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”If you can’t explain it simply, you don’t understand it well
enough”

Albert Einstein.
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Definition 9.1

Given two unbiased estimators θ̂1 and θ̂2 of a parameter θ, with
variances V (θ̂1) and V (θ̂2), respectively, then the efficiency of θ̂1

relative to θ̂2, denoted eff(θ̂1, θ̂2), is defined to be the ratio

eff(θ̂1, θ̂2) =
V (θ̂2)

V (θ̂1)
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Exercise 9.1

In Exercise 8.8, we considered a random sample of size 3 from an
exponential distribution with density function given by

f (y) =

{
(1/θ)e−y/θ y > 0
0 elsewhere

and determined that θ̂1 = Y1, θ̂2 = (Y1 + Y2)/2,
θ̂3 = (Y1 + 2Y2)/3, and θ̂5 = Ȳ are all unbiased estimators for θ.
Find the efficiency of θ̂1 relative to θ̂5, of θ̂2 relative to θ̂5, and of
θ̂3 relative to θ̂5
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Solution

V (θ̂1) = V (Y1) = θ2 (From Table).

V (θ̂2) = V
(
Y1+Y2

2

)
= 2θ2

4 = θ2

2

V (θ̂3) = V
(
Y1+2Y2

3

)
= 5θ2

9

V (θ̂5) = V
(
Ȳ
)

= θ2

3
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Solution

eff(θ̂1, θ̂5) = V (θ̂5)

V (θ̂1)
=

θ2

3
θ2 = 1

3

eff(θ̂2, θ̂5) = V (θ̂5)

V (θ̂2)
=

θ2

3
θ2

2

= 2
3

eff(θ̂3, θ̂5) = V (θ̂5)

V (θ̂3)
=

θ2

3
5θ2

9

= 3
5
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Exercise 9.3

Let Y1,Y2, ...,Yn denote a random sample from the uniform
distribution on the interval (θ, θ + 1). Let θ̂1 = Ȳ − 1

2 and

θ̂2 = Y(n) − n
n+1 .

a. Show that both θ̂1 and θ̂2 are unbiased estimators of θ.
b. Find the efficiency of θ̂1 relative to θ̂2.
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Solution

a. E (θ̂1) = E (Ȳ − 1
2 ) = E (Ȳ )− E ( 1

2 ) = E (Y1+Y2+...+Yn
n )− 1

2 =
2θ+1

2 − 1
2 = θ.

Since Yi has a Uniform distribution on the interval (θ, θ + 1),
V (Yi ) = 1

12 (check Table).

V (θ̂1) = V (Ȳ − 1
2 ) = V (Ȳ ) = V (Y1+Y2+...+Yn

n ) = 1
12n
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Solution

Let W = Y(n) = max{Y1, ...,Yn}.
FW (w) = P[W ≤ w ] = [FY (w)]n

fW (w) = d
dw FW (w) = n[FY (w)]n−1fY (w)

In our case, fW (w) = n[w − θ]n−1, θ < w < θ + 1.
Now that we have the pdf of W , we can find its expected value
and variance.

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Properties of Point Estimators and Methods of Estimation
Method of Moments

Method of Maximum Likelihood

Relative Efficiency
Consistency
Sufficiency
Minimum-Variance Unbiased Estimation

Solution

E (W ) =
∫ θ+1
θ nw [w − θ]n−1dw (integrating by parts)

E (W ) = w [w − θ]n|θ+1
θ −

∫ θ+1
θ [w − θ]ndw

E (W ) = (θ + 1)− [w−θ]n+1

n+1 |θ+1
θ = (θ + 1)− 1

n+1
E (W ) = θ + n

n+1
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Solution

E (W 2) =
∫ θ+1
θ nw2[w − θ]n−1dw (integrating by parts)

