STA 260: Statistics and Probability II

Al Nosedal. University of Toronto.

Winter 2017

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II

▲ 同 ▶ → 三 ▶

Properties of Point Estimators and Methods of Estimation

- Relative Efficiency
- Consistency
- Sufficiency
- Minimum-Variance Unbiased Estimation
- 2 Method of Moments

"If you can't explain it simply, you don't understand it well enough"

Albert Einstein.

- **→** → **→**

э

Definition 9.1

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

Given two unbiased estimators $\hat{\theta}_1$ and $\hat{\theta}_2$ of a parameter θ , with variances $V(\hat{\theta}_1)$ and $V(\hat{\theta}_2)$, respectively, then the **efficiency** of $\hat{\theta}_1$ relative to $\hat{\theta}_2$, denoted eff $(\hat{\theta}_1, \hat{\theta}_2)$, is defined to be the ratio

$$\mathsf{eff}(\hat{ heta}_1,\hat{ heta}_2) = rac{V(\hat{ heta}_2)}{V(\hat{ heta}_1)}$$

Exercise 9.1

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

・ロト ・得ト ・ヨト ・ヨト

In Exercise 8.8, we considered a random sample of size 3 from an exponential distribution with density function given by

$$f(y) = \left\{egin{array}{cc} (1/ heta) e^{-y/ heta} & y > 0 \ 0 & elsewhere \end{array}
ight.$$

and determined that $\hat{\theta}_1 = Y_1$, $\hat{\theta}_2 = (Y_1 + Y_2)/2$, $\hat{\theta}_3 = (Y_1 + 2Y_2)/3$, and $\hat{\theta}_5 = \bar{Y}$ are all unbiased estimators for θ . Find the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_5$, of $\hat{\theta}_2$ relative to $\hat{\theta}_5$, and of $\hat{\theta}_3$ relative to $\hat{\theta}_5$

Relative Efficiency Consistency

Sufficiency Minimum-Variance Unbiased Estimation

<ロ> <同> <同> < 同> < 同>

æ

$$V(\hat{\theta}_1) = V(Y_1) = \theta^2 \text{ (From Table).}$$

$$V(\hat{\theta}_2) = V\left(\frac{Y_1 + Y_2}{2}\right) = \frac{2\theta^2}{4} = \frac{\theta^2}{2}$$

$$V(\hat{\theta}_3) = V\left(\frac{Y_1 + 2Y_2}{3}\right) = \frac{5\theta^2}{9}$$

$$V(\hat{\theta}_5) = V\left(\bar{Y}\right) = \frac{\theta^2}{3}$$

Relative Efficiency Consistency Sufficiency Minimum Variance Unbiased Estimat

<ロ> <同> <同> < 同> < 同>

æ

Solution

$$eff(\hat{\theta}_{1}, \hat{\theta}_{5}) = \frac{V(\hat{\theta}_{5})}{V(\hat{\theta}_{1})} = \frac{\theta^{2}}{\theta^{2}} = \frac{1}{3}$$

$$eff(\hat{\theta}_{2}, \hat{\theta}_{5}) = \frac{V(\hat{\theta}_{5})}{V(\hat{\theta}_{2})} = \frac{\theta^{2}}{\theta^{2}} = \frac{2}{3}$$

$$eff(\hat{\theta}_{3}, \hat{\theta}_{5}) = \frac{V(\hat{\theta}_{5})}{V(\hat{\theta}_{3})} = \frac{\theta^{2}}{\frac{5\theta^{2}}{\theta^{2}}} = \frac{3}{5}$$

Exercise 9.3

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

- 4 同 6 4 日 6 4 日 6

Let $Y_1, Y_2, ..., Y_n$ denote a random sample from the uniform distribution on the interval $(\theta, \theta + 1)$. Let $\hat{\theta}_1 = \bar{Y} - \frac{1}{2}$ and $\hat{\theta}_2 = Y_{(n)} - \frac{n}{n+1}$. a. Show that both $\hat{\theta}_1$ and $\hat{\theta}_2$ are unbiased estimators of θ .

b. Find the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$.

