STA 260: Statistics and Probability II

AI Nosedal.
University of Toronto.

Winter 2018
(1) Chapter 6. Function of Random Variables

- The Method of Distribution Functions
- The Method of Transformations
- The Method of Moment-Generating Functions
- Order Statistics
- Bivariate Transformation Method
- Appendix
"If you can't explain it simply, you don't understand it well enough"

Albert Einstein.

Example

Let $\left(Y_{1}, Y_{2}\right)$ denote a random sample of size $n=2$ from the uniform distribution on the interval $(0,1)$. Find the probability density function for $U=Y_{1}+Y_{2}$.

Solution

The density function for each Y_{i} is

$$
f(y)= \begin{cases}1 & 0 \leq y \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

Therefore, because we have a random sample, Y_{1} and Y_{2} are independent, and

$$
f\left(y_{1}, y_{2}\right)=f\left(y_{1}\right) f\left(y_{2}\right)\left\{\begin{array}{cc}
1 & 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

We wish to find $F_{U}(u)=P(U \leq u)$.

Joint pdf

Solution

The region $y_{1}+y_{2} \leq u$ for $0 \leq u \leq 1$.

Solution

The solution, $F_{U}(u), 0 \leq u \leq 1$, could be acquired directly by using elementary geometry.
$F_{U}(u)=($ area of triangle $)($ height $)=\frac{u^{2}}{2}(1)=\frac{u^{2}}{2}$.

Solution

The region $y_{1}+y_{2} \leq u$ for $1<u \leq 2$.

Solution

The solution, $F_{U}(u), 1<u \leq 2$, could be acquired directly by using elementary geometry, or using Calculus.

$$
\begin{aligned}
F_{U}(u) & =1-(\text { area of triangle })(\text { height }) \\
& =1-\left[\frac{(2-u)(2-u)}{2}\right](1) \\
& =1-\left[2-2 u+\frac{u^{2}}{2}\right] \\
& =-1+2 u-\frac{u^{2}}{2}
\end{aligned}
$$

Solution

It should be clear at this point that If $u<0, F_{U}(u)=0$. If $u>2 F_{U}(u)=1$.

Solution

To summarize,

$$
F_{U}(u)=\left\{\begin{array}{lc}
0 & u \leq 0 \\
u^{2} / 2 & 0<u \leq 1 \\
\left(-u^{2} / 2\right)+2 u-1 & 1<u \leq 2 \\
1 & u>2
\end{array}\right.
$$

Solution

The density function $f_{U}(u)$ can be obtained by differentiating $F_{U}(u)$. Thus,

$$
f_{U}(u)=\frac{d F_{U}(u)}{d u}=\left\{\begin{array}{lc}
0 & u \leq 0 \\
u & 0 \leq u \leq 1 \\
2-u & 1<u \leq 2 \\
0 & u>2
\end{array}\right.
$$

Graph of pdf

Example

Consider the case $U=h(Y)=Y^{2}$, where Y is a continuous random variable with distribution function $F_{Y}(y)$ and density function $f_{Y}(y)$. Find the probability density function for U.

Solution

If $u \leq 0$,
$F_{U}(u)=P(U \leq u)=P\left(Y^{2} \leq u\right)=0$.
If $u>0$,
$F_{U}(u)=P(U \leq u)=P\left(Y^{2} \leq u\right)=P(-\sqrt{u} \leq Y \leq \sqrt{u})$
$=\int_{-\sqrt{u}}^{\sqrt{u}} f(y) d y=F_{Y}(\sqrt{u})-F_{Y}(-\sqrt{u})$.

Solution

On differentiating with respect to u, we see that

$$
f_{U}(u)=\left\{\begin{array}{lc}
\frac{1}{2 \sqrt{u}}\left[f_{Y}(\sqrt{u})+f_{Y}(-\sqrt{u})\right] & u>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Exercise 6.7

Suppose that Z has a standard Normal distribution.
a. Find the density function of $U=Z^{2}$.
b. Does U have a gamma distribution? What are the values of α and β ?
c. What is another name for the distribution of U ?