E (W 2) = w2[w − θ]n|θ+1
θ −

∫ θ+1
θ 2w [w − θ]ndw

E (W 2) = (θ + 1)2 − 2
n+1

∫ θ+1
θ (n + 1)w [w − θ]ndw

E (W 2) = (θ + 1)2 − 2
n+1

(
θ + n+1

n+2

)
E (W 2) = (θ + 1)2 − 2θ

n+1 −
2

n+2
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Solution

V (W ) = E (W 2)− [E (W )]2

V (W ) = θ2 + 2θ + 1− 2θ
n+1 −

2
n+2 −

[
θ + n

n+1

]2

(after doing a bit of algebra . . .)
V (W ) = n

(n+2)(n+1)2
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Solution

E (θ̂2) = E (W − n
n+1 ) = E (W )− E ( n

n+1 ) = θ + n
n+1 −

n
n+1 = θ.

V (θ̂2) = V (W − n
n+1 ) = V (W ) = n

(n+2)(n+1)2
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Solution

eff(θ̂1, θ̂2) =
V (θ̂2)

V (θ̂1)
=

n
(n+2)(n+1)2

1
12n

=
12n2

(n + 2)(n + 1)2
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Definition 9.2

The estimator θ̂n is said to be consistent estimator of θ if, for
any positive number ε,

lim
n→∞

P(|θ̂n − θ| ≤ ε) = 1

or, equivalently,

lim
n→∞

P(|θ̂n − θ| > ε) = 0.

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Properties of Point Estimators and Methods of Estimation
Method of Moments

Method of Maximum Likelihood

Relative Efficiency
Consistency
Sufficiency
Minimum-Variance Unbiased Estimation

Theorem 9.1

An unbiased estimator θ̂n for θ is a consistent estimator of θ if

lim
n→∞

V (θ̂n) = 0.
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Exercise 9.15

Refer to Exercise 9.3. Show that both θ̂1 and θ̂2 are consistent
estimators for θ.
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Solution

Recall that we have already shown that θ̂1 and θ̂2 are unbiased
estimator of θ. Thus, if we show that limn→∞ V (θ̂1) = 0 and
limn→∞ V (θ̂2) = 0, we are done.
Clearly,

0 ≤ V (θ̂1) =
1

12n

which implies that

lim
n→∞

V (θ̂1) = 0
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Solution

Clearly,

0 ≤ V (θ̂2) =
n

(n + 2)(n + 1)2
=

n

(n + 2)

1

(n + 1)2
≤ (n + 2)

(n + 2)

1

(n + 1)2

which implies that

lim
n→∞

V (θ̂2) ≤ lim
n→∞

1

(n + 1)2
= 0

Therefore, θ̂1 and θ̂2 are consistent estimators for θ.

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Properties of Point Estimators and Methods of Estimation
Method of Moments

Method of Maximum Likelihood

Relative Efficiency
Consistency
Sufficiency
Minimum-Variance Unbiased Estimation

Definition 9.3

Let Y1, Y2, ..., Yn denote a random sample from a probability
distribution with unknown parameter θ. Then the statistic
U = g(Y1,Y2, ...,Yn) is said to be sufficient for θ if the
conditional distribution of Y1,Y2, ...,Yn, given U, does not depend
on θ.
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Example

Let X1,X2,X3 be a sample of size 3 from the Bernoulli
distribution. Consider U = g(X1,X2,X3) = X1 + X2 + X3. We will
show that g(X1,X2,X3) is sufficient.
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Solution

Values of U fX1,X2,X3|U
(0,0,0) 0 1
(0,0,1) 1 1/3
(0,1,0) 1 1/3
(1,0,0) 1 1/3
(0,1,1) 2 1/3
(1,0,1) 2 1/3
(1,1,0) 2 1/3
(1,1,1) 3 1
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Example

The conditional densities given in the last column are routinely
calculated. For instance,
fX1,X2,X3|U=1(0, 1, 0|1) = P[X1 = 0,X2 = 1,X3 = 0|U = 1]

= P[X1=0 and X2=1 and X3=0 and U=1]
P[U=1]

= (1−p)(p)(1−p)