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimatic

<ロ> <同> <同> < 同> < 同>

æ

a.
$$E(\hat{\theta}_1) = E(\bar{Y} - \frac{1}{2}) = E(\bar{Y}) - E(\frac{1}{2}) = E(\frac{Y_1 + Y_2 + ... + Y_n}{n}) - \frac{1}{2} = \frac{2\theta + 1}{2} - \frac{1}{2} = \theta.$$

Since Y_i has a Uniform distribution on the interval $(\theta, \theta + 1)$,
 $V(Y_i) = \frac{1}{12}$ (check Table).
 $V(\hat{\theta}_1) = V(\bar{Y} - \frac{1}{2}) = V(\bar{Y}) = V(\frac{Y_1 + Y_2 + ... + Y_n}{n}) = \frac{1}{12n}$

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estima:

<ロ> <同> <同> < 同> < 同>

æ

Let
$$W = Y_{(n)} = max\{Y_1, ..., Y_n\}$$
.
 $F_W(w) = P[W \le w] = [F_Y(w)]^n$
 $f_W(w) = \frac{d}{dw}F_W(w) = n[F_Y(w)]^{n-1}f_Y(w)$
In our case, $f_W(w) = n[w - \theta]^{n-1}$, $\theta < w < \theta + 1$.
Now that we have the pdf of W , we can find its expected value
and variance.

Solution

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimatio

<ロ> <同> <同> < 同> < 同>

æ

$$\begin{split} E(W) &= \int_{\theta}^{\theta+1} nw[w-\theta]^{n-1} dw \text{ (integrating by parts)} \\ E(W) &= w[w-\theta]^n |_{\theta}^{\theta+1} - \int_{\theta}^{\theta+1} [w-\theta]^n dw \\ E(W) &= (\theta+1) - \frac{[w-\theta]^{n+1}}{n+1} |_{\theta}^{\theta+1} = (\theta+1) - \frac{1}{n+1} \\ E(W) &= \theta + \frac{n}{n+1} \end{split}$$

Solution

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

<ロ> <同> <同> < 同> < 同>

æ

$$\begin{split} E(W^2) &= \int_{\theta}^{\theta+1} nw^2 [w-\theta]^{n-1} dw \text{ (integrating by parts)} \\ E(W^2) &= w^2 [w-\theta]^n |_{\theta}^{\theta+1} - \int_{\theta}^{\theta+1} 2w [w-\theta]^n dw \\ E(W^2) &= (\theta+1)^2 - \frac{2}{n+1} \int_{\theta}^{\theta+1} (n+1) w [w-\theta]^n dw \\ E(W^2) &= (\theta+1)^2 - \frac{2}{n+1} \left(\theta + \frac{n+1}{n+2}\right) \\ E(W^2) &= (\theta+1)^2 - \frac{2\theta}{n+1} - \frac{2}{n+2} \end{split}$$

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimatic

<ロ> <同> <同> < 同> < 同>

æ

$$V(W) = E(W^2) - [E(W)]^2$$

$$V(W) = \theta^2 + 2\theta + 1 - \frac{2\theta}{n+1} - \frac{2}{n+2} - \left[\theta + \frac{n}{n+1}\right]^2$$
(after doing a bit of algebra . . .)
$$V(W) = \frac{n}{(n+2)(n+1)^2}$$

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimati

<ロ> <同> <同> < 同> < 同>

æ

$$E(\hat{\theta}_2) = E(W - \frac{n}{n+1}) = E(W) - E(\frac{n}{n+1}) = \theta + \frac{n}{n+1} - \frac{n}{n+1} = \theta.$$

$$V(\hat{\theta}_2) = V(W - \frac{n}{n+1}) = V(W) = \frac{n}{(n+2)(n+1)^2}$$

Relative Efficiency

Consistency Sufficiency Minimum-Variance Unbiased Estimation

<ロ> <同> <同> < 同> < 同>

æ

$$\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) = \frac{V(\hat{\theta}_2)}{V(\hat{\theta}_1)} = \frac{\frac{n}{(n+2)(n+1)^2}}{\frac{1}{12n}} = \frac{12n^2}{(n+2)(n+1)^2}$$

Definition 9.2

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

Image: A image: A

The estimator $\hat{\theta}_n$ is said to be **consistent estimator** of θ if, for any positive number ϵ ,

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| \le \epsilon) = 1$$

or, equivalently,

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| > \epsilon) = 0.$$

Theorem 9.1

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

(日) (同) (三) (三)

э

An unbiased estimator $\hat{\theta}_n$ for θ is a consistent estimator of θ if

 $\lim_{n\to\infty}V(\hat{\theta}_n)=0.$

Exercise 9.15

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

<ロト < 同ト < 三ト

- ∢ ≣ ▶

э

Refer to Exercise 9.3. Show that both $\hat{\theta}_1$ and $\hat{\theta}_2$ are consistent estimators for θ .

