Estimating the Model Parameters in R

lin.reg=1m(y~x);

The general form of the command, in pseudo code, is
“the name you choose” = Im(response variable © explanatory variables).
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Basic Inference for the Model

The following command will give you typical regression output:

summary(lin.reg) ;
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Regression Standard Error

The regression standard error is

n

1 S 1 .
s:\/n2ZreS|dua| = EZ(y,-—y).

i=1

Use s to estimate the unknown ¢ in the regression model.
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Regression Standard Error

residuals<-resid(rivers.reg);
n<-length(residuals);

s<-sqrt (sum(residuals~2)/(n-2));
S35

## [1] 104.0026
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Regression Standard Error (another way)

summary (rivers.reg)$sigma

## [1] 104.0026
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Confidence intervals for the regression slope

A level C confidence interval for the slope 31 of the true regression line is
o) *
bLtt SEﬁl'

In this formula, the standard error of the least-squares slope Bl is

s
SEp = e——
bV —x)?
and t* is the critical value for the t(n — 2) density curve with area C
between —t* and t*.
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We will use the data in arctic-rivers.txt to give a 90% confidence interval
for the slope of the true regression of Arctic river discharge on year.
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Confidence interval for slope

summary (rivers.reg) $coef

#it Estimate Std. Error t value Pr(cltl|)
#it (Intercept) -2056.769460 1384.6873683 -1.485367 0.14251371
## explanatory 1.966163 0.7037491 2.793841 0.00692068
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Confidence interval for slope

b<-summary(rivers.reg)$coef [2,1];

SEb<-summary(rivers.reg)$coef [2,2];

b-qt (0.95,df=n-2) *SEb;

## [1] 0.7910398

b+qt (0.95,df=n-2) *SEb;

## [1] 3.141286
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R output gives b = 1.966163 and SE, = 0.7037491. There were n = 64
observations, so df = 62. Our 90% Confidence Interval for 3 is given by
(0.7910398, 3.1412862). Because this interval does not contain 0, we have
evidence that /3 (the rate at which discharge is increasing) is positive.
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Testing the hypothesis of no linear relationship

We can also test hypotheses about the slope 1. The most common
hypothesis is

HoZ,B;[:O.

A regression line with slope 0 is horizontal. That is, the mean of y does
not change at all when x changes. So this Hy says that there is no true
linear relationship between x and y.
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Significance test for regression slope

To test the hypothesis Hp : 51 = 0, compute the t statistic

A

_ &
SEB1

t

In terms of a random variable T having the t(n — 2) distribution, the
P-value for a test of Hy against H, : 5 # 0is 2P(T > |t]).
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Our example

The most important question we ask of the data in arctic-rivers.txt is this:
Is the increasing trend visible in your plot statistically significant? If so,
changes in the Arctic may already be affecting earth’s climate. Use R to
answer this question.
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t.statistic<-b/SEb;

t.statistic;

## [1] 2.793841
p.value<-2x(1-pt(t.statistic,n-2));

p-value;

## [1] 0.00692068
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summary (rivers.reg) $coef

## Estimate Std. Error t value Pr(>|t])
## (Intercept) -2056.769460 1384.6873683 -1.485367 0.14251371
## explanatory 1.966163 0.7037491 2.793841 0.00692068
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The t statistic for testing Hy : B = 0 is therefore t = 2.7938409. This has
df = 62; R gives a P-value of 0.0069207. There is significant evidence (at
a = 0.01 significance level) that /3 is nonzero.
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Another way (ANOVA table)

anova(rivers.reg)
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Another way (ANOVA table)

##
##
##
##
##
##
##
##

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value

explanatory 1 84429 84429
Residuals 62 670625 10817
Signif. codes: O '*xxx' 0.001

Al Nosedal

Pr (>F)
7.8055 0.006921 *x

"xx' 0.01 'x' 0.05 '.' 0.1 '
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