(3
1)p(1−p)2

= 1
3
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Definition 9.4

Let y1, y2, ..., yn be sample observations taken on corresponding
random variables Y1,Y2, ...,Yn whose distribution depends on a
parameter θ. Then, if Y1,Y2, ...,Yn are discrete random variables,
the likelihood of the sample, L(y1, y2, ..., yn|θ), is defined to be
the joint probability of y1, y2, ..., yn. If Y1,Y2, ...,Yn are continuous
random variables, the likelihood L(y1, y2, ..., yn|θ), is defined to be
the joint density of y1, y2, ..., yn.
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Theorem 9.4

Let U be a statistic based on the random sample Y1,Y2, ...,Yn.
Then U is a sufficient statistic for the estimation of a parameter
θ if and only if the likelihood L(θ) = L(y1, y2, ..., yn|θ) can be
factored into two nonnegative functions,

L(y1, y2, ..., yn|θ) = g(u, θ)h(y1, y2, ..., yn)

where g(u, θ) is a function only of u and θ and h(y1, y2, ..., yn) is
not a function of θ.
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Exercise 9.37

Let X1,X2, ...,Xn denote n independent and identically distributed
Bernoulli random variables such that

P(Xi = 1) = θ and P(Xi = 0) = 1− θ,

for each i = 1, 2, ..., n. Show that
∑n

i=1 Xi is sufficient for θ by
using the factorization criterion given in Theorem 9.4.
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Solution

L(x1, x2, ..., xn|θ) = P(x1|θ)P(x2|θ)...P(xn|θ)
= θx1(1− θ)1−x1θx2(1− θ)1−x2 ...θxn(1− θ)1−xn

= θ
∑n

i=1 xi (1− θ)n−
∑n

i=1 xi

By Theorem 9.4,
∑n

i=1 xi is sufficient for θ with

g(
n∑

i=1

xi , θ) = θ
∑n

i=1 xi (1− θ)n−
∑n

i=1 xi

and

h(x1, x2, ..., xn) = 1

.
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Indicator Function

For a < b,

I(a,b)(y) =

{
1 if a < y < b
0 otherwise.
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Exercise 9.49

Let Y1,Y2, ...,Yn denote a random sample from the Uniform
distribution over the interval (0, θ). Show that
Y(n) = max(Y1,Y2, ...,Yn) is sufficient for θ.
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Solution

L(y1, y2, ..., yn|θ) = f (y1|θ)f (y2|θ)...f (yn|θ)
= 1

θ I(0,θ)(y1) 1
θ I(0,θ)(y2)...1θ I(0,θ)(yn)

= 1
θn I(0,θ)(y1)I(0,θ)(y2)...I(0,θ)(yn)

= 1
θn I(0,θ)(y(n))

Therefore, Theorem 9.4 is satisfied with

g(y(n), θ) =
1

θn
I(0,θ)(y(n))

and

h(y1, y2, ..., yn) = 1

.
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Exercise 9.51

Let Y1,Y2, ...,Yn denote a random sample from the probability
density function

f (y |θ) =

{
e−(y−θ) y ≥ θ
0 elsewhere

Show that Y(1) = min(Y1,Y2, ...,Yn) is sufficient for θ.
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Solution

L(y1, y2, ..., yn|θ) = f (y1|θ)f (y2|θ)...f (yn|θ)
= e−(y1−θ)I[θ,∞)(y1)e−(y2−θ)I[θ,∞)(y2)...e−(yn−θ)I[θ,∞)(yn)

= enθe−
∑n

i=1 yi I[θ,∞)(y1)I[θ,∞)(y2)...I[θ,∞)(yn)

= enθe−
∑n

i=1 yi I[θ,∞)(y(1))

= enθI[θ,∞)(y(1))e−
∑n

i=1 yi
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Solution

Therefore, Theorem 9.4 is satisfied with

g(y(1), θ) = enθI[θ,∞)(y(1))

and

h(y1, y2, ..., yn) = e−
∑n

i=1 yi

and Y(1) is sufficient for θ.
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Theorem 9.5

The Rao-Blackwell Theorem. Let θ̂ be an unbiased estimator for
θ such that V (θ̂) <∞. If U is a sufficient statistic for θ, define
θ̂∗ = E (θ̂|U). Then, for all θ,

E (θ̂∗) = θ and V (θ̂∗) ≤ V (θ̂).
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Proof

Check page 465.
(It is almost identical to what we did in class, Remember?)