Solution

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

▲ 同 ▶ → 三 ▶

Recall that we have already shown that $\hat{\theta}_1$ and $\hat{\theta}_2$ are unbiased estimator of θ . Thus, if we show that $\lim_{n\to\infty} V(\hat{\theta}_1) = 0$ and $\lim_{n\to\infty} V(\hat{\theta}_2) = 0$, we are done. Clearly,

$$0 \leq V(\hat{ heta}_1) = rac{1}{12n}$$

which implies that

$$\lim_{n\to\infty}V(\hat{\theta}_1)=0$$

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

Image: A image: A

Solution

Clearly,

$$0 \leq V(\hat{ heta}_2) = rac{n}{(n+2)(n+1)^2} = rac{n}{(n+2)}rac{1}{(n+1)^2} \leq rac{(n+2)}{(n+2)}rac{1}{(n+1)^2}$$

which implies that

$$\lim_{n o \infty} V(\hat{ heta}_2) \leq \lim_{n o \infty} rac{1}{(n+1)^2} = 0$$

Therefore, $\hat{\theta}_1$ and $\hat{\theta}_2$ are consistent estimators for θ .

Definition 9.3

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

・ロト ・同ト ・ヨト ・ヨト

Let Y_1 , Y_2 , ..., Y_n denote a random sample from a probability distribution with unknown parameter θ . Then the statistic $U = g(Y_1, Y_2, ..., Y_n)$ is said to be **sufficient** for θ if the conditional distribution of $Y_1, Y_2, ..., Y_n$, given U, does not depend on θ .

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

(日) (同) (三) (三)

Example

Let X_1, X_2, X_3 be a sample of size 3 from the Bernoulli distribution. Consider $U = g(X_1, X_2, X_3) = X_1 + X_2 + X_3$. We will show that $g(X_1, X_2, X_3)$ is sufficient.

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

<ロ> <同> <同> < 同> < 同>

æ

Solution

	Values of U	$f_{X_1,X_2,X_3 U}$
(0,0,0)	0	1
(0, 0, 1)	1	1/3
(0,1,0)	1	1/3
(1,0,0)	1	1/3
(0,1,1)	2	1/3
(1,0,1)	2	1/3
(1, 1, 0)	2	1/3
(1, 1, 1)	3	1

 $=\frac{(1-p)(p)(1-p)}{\binom{3}{2}p(1-p)^2}=\frac{1}{3}$

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

イロト 不得 とうせい かほとう ほ

Example

The conditional densities given in the last column are routinely calculated. For instance, $f_{X_1,X_2,X_3|U=1}(0,1,0|1) = P[X_1 = 0, X_2 = 1, X_3 = 0|U = 1]$ $= \frac{P[X_1=0 \text{ and } X_2=1 \text{ and } X_3=0 \text{ and } U=1]}{P[U=1]}$

Definition 9.4

Relative Efficiency Consistency **Sufficiency** Minimum-Variance Unbiased Estimation

- 4 同 6 4 日 6 4 日 6

Let $y_1, y_2, ..., y_n$ be sample observations taken on corresponding random variables $Y_1, Y_2, ..., Y_n$ whose distribution depends on a parameter θ . Then, if $Y_1, Y_2, ..., Y_n$ are discrete random variables, the **likelihood of the sample**, $L(y_1, y_2, ..., y_n | \theta)$, is defined to be the joint probability of $y_1, y_2, ..., y_n$. If $Y_1, Y_2, ..., Y_n$ are continuous random variables, the likelihood $L(y_1, y_2, ..., y_n | \theta)$, is defined to be the joint density of $y_1, y_2, ..., y_n$.