Solution

Let $F_{Z}(z)$ and $f_{Z}(z)$ denote the standard Normal distribution and density functions respectively.
a. $F_{U}(u)=P(U \leq u)=P\left(Z^{2} \leq u\right)=P(-\sqrt{u} \leq Z \leq \sqrt{u})$
$=F_{Z}(\sqrt{u})-F_{Z}(-\sqrt{u})$.
The density function for U is then
$f_{U}(u)=F_{U}^{\prime}(u)=\frac{1}{2 \sqrt{u}} f_{Z}(\sqrt{u})+\frac{1}{2 \sqrt{u}} f_{Z}(-\sqrt{u}), u \geq 0$.

Solution

Recalling that $f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}$, we find
$f_{U}(u)=\frac{1}{2 \sqrt{u}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u}{2}}+\frac{1}{2 \sqrt{u}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u}{2}}$
$f_{U}(u)=\frac{1}{\sqrt{\pi} \sqrt{2}} u^{-1 / 2} e^{-u / 2}, u>0$.

Solution

b. U has a gamma distribution with $\alpha=1 / 2$ and $\beta=2$ (recall that $\Gamma(1 / 2)=\sqrt{\pi})$.
c. This is the chi-square distribution with one degree of freedom.

Weibull density function

The Weibull density function is given by

$$
f(y)=\left\{\begin{array}{lc}
\frac{1}{\alpha} m y^{m-1} e^{-y^{m} / \alpha} & y>0 \\
0, & \text { elsewhere }
\end{array}\right.
$$

where α and m are positive constants. This density function is often used as a model for the lengths of life of physical systems.

Exercise 6.27

Let Y have an exponential distribution with mean β. Prove that $W=\sqrt{Y}$ has a Weibull density with $\alpha=\beta$ and $m=2$.

Solution

Let $W=\sqrt{Y}$. The random variable Y is exponential so
$f_{Y}(y)=\frac{1}{\beta} e^{-y / \beta}$.
Step 1. Then, $Y=W^{2}$.
Step 2. $\frac{d y}{d w}=2 w$.
Step 3. Then,
$f_{W}(w)=f_{Y}\left(w^{2}\right)|2 w|=\left(\frac{1}{\beta} e^{-w^{2} / \beta}\right)(2 w)=\frac{2}{\beta} w e^{-w^{2} / \beta}, w \geq 0$,
which is Weibull with $m=2$.

```
The Method of Distribution Functions
The Method of Transformations
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix
```


Exercise 6.28

Let Y have a uniform $(0,1)$ distribution. Show that $W=-2 \ln (Y)$ has an exponential distribution with mean 2.

Solution

Step 1. Then, $Y=e^{-w / 2}$.
Step 2. $\frac{d y}{d w}=\frac{-1}{2} e^{-w / 2}$.
Step 3. Then, $f_{W}(w)=f_{Y}\left(e^{-w / 2}\right)\left|\frac{-1}{2} e^{-w / 2}\right|=\frac{1}{2} e^{-w / 2}, w>0$.

Exercise 6.29 a.

The speed of a molecule in a uniform gas at equilibrium is a random variable V whose density function is given by $f(v)=a v^{2} e^{-b v^{2}}, v>0$, where $b=m / 2 k T$ and k, T, and m denote Boltzmann's constant, the absolute temperature, and the mass of the molecule, respectively.
Derive the distribution of $W=m V^{2} / 2$, the kinetic energy of the molecule.