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Properties of Point Estimators and Methods of Estimation
Method of Moments

Method of Maximum Likelihood

Relative Efficiency
Consistency
Sufficiency
Minimum-Variance Unbiased Estimation

Exercise 9.61

Refer to Exercise 9.49. Use Y(n) to find an MVUE of θ.
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Exercise 9.62

Refer to Exercise 9.51. Find a function of Y(1) that is an MVUE
for θ.

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Properties of Point Estimators and Methods of Estimation
Method of Moments

Method of Maximum Likelihood

Relative Efficiency
Consistency
Sufficiency
Minimum-Variance Unbiased Estimation

Solution

Please, see review 2.

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Properties of Point Estimators and Methods of Estimation
Method of Moments

Method of Maximum Likelihood

The Method of Moments

The method of moments is a very simple procedure for finding an
estimator for one or more population parameters. Recall that the
kth moment of random variable, taken about the origin, is

µ
′
k = E (Y k).

The corresponding kth sample moment is the average

m
′
k =

1

n

n∑
i=1

Y k
i .
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The Method of Moments

Choose as estimates those values of the parameters that are
solutions of the equations µ

′
k , for k = 1, 2, ..., t, where t is the

number of parameters to be estimated.
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Exercise 9.69

Let Y1,Y2, ...,Yn denote a random sample from the probability
density function

f (y |θ) =

{
(θ + 1)yθ 0 < y < 1; θ > −1
0 elsewhere

Find an estimator for θ by the method of moments.
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Solution

Note that Y is a random variable with a Beta distribution where
α = θ + 1 and β = 1. Therefore,

µ
′
1 = E (Y ) =

α

α + β
=
θ + 1

θ + 2

(we can find this formula on our Table).
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Solution

The corresponding first sample moment is

m
′
1 =

1

n

n∑
i=1

Yi = Ȳ .
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Solution

Equating the corresponding population and sample moment, we
obtain

θ + 1

θ + 2
= Ȳ

(solving for θ)

θ̂MOM =
2Ȳ − 1

1− Ȳ
=

1− 2Ȳ

Ȳ − 1
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Exercise 9.75

Let Y1,Y2, ...,Yn be a random sample from the probability density
function given by

f (y |θ) =

{
Γ(2θ)

[Γ(2θ)]2 y
θ−1(1− y)θ−1 0 < y < 1; θ > −1

0 elsewhere

Find the method of moments estimator for θ.
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Solution

Note that Y is a random variable with a Beta distribution where
α = θ and β = θ. Therefore,

µ
′
1 = E (Y ) =

α

α + β
=

θ

2θ
=

1

2
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Solution

The corresponding first sample moment is

m
′
1 =

1

n

n∑
i=1

Yi = Ȳ .
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Solution

Equating the corresponding population and sample moment, we
obtain

1

2
= Ȳ

(since we can’t solve for θ, we have to repeat the process using
second moments).
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Solution

Recalling that V (Y ) = E (Y 2)− [E (Y )]2 and solving for E (Y 2),
we have that
(we can easily get V (Y ) from our table, Right?)

µ
′
2 = E (Y 2) =

θ2

(2θ)2(2θ + 1)
+

1

4
=

1

4(2θ + 1)
+

1

4

(after a little bit of algebra...)