Theorem 9.4

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

・ロト ・同ト ・ヨト ・ヨト

Let *U* be a statistic based on the random sample $Y_1, Y_2, ..., Y_n$. Then *U* is a **sufficient statistic** for the estimation of a parameter θ if and only if the likelihood $L(\theta) = L(y_1, y_2, ..., y_n | \theta)$ can be factored into two nonnegative functions,

$$L(y_1, y_2, ..., y_n | \theta) = g(u, \theta)h(y_1, y_2, ..., y_n)$$

where $g(u, \theta)$ is a function **only** of u and θ and $h(y_1, y_2, ..., y_n)$ is **not** a function of θ .

Exercise 9.37

Relative Efficiency Consistency **Sufficiency** Minimum-Variance Unbiased Estimation

(日) (同) (三) (三)

Let $X_1, X_2, ..., X_n$ denote *n* independent and identically distributed Bernoulli random variables such that

$$P(X_i = 1) = \theta$$
 and $P(X_i = 0) = 1 - \theta$,

for each i = 1, 2, ..., n. Show that $\sum_{i=1}^{n} X_i$ is sufficient for θ by using the factorization criterion given in Theorem 9.4.

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

<ロ> <同> <同> < 同> < 同>

æ

Solution

$$L(x_1, x_2, ..., x_n | \theta) = P(x_1|\theta)P(x_2|\theta)...P(x_n|\theta)$$

= $\theta^{x_1}(1-\theta)^{1-x_1}\theta^{x_2}(1-\theta)^{1-x_2}...\theta^{x_n}(1-\theta)^{1-x_n}$
= $\theta^{\sum_{i=1}^n x_i}(1-\theta)^{n-\sum_{i=1}^n x_i}$
By Theorem 9.4, $\sum_{i=1}^n x_i$ is sufficient for θ with

$$g(\sum_{i=1}^n x_i, \theta) = \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i}$$

and

$$h(x_1, x_2, ..., x_n) = 1$$

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

(日) (同) (三) (三)

э

Indicator Function

For a < b,

$$I_{(a,b)}(y) = \begin{cases} 1 & \text{if } a < y < b \\ 0 & \text{otherwise.} \end{cases}$$

Exercise 9.49

Let $Y_1, Y_2, ..., Y_n$ denote a random sample from the Uniform distribution over the interval $(0, \theta)$. Show that $Y_{(n)} = max(Y_1, Y_2, ..., Y_n)$ is sufficient for θ .

Sufficiency

Relative Efficiency Consistency **Sufficiency** Minimum-Variance Unbiased Estimation

イロト イポト イヨト イヨト

э

Solution

$$\begin{split} \mathcal{L}(y_{1}, y_{2}, ..., y_{n} | \theta) &= f(y_{1} | \theta) f(y_{2} | \theta) ... f(y_{n} | \theta) \\ &= \frac{1}{\theta} I_{(0,\theta)}(y_{1}) \frac{1}{\theta} I_{(0,\theta)}(y_{2}) ... \frac{1}{\theta} I_{(0,\theta)}(y_{n}) \\ &= \frac{1}{\theta^{n}} I_{(0,\theta)}(y_{1}) I_{(0,\theta)}(y_{2}) ... I_{(0,\theta)}(y_{n}) \\ &= \frac{1}{\theta^{n}} I_{(0,\theta)}(y_{(n)}) \end{split}$$

Therefore, Theorem 9.4 is satisfied with

$$g(y_{(n)},\theta)=\frac{1}{\theta^n}I_{(0,\theta)}(y_{(n)})$$

and

.

$$h(y_1, y_2, ..., y_n) = 1$$

Exercise 9.51

Relative Efficiency Consistency **Sufficiency** Minimum-Variance Unbiased Estimation

(日) (同) (日) (日) (日)

Let $Y_1, Y_2, ..., Y_n$ denote a random sample from the probability density function

$$f(y| heta) = \left\{egin{array}{cc} e^{-(y- heta)} & y \geq heta\ 0 & elsewhere \end{array}
ight.$$

Show that $Y_{(1)} = min(Y_1, Y_2, ..., Y_n)$ is sufficient for θ .