Solution

Step 1. With $W=\frac{m V^{2}}{2}, V=\sqrt{\frac{2 W}{m}}=\left(\frac{2 W}{m}\right)^{1 / 2}$.
Step 2. $\left.\left|\frac{d v}{d w}\right|=\left\lvert\,\left(\frac{1}{2}\right)\left(\frac{2 W}{m}\right)^{-1 / 2}\right.\right)\left(\frac{2}{m}\right)\left|=\left|\frac{1}{\sqrt{2 m w}}\right|\right.$.
Step 3. Then, $f_{W}(w)=f_{V}\left(\sqrt{\frac{2 W}{m}}\right)\left|\frac{1}{\sqrt{2 m w}}\right|=$
$a(2 w / m) e^{-b(2 w / m)} \frac{1}{\sqrt{2 m w}}=\frac{a \sqrt{2}}{m^{3 / 2}} w^{1 / 2} e^{-w / k T}, w>0$.

Solution

The above expression looks like a Gamma density with $\alpha=3 / 2$ and $\beta=k T$. Thus, the constant a must be chosen so that

$$
\frac{a \sqrt{2}}{m^{3 / 2}}=\frac{1}{\Gamma(3 / 2)(K T)^{3 / 2}}
$$

So,

$$
f_{W}(w)=\frac{1}{\Gamma(3 / 2)(K T)^{3 / 2}} w^{1 / 2} e^{-w / k T}
$$

```
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix
```


Example

Let Z be a Normally distributed random variable with mean 0 and variance 1 . Use the method of moment-generating functions to find the probability distribution of Z^{2}.

```
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix
```


Solution

$$
M_{Z^{2}}(t)=E\left(e^{t Z^{2}}\right)=\int_{-\infty}^{\infty} e^{t z^{2}} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z
$$

$$
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-z^{2}\left(\frac{1-2 t}{2}\right)} d z
$$

This integral can be evaluated using an "old trick" (we note that it looks like a Normally distributed random variable).

Solution

We realize that $e^{-z^{2}\left(\frac{(1-2 t)}{2}\right)}$ is proportional to a Normal with $\mu=0$ and $\sigma^{2}=1 /(1-2 t)$, then
$M_{Z^{2}}(t)=\frac{\sqrt{2 \pi} \sqrt{1 /(1-2 t)}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sqrt{1 /(1-2 t)}} e^{-z^{2}\left(\frac{1-2 t}{2}\right)} d z$
$M_{Z^{2}}(t)=\sqrt{\frac{1}{1-2 t}}=(1-2 t)^{-1 / 2}$ (Note. This is valid provided that $t<1 / 2)$.
$(1-2 t)^{-1 / 2}$ is the moment-generating function for a gamma-distributed random variable with $\alpha=1 / 2$ and $\beta=2$. Hence, Z^{2} has a χ^{2} distribution with $\nu=1$ degree of freedom.

```
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix
```


Exercise 6.40

Suppose that Y_{1} and Y_{2} are independent, standard Normal random variables. Find the probability distribution of $U=Y_{1}^{2}+Y_{2}^{2}$.

Solution

$$
\begin{aligned}
M_{U}(t) & =E\left[e^{U t}\right]=E\left[e^{\left(Y_{1}^{2}+Y_{2}^{2}\right) t}\right] \\
& =E\left[e^{Y_{1}^{2} t} e^{Y_{2}^{2} t}\right] \text { (by independence) } \\
& =E\left[e^{Y_{1}^{2} t}\right] E\left[e^{Y_{2}^{2} t}\right] \\
& =M_{Y_{1}^{2}}(t) M_{Y_{2}^{2}}(t) \\
& =\left[(1-2 t)^{-1 / 2}\right]\left[(1-2 t)^{-1 / 2}\right]=(1-2 t)^{-2 / 2} .
\end{aligned}
$$

Because moment-generating functions are unique, U has a χ^{2} distribution with 2 degrees of freedom.