E (Y 2) =
θ + 1

4θ + 2
.
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Solution

The corresponding second sample moment is

m
′
2 =

1

n

n∑
i=1

Y 2
i .
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Solution

Solving for θ

θ̂MOM =
1− 2m

′
2

4m
′
2 − 1
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Method of Maximum Likelihood

Suppose that the likelihood function depends on k parameters θ1,
θ2, . . . , θk . Choose as estimates those values of the parameters
that maximize the likelihood L(y1, y2, ..., yn|θ1, θ2, ..., θk).
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Problem

Given a random sample Y1,Y2, ...,Yn from a population with pdf
f (x |θ), show that maximizing the likelihood function,
L(y1, y2, ..., yn|θ), as a function of θ is equivalent to maximizing
lnL(y1, y2, ..., yn|θ).
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Proof

Let θ̂MLE , which implies that

L(y1, y2, ..., yn|θ) ≤ L(y1, y2, ..., yn|θ̂MLE ) for all θ.

We know that g(θ) = ln(θ) is monotonically increasing function of
θ, thus for θ1 ≤ θ2 we have that ln(θ1) ≤ ln(θ2).
Therefore

lnL(y1, y2, ..., yn|θ) ≤ lnL(y1, y2, ..., yn|θ̂MLE ) for all θ.

We have shown that lnL(y1, y2, ..., yn|θ) attains its maximum at
θ̂MLE .
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Example 9.16

Let Y1,Y2, ...,Yn be a random sample of observations from a
uniform distribution with probability density function f (yi |θ) = 1

θ ,
for 0 ≤ yi ≤ θ and i = 1, 2, ..., n. Find the MLE of θ.
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MLEs have some additional properties that make this method of
estimation particularly attractive. Generally, if θ is the parameter
associated with a distribution, we are sometimes interested in
estimating some function of θ - say t(θ) - rather than θ itself. In
exercise, 9.94, you will prove that if t(θ) is a one-to-one function
of θ and if θ̂ is the MLE for θ, then the MLE of t(θ) is given by

ˆt(θ) = t(θ̂).

This result, sometimes referred to as the invariance property of
MLEs, also holds for any function of a parameter of interest (not
just one-to-one functions).
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Exercise 9.81

Suppose that Y1,Y2, ...,Yn denote a random sample from an
exponentially distributed population with mean θ. Find the MLE of
the population variance θ2.
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Exercise 9.85

Let Y1,Y2, ...,Yn be a random sample from the probability density
function given by

f (y |α, θ) =

{
1

Γ(α)θα y
α−1e−y/θ y > 0,

0 elsewhere,

where α > 0 is known.
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Exercise 9.85

a. Find the MLE θ̂ of θ.
b. Find the expected value and variance of θ̂MLE .
c. Show that θ̂MLE is consistent for θ.
d. What is the best sufficient statistic for θ in this problem?
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Solution a)

L(θ) =
1

[Γ(α)θα]n
Πn
i=1y

α−1
i e−

∑n
i=1 yi/θ
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Solution a)

lnL(θ) = (α− 1)
n∑

i=1

ln(yi )−
∑n

i=1 yi
θ

− nlnΓ(α)− nαln(θ)

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Properties of Point Estimators and Methods of Estimation
Method of Moments

Method of Maximum Likelihood

Solution a)

dlnL(θ)

dθ
=

∑n
i=1 yi − nαθ

θ2

θ̂MLE =
ȳ

α
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Solution a)

(Let us check that we actually have a maximum...)

d2lnL(θ)

dθ2
=
−2
∑n

i=1 yi + nαθ

θ3

d2lnL(θ̂MLE )

dθ2
=
−α3n

ȳ2
< 0
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Solution b)

E (θ̂MLE ) = E

(
ȳ

α

)
= θ.

V (θ̂MLE ) = V

(
ȳ

α

)
=
θ2

αn
.
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Solution c)

Since θ̂ is unbiased, we only need to show that

limn→∞V (θ̂MLE ) = limn→∞
θ2

αn
= 0.
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Solution d)

By the Factorization Theorem,

g(u, θ) = g(
n∑

i=1

yi , θ) =
e−

∑n
i=1 yi/θ

θαn

and

h(y1, y2, ..., yn) =
Πn
i=1y

α−1
i

[Γ(α)]n
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Example 9.15

Let Y1,Y2, ...,Yn be a random sample from a normal distribution
with mean µ and variance σ2. Find the MLEs of µ and σ2.
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