Solution

Relative Efficiency Consistency **Sufficiency** Minimum-Variance Unbiased Estimation

<ロ> <同> <同> < 同> < 同>

æ

$$\begin{split} \mathcal{L}(y_{1}, y_{2}, ..., y_{n} | \theta) &= f(y_{1} | \theta) f(y_{2} | \theta) ... f(y_{n} | \theta) \\ &= e^{-(y_{1} - \theta)} I_{[\theta, \infty)}(y_{1}) e^{-(y_{2} - \theta)} I_{[\theta, \infty)}(y_{2}) ... e^{-(y_{n} - \theta)} I_{[\theta, \infty)}(y_{n}) \\ &= e^{n\theta} e^{-\sum_{i=1}^{n} y_{i}} I_{[\theta, \infty)}(y_{1}) I_{[\theta, \infty)}(y_{2}) ... I_{[\theta, \infty)}(y_{n}) \\ &= e^{n\theta} e^{-\sum_{i=1}^{n} y_{i}} I_{[\theta, \infty)}(y_{(1)}) \\ &= e^{n\theta} I_{[\theta, \infty)}(y_{(1)}) e^{-\sum_{i=1}^{n} y_{i}} \end{split}$$

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

< 日 > < 同 > < 三 > < 三 >

э

Solution

Therefore, Theorem 9.4 is satisfied with

$$g(y_{(1)},\theta) = e^{n\theta} I_{[\theta,\infty)}(y_{(1)})$$

and

$$h(y_1, y_2, ..., y_n) = e^{-\sum_{i=1}^n y_i}$$

and $Y_{(1)}$ is sufficient for θ .

Theorem 9.5

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

Image: A = A

The Rao-Blackwell Theorem. Let $\hat{\theta}$ be an unbiased estimator for θ such that $V(\hat{\theta}) < \infty$. If U is a sufficient statistic for θ , define $\hat{\theta}^* = E(\hat{\theta}|U)$. Then, for all θ ,

$$\mathsf{E}(\hat{ heta}^*) = heta$$
 and $V(\hat{ heta}^*) \leq V(\hat{ heta}).$

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

< 日 > < 同 > < 三 > < 三 >

Check page 465. (It is almost identical to what we did in class, Remember?)

Exercise 9.61

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

< 日 > < 同 > < 三 > < 三 >

э

Refer to Exercise 9.49. Use $Y_{(n)}$ to find an MVUE of θ .

Exercise 9.62

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

< 日 > < 同 > < 三 > < 三 >

э

Refer to Exercise 9.51. Find a function of $Y_{(1)}$ that is an MVUE for θ .

Relative Efficiency Consistency Sufficiency Minimum-Variance Unbiased Estimation

< 日 > < 同 > < 三 > < 三 >

э

Solution

Please, see review 2.

The Method of Moments

The method of moments is a very simple procedure for finding an estimator for one or more population parameters. Recall that the kth moment of random variable, taken about the origin, is

$$\mu_{k}^{'}=E(Y^{k}).$$

The corresponding kth sample moment is the average

$$m'_{k} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{k}.$$

The Method of Moments

Choose as estimates those values of the parameters that are solutions of the equations μ'_k , for k = 1, 2, ..., t, where t is the number of parameters to be estimated.

Exercise 9.69

Let $Y_1, Y_2, ..., Y_n$ denote a random sample from the probability density function

$$f(y|\theta) = \begin{cases} (\theta+1)y^{\theta} & 0 < y < 1; \ \theta > -1 \\ 0 & elsewhere \end{cases}$$

Find an estimator for θ by the method of moments.

< □ > < 同 > < 回 >

- A 🗐 🕨

Solution

Note that Y is a random variable with a Beta distribution where $\alpha = \theta + 1$ and $\beta = 1$. Therefore,

$$\mu'_1 = E(Y) = \frac{\alpha}{\alpha + \beta} = \frac{\theta + 1}{\theta + 2}$$

(we can find this formula on our Table).