Comment about last example

Note that $(1-2 t)^{-2 / 2}=(1-2 t)^{-1}$ which is the moment-generating function of an exponential random variable with parameter $\beta=2$. Which is the right probability distribution? χ^{2} with 2 df ? Exponential with $\beta=2$? Let us write the pdf for each of them.
Exponential pdf with $\beta=2$.
$f(y)=\frac{1}{2} e^{-y / 2}, 0<y<\infty$.
Chi-square pdf with $\nu=2$.
$f(y)=\frac{y^{2 / 2-1}}{2^{2 / 2} \Gamma(2 / 2)} e^{-y / 2}=\frac{1}{2} e^{-y / 2}, 0<y<\infty$.
They are the same!

```
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix
```


Example

Let Y_{1} and Y_{2} be independent, Normal random variables, each with mean μ and variance σ^{2}. Let a_{1} and a_{2} denote known constants. Find the density function of the linear combination $U=a_{1} Y_{1}+a_{2} Y_{2}$.

Solution

The mgf for a Normal distribution with parameters μ and σ is $m(t)=e^{\mu t+\sigma^{2} t^{2} / 2}$.

$$
\begin{aligned}
M_{U}(t) & =E\left[e^{U t}\right]=E\left[e^{\left(a_{1} Y_{1}+a_{2} Y_{2}\right) t}\right] \\
& =E\left[e^{\left(a_{1} Y_{1}\right) t} e^{\left(a_{2} Y_{2}\right) t}\right] \quad \text { (by independence) } \\
& =E\left[e^{\left(a_{1} Y_{1}\right) t}\right] E\left[e^{\left(a_{2} Y_{2}\right) t}\right] \\
& =M_{Y_{1}\left(a_{1} t\right) M Y_{2}\left(a_{2} t\right)} \\
& =\left[e^{\mu a_{1} t+\sigma^{2}\left(a_{1} t\right)^{2} / 2}\right]\left[e^{\mu a_{2} t+\sigma^{2}\left(a_{2} t\right)^{2} / 2}\right] \\
& =e^{\mu t\left(a_{1}+a_{2}\right)+\sigma^{2}\left(a_{1}^{2}+a_{2}^{2}\right) t^{2} / 2}
\end{aligned}
$$

This is the mgf for a Normal variable with mean $\mu\left(a_{1}+a_{2}\right)$ and variance $\sigma^{2}\left(a_{1}^{2}+a_{2}^{2}\right)$.

```
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix
```


Example

Let Y_{1} and Y_{2} be independent, Normal random variables, each with mean μ and variance σ^{2}. Find the density function of $\bar{Y}=\frac{Y_{1}+Y_{2}}{2}$.

Solution

From our previous example and making $a_{1}=a_{2}=\frac{1}{2}$, we have that \bar{Y} has a Normal distribution with mean μ and variance $\sigma^{2} / 2$.

Exercise 6.59

Show that if Y_{1} has a χ^{2} distribution with ν_{1} degrees of freedom and Y_{2} has a χ^{2} distribution with ν_{2} degrees of freedom, then $U=Y_{1}+Y_{2}$ has a χ^{2} distribution with $\nu_{1}+\nu_{2}$ degrees of freedom, provided that Y_{1} and Y_{2} are independent.

Exercise 6.72 a.

Let Y_{1} and Y_{2} be independent and uniformly distributed over the interval $(0,1)$. Find the probability density function of $U=\min \left(Y_{1}, Y_{2}\right)$.

Solution

Let $U=\min \left(Y_{1}, Y_{2}\right)$.
$F_{U}(u)=P(U \leq u)=1-P(U>u)$. Now, let us find $P(U>u)$.
$P(U>u)=P\left(\min \left(Y_{1}, Y_{2}\right)>u\right)=\left[P\left(Y_{1}>u\right)\right]\left[P\left(Y_{2}>u\right)\right]$
$P(U>u)=\left[1-P\left(Y_{1} \leq u\right)\right]\left[1-P\left(Y_{2} \leq u\right)\right]$
$P(U>u)=[1-u]^{2}$
Therefore, $F_{U}(u)=P(U \leq u)=1-[1-u]^{2}$.
Finally, $f_{U}(u)=\frac{d}{d u} F_{U}(u)=-2(1-u)(-1)=2(1-u), 0<u<1$.

Exercise 6.73 a.

Let Y_{1} and Y_{2} be independent and uniformly distributed over the interval $(0,1)$. Find the probability density function of $U_{2}=\max \left(Y_{1}, Y_{2}\right)$.

Solution

Let $U=\max \left(Y_{1}, Y_{2}\right)$.
$F_{U}(u)=P(U \leq u)=P\left(\max \left(Y_{1}, Y_{2}\right) \leq u\right)$
$=P\left(Y_{1} \leq u\right) P\left(Y_{2} \leq u\right)=(u)(u)=u^{2}$.
Therefore, $F_{U}(u)=u^{2}$.
Finally, $f_{U}(u)=\frac{d}{d u} F_{U}(u)=2 u, 0<u<1$.

Example

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent, uniformly distributed random variables on the interval $[0, \theta]$. Find the pdf of $Y_{(n)}$.

Solution

Let $U=\max \left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$.
$F_{U}(u)=P(U \leq u)=P\left(\max \left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) \leq u\right)$
$=P\left(Y_{1} \leq u\right) P\left(Y_{2} \leq u\right) \ldots P\left(Y_{n} \leq u\right)=(u / \theta)(u / \theta) \ldots(u / \theta)$.
Therefore, $F_{U}(u)=(u / \theta)^{n}$.
Finally, $f_{U}(u)=\frac{d}{d u} F_{U}(u)=\frac{n u^{n-1}}{\theta^{n}}, 0 \leq u \leq \theta$.

Example

The values $x_{1}=0.62, x_{2}=0.98, x_{3}=0.31, x_{4}=0.81$, and $x_{5}=0.53$ are the $n=5$ observed values of five independent trials of an experiment with pdf $f(x)=2 x, 0<x<1$. The observed order statistics are
$y_{1}=0.31<y_{2}=0.53<y_{3}=0.62<y_{4}=0.81<y_{5}=0.98$.
Recall that the middle observation in the ordered arrangement, here $y_{3}=0.62$ is called the sample median and the difference of the largest and the smallest here
$y_{5}-y_{1}=0.98-0.31=0.67$,
is called the sample range.

```
The Method of Distribution Functions
The Method of Transformations
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix
```

If $X_{1}, X_{2}, \ldots, X_{n}$ are observations of a random sample of size n from a continuous-type distribution, we let the random variables $Y_{1}<Y_{2}<\ldots<Y_{n}$ denote the order statistics of that sample. That is, $Y_{1}=$ smallest of $X_{1}, X_{2}, \ldots, X_{n}$, $Y_{2}=$ second smallest of $X_{1}, X_{2}, \ldots, X_{n}$,
$Y_{n}=$ largest of $X_{1}, X_{2}, \ldots, X_{n}$.

Example

Let $Y_{1}<Y_{2}<Y_{3}<Y_{4}<Y_{5}$ be the order statistics of a random sample $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ of size $n=5$ from the distribution with pdf $f(x)=2 x, 0<x<1$. Consider $P\left(Y_{4} \leq 1 / 2\right)$.

Example (cont.)

For the event $Y_{4} \leq 1 / 2$ to occur, at least four of the random variables $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ must be less than $1 / 2$.
Thus if the event $X_{i} \leq 1 / 2, i=1,2, \ldots, 5$, is called "success" we must have at least four successes in the five mutually independent trials, each of which has probability of success
$P\left(X_{i} \leq \frac{1}{2}\right)=\int_{0}^{1 / 2} 2 x d x=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
Thus,
$P\left(y_{4} \leq \frac{1}{2}\right)=\binom{5}{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)+\left(\frac{1}{4}\right)^{5}=0.0156$

Example (cont.)