▲ □ ▶ → □ ▶

Solution

The corresponding first sample moment is

$$m_1' = \frac{1}{n} \sum_{i=1}^n Y_i = \bar{Y}.$$

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II

A ►

Solution

Equating the corresponding population and sample moment, we obtain

$$\frac{\theta+1}{\theta+2} = \bar{Y}$$

(solving for θ)

$$\hat{\theta}_{MOM} = \frac{2\bar{Y} - 1}{1 - \bar{Y}} = \frac{1 - 2\bar{Y}}{\bar{Y} - 1}$$

- **→** → **→**

Exercise 9.75

Let $Y_1, Y_2, ..., Y_n$ be a random sample from the probability density function given by

$$f(y|\theta) = \begin{cases} \frac{\Gamma(2\theta)}{[\Gamma(2\theta)]^2} y^{\theta-1} (1-y)^{\theta-1} & 0 < y < 1; \quad \theta > -1 \\ 0 & elsewhere \end{cases}$$

Find the method of moments estimator for θ .

(日) (同) (日) (日) (日)

Solution

Note that Y is a random variable with a Beta distribution where $\alpha = \theta$ and $\beta = \theta$. Therefore,

$$\mu_1^{'} = E(Y) = \frac{\alpha}{\alpha + \beta} = \frac{\theta}{2\theta} = \frac{1}{2}$$

▲ 同 ▶ → 三 ▶

< ∃ →

э

Solution

The corresponding first sample moment is

$$m_1' = \frac{1}{n} \sum_{i=1}^n Y_i = \bar{Y}.$$

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II

A ►

Solution

Equating the corresponding population and sample moment, we obtain

$$\frac{1}{2} = \bar{Y}$$

(since we **can't** solve for θ , we have to repeat the process using second moments).

▲ 同 ▶ → 三 ▶

Solution

Recalling that $V(Y) = E(Y^2) - [E(Y)]^2$ and solving for $E(Y^2)$, we have that

(we can easily get V(Y) from our table, Right?)

$$\mu_{2}^{'} = E(Y^{2}) = \frac{\theta^{2}}{(2\theta)^{2}(2\theta+1)} + \frac{1}{4} = \frac{1}{4(2\theta+1)} + \frac{1}{4}$$

(after a little bit of algebra...)

$$E(Y^2) = \frac{\theta + 1}{4\theta + 2}.$$

Solution

The corresponding second sample moment is

$$m_2' = \frac{1}{n} \sum_{i=1}^n Y_i^2.$$

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II

A ►

Solution

Solving for θ

$$\hat{ heta}_{MOM} = rac{1-2m_2^{'}}{4m_2^{'}-1}$$

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II

æ

-∢ ≣ →

▲ 同 ▶ → 三 ▶

Method of Maximum Likelihood

Suppose that the likelihood function depends on k parameters θ_1 , θ_2 , . . . , θ_k . Choose as estimates those values of the parameters that maximize the likelihood $L(y_1, y_2, ..., y_n | \theta_1, \theta_2, ..., \theta_k)$.

伺 ト く ヨ ト く ヨ ト

Problem

Given a random sample $Y_1, Y_2, ..., Y_n$ from a population with pdf $f(x|\theta)$, show that maximizing the likelihood function, $L(y_1, y_2, ..., y_n|\theta)$, as a function of θ is equivalent to maximizing $lnL(y_1, y_2, ..., y_n|\theta)$.

Proof

Let $\hat{\theta}_{MLE}$, which implies that

$$L(y_1, y_2, ..., y_n | \theta) \leq L(y_1, y_2, ..., y_n | \hat{\theta}_{MLE}) \ \, \text{for all} \ \, \theta.$$

We know that $g(\theta) = ln(\theta)$ is monotonically increasing function of θ , thus for $\theta_1 \leq \theta_2$ we have that $ln(\theta_1) \leq ln(\theta_2)$. Therefore

 $lnL(y_1, y_2, ..., y_n | \theta) \leq lnL(y_1, y_2, ..., y_n | \hat{\theta}_{MLE})$ for all θ . We have shown that $lnL(y_1, y_2, ..., y_n | \theta)$ attains its maximum at $\hat{\theta}_{MLE}$.

Example 9.16

Let $Y_1, Y_2, ..., Y_n$ be a random sample of observations from a uniform distribution with probability density function $f(y_i|\theta) = \frac{1}{\theta}$, for $0 \le y_i \le \theta$ and i = 1, 2, ..., n. Find the MLE of θ .