In general, if $0<y<1$, then the distribution function of Y_{4} is

$$
G(y)=P\left(Y_{4} \leq y\right)=\binom{5}{4}\left(y^{2}\right)^{4}\left(1-y^{2}\right)+\left(y^{2}\right)^{5}
$$

since this represents the probability of at least four "successes" in five independent trials, each of which has probability of success

$$
P\left(X_{i} \leq y\right)=\int_{0}^{y} 2 x d x=y^{2}
$$

Example (cont.)

The pdf of Y_{4} is therefore, for $0<y<1$,

$$
\begin{gathered}
g(y)=G^{\prime}(y)=\binom{5}{4} 4\left(y^{2}\right)^{3}(2 y)\left(1-y^{2}\right)+\binom{5}{4}\left(y^{2}\right)^{4}(-2 y)+5\left(y^{2}\right)^{4}(2 y) \\
g(y)=\frac{5!}{3!1!}\left(y^{2}\right)^{3}\left(1-y^{2}\right)(2 y), \quad 0<y<1 .
\end{gathered}
$$

Note that in this example, the cumulative distribution function of each X is $F_{X}(x)=x^{2}$ when $0<x<1$. Thus

$$
g(y)=\frac{5!}{3!1!}\left[F_{X}(y)\right]^{3}\left(1-F_{X}(y)\right] f(y), \quad 0<y<1 .
$$

Theorem 6.5

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent identically distributed continuous random variables with common distribution function $F(y)$ and common density function $f(y)$. If $Y_{(k)}$ denotes the k th-order statistic, then the density function of $Y_{(k)}$ is given by

$$
\begin{aligned}
& \quad g_{(k)}\left(y_{k}\right)=\frac{n!}{(k-1)!(n-k)}\left[F\left(y_{k}\right)\right]^{k-1}\left[1-F\left(y_{k}\right)\right]^{n-k} f\left(y_{k}\right), \\
& \infty<y_{k}<\infty
\end{aligned}
$$

Bivariate Transformation Method

Let X_{1} and X_{2} be jointly continuous random variables with joint probability density function $f_{X_{1}, X_{2}}$. It is sometimes necessary to obtain the joint distribution of the random variables Y_{1} and Y_{2}, which arise as functions of X_{1} and X_{2}. Specifically, suppose that $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$ for some functions g_{1} and g_{2}. Assume that the functions g_{1} and g_{2} satisfy the following conditions:

1. The equations $y_{1}=g_{1}\left(x_{1}, x_{2}\right)$ and $y_{2}=g_{2}\left(x_{1}, x_{2}\right)$ can be uniquely solved for x_{1} and x_{2} in terms of y_{1} and y_{2} with solutions given by, say, $x_{1}=h_{1}\left(y_{1}, y_{2}\right), x_{2}=h_{2}\left(y_{1}, y_{2}\right)$.

Bivariate Transformation Method

2. The functions g_{1} and g_{2} have continuous partial derivatives at all points (x_{1}, x_{2}) and are such that the following 2×2 determinant

$$
J\left(x_{1}, x_{2}\right)=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} \\
\frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}}
\end{array}\right] \neq 0
$$

at all points $\left(x_{1}, x_{2}\right)$.
Under these two conditions it can be shown that the random variables Y_{1} and Y_{2} are jointly continuous with joint density function given by
$f_{Y_{1}}, Y_{2}\left(y_{1}, y_{2}\right)=f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)\left|J\left(x_{1}, x_{2}\right)\right|^{-1}$, where $x_{1}=h_{1}\left(y_{1}, y_{2}\right), x_{2}=h_{2}\left(y_{1}, y_{2}\right)$ and $\left|J\left(x_{1}, x_{2}\right)\right|$ is the absolute value of the Jacobian.

Example

Let (X, Y) denote a random point in the plane and assume that the rectangular coordinates X and Y are independent standard random Normal random variables. We are interested in the joint distribution of R and Θ, the polar coordinate representation of this point (see Figure below).

Figure

Example

Letting $r=g_{1}(x, y)=\sqrt{x^{2}+y^{2}}$ and $\theta=g_{2}(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$, we see that

$$
\begin{aligned}
& \frac{\partial g_{1}}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}} \\
& \frac{\partial g_{1}}{\partial y}=\frac{y}{\sqrt{x^{2}+y^{2}}} \\
& \frac{\partial g_{2}}{\partial x}=\frac{1}{1+(y / x)^{2}}\left(-\frac{y}{x^{2}}\right)=\frac{-y}{x^{2}+y^{2}} \\
& \frac{\partial g_{2}}{\partial y}=\frac{1}{x\left[1+(y / x)^{2}\right]}=\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

Example

Hence
$J=\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{1}{\sqrt{x^{2}+y^{2}}}=\frac{1}{r}$.
As the joint density function of X and Y is

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}
$$

we see that the joint density function of $R=\sqrt{x^{2}+y^{2}}$, $\Theta=\tan ^{-1}(y / x)$, is given by

$$
f_{R, \Theta}(r, \theta)=\frac{1}{2 \pi} r e^{-r^{2} / 2} \quad 0<\theta<2 \pi, \quad 0<r<\infty
$$

```
The Method of Distribution Functions
The Method of Transformations
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix
```


Example

As this joint density factors into the marginal densities for R and Θ, we obtain that R and Θ are independent random variables, with Θ being uniformly distributed over $(0,2 \pi)$ and R having the Rayleigh distribution with density

$$
f_{R}(r)=r e^{-r^{2} / 2} \quad 0<r<\infty
$$

Example

If we wanted the joint distribution of R^{2} and Θ, then, as the transformation $d=h_{1}(x, y)=x^{2}+y^{2}$ and $\theta=h_{2}(x, y)=\tan ^{-1}(y / x)$ has a Jacobian

$$
J=\operatorname{det}\left[\begin{array}{cc}
2 x & 2 y \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right]=2
$$

we see that

$$
f_{D, \Theta}(d, \theta)=\frac{1}{2} e^{-d / 2} \frac{1}{2 \pi} \quad 0<d<\infty, \quad 0<\theta<2 \pi
$$

Therefore, R^{2} and Θ are independent, with R^{2} having an exponential distribution with parameter $\beta=2$.

We would like to show why $\Gamma(1 / 2)=\sqrt{\pi}$. First, we integrate a standard Normal random variable over its entire domain.

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-z^{2} / 2} d z=1
$$

Notice that the integrand above is symmetric around 0 . Thus,

$$
\int_{0}^{\infty} e^{-z^{2} / 2} d z=\frac{\sqrt{2 \pi}}{2}=\sqrt{\pi / 2}
$$

Now, let $w=\frac{z^{2}}{2}$, which implies that $d z=(2 w)^{-1 / 2} d w$. Then

$$
\int_{0}^{\infty} e^{-z^{2} / 2} d z=\int_{0}^{\infty}(2 w)^{-1 / 2} e^{-w} d w=\sqrt{\pi / 2}
$$

Our last equation is equivalent to

$$
\int_{0}^{\infty}(w)^{-1 / 2} e^{-w} d w=\sqrt{\pi}
$$

Next, we multiply the last integral by a "one"

$$
\Gamma(1 / 2) \int_{0}^{\infty} \frac{1}{\Gamma(1 / 2)}(w)^{-1 / 2} e^{-w} d w=\sqrt{\pi}
$$

We notice that the last integral equals one (we are integrating a Gamma distribution over its entire domain). Therefore

$$
\Gamma(1 / 2)(1)=\sqrt{\pi}
$$

Homework?

Let X_{1} and X_{2} be jointly continuous random variables with probability density function $f_{X_{1}, X_{2}}$. Let $Y_{1}=X_{1}+X_{2}$, $Y_{2}=X_{1}-X_{2}$. Find the joint density function of Y_{1} and Y_{2} in terms of $f_{X_{1}, X_{2}}$.