・ロト ・同ト ・ヨト ・ヨト

MLEs have some additional properties that make this method of estimation particularly attractive. Generally, if θ is the parameter associated with a distribution, we are sometimes interested in estimating some function of θ - say $t(\theta)$ - rather than θ itself. In exercise, 9.94, you will prove that if $t(\theta)$ is a one-to-one function of θ and if $\hat{\theta}$ is the MLE for θ , then the MLE of $t(\theta)$ is given by

$$t(\hat{\theta}) = t(\hat{\theta}).$$

This result, sometimes referred to as the **invariance property** of MLEs, also holds for any function of a parameter of interest (**not just one-to-one functions**).

Exercise 9.81

Suppose that $Y_1, Y_2, ..., Y_n$ denote a random sample from an exponentially distributed population with mean θ . Find the MLE of the population variance θ^2 .

◆ 同 ♪ ◆ 三 ♪

Exercise 9.85

Let $Y_1, Y_2, ..., Y_n$ be a random sample from the probability density function given by

$$f(y|lpha, heta) = \left\{ egin{array}{cc} rac{1}{\Gamma(lpha) heta^lpha} y^{lpha-1} e^{-y/ heta} & y>0, \ 0 & ext{elsewhere}, \end{array}
ight.$$

where $\alpha > 0$ is known.

Image: A image: A

- ∢ ≣ ▶

Exercise 9.85

- a. Find the MLE $\hat{\theta}$ of θ .
- b. Find the expected value and variance of $\hat{\theta}_{MLE}$.
- c. Show that $\hat{\theta}_{MLE}$ is consistent for θ .
- d. What is the best sufficient statistic for θ in this problem?

Solution a)

$$L(\theta) = \frac{1}{[\Gamma(\alpha)\theta^{\alpha}]^n} \prod_{i=1}^n y_i^{\alpha-1} e^{-\sum_{i=1}^n y_i/\theta}$$

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II

æ

<ロト <部ト < 注ト < 注ト

Solution a)

$$lnL(\theta) = (\alpha - 1)\sum_{i=1}^{n} ln(y_i) - \frac{\sum_{i=1}^{n} y_i}{\theta} - nln\Gamma(\alpha) - n\alpha ln(\theta)$$

æ

<ロト <部ト < 注ト < 注ト

Solution a)

$$\frac{dlnL(\theta)}{d\theta} = \frac{\sum_{i=1}^{n} y_i - n\alpha\theta}{\theta^2}$$
$$\hat{\theta}_{MLE} = \frac{\bar{y}}{\alpha}$$

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II

<ロ> <同> <同> < 同> < 同>

æ

Solution a)

(Let us check that we actually have a maximum...)

$$\frac{d^2 \ln L(\theta)}{d\theta^2} = \frac{-2\sum_{i=1}^n y_i + n\alpha\theta}{\theta^3}$$
$$\frac{d^2 \ln L(\hat{\theta}_{MLE})}{d\theta^2} = \frac{-\alpha^3 n}{\bar{y}^2} < 0$$

▲ 同 ▶ → 三 ▶

∃ >

Solution b)

$$E(\hat{\theta}_{MLE}) = E\left(\frac{\bar{y}}{\alpha}\right) = \theta.$$
$$V(\hat{\theta}_{MLE}) = V\left(\frac{\bar{y}}{\alpha}\right) = \frac{\theta^2}{\alpha n}.$$

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II

<ロ> <同> <同> < 同> < 同>

æ

Solution c)

Since $\hat{\theta}$ is unbiased, we only need to show that

$$\lim_{n\to\infty} V(\hat{\theta}_{MLE}) = \lim_{n\to\infty} \frac{\theta^2}{\alpha n} = 0.$$

▲ 同 ▶ → ● 三

Solution d)

By the Factorization Theorem,

$$g(u,\theta) = g(\sum_{i=1}^{n} y_i, \theta) = \frac{e^{-\sum_{i=1}^{n} y_i/\theta}}{\theta^{\alpha n}}$$

and

$$h(y_1, y_2, ..., y_n) = \frac{\prod_{i=1}^n y_i^{\alpha - 1}}{[\Gamma(\alpha)]^n}$$

▲ 同 ▶ → ● 三

э

Example 9.15

Let $Y_1, Y_2, ..., Y_n$ be a random sample from a normal distribution with mean μ and variance σ^2 . Find the MLEs of μ and σ^2 .

▲ □ ▶ → □ ▶