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”If you can’t explain it simply, you don’t understand it well
enough”

Albert Einstein.
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Example

Let (Y1,Y2) denote a random sample of size n = 2 from the
uniform distribution on the interval (0, 1). Find the probability
density function for U = Y1 + Y2.
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Solution

The density function for each Yi is

f (y) =

{
1 0 ≤ y ≤ 1
0 elsewhere

Therefore, because we have a random sample, Y1 and Y2 are
independent, and

f (y1, y2) = f (y1)f (y2)

{
1 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1
0 elsewhere

We wish to find FU(u) = P(U ≤ u).
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Solution

The region y1 + y2 ≤ u for 0 ≤ u ≤ 1.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y1

y2

●

y1 + y2 < 1

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Chapter 6. Function of Random Variables

The Method of Distribution Functions
The Method of Transformations
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix

Solution

The solution, FU(u), 0 ≤ u ≤ 1, could be acquired directly by using
elementary geometry.
FU(u) = (area of triangle)(height) = u2

2 (1) = u2

2 .
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Solution

The region y1 + y2 ≤ u for 1 < u ≤ 2.
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Solution

The solution, FU(u), 1 < u ≤ 2, could be acquired directly by using
elementary geometry, or using Calculus.

FU(u) = 1− (area of triangle)(height)

= 1−
[

(2− u)(2− u)

2

]
(1)

= 1−
[

2− 2u +
u2

2

]
= −1 + 2u − u2

2
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Solution

It should be clear at this point that
If u < 0, FU(u) = 0.
If u > 2 FU(u) = 1.
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Solution

To summarize,

FU(u) =


0 u ≤ 0
u2/2 0 < u ≤ 1
(−u2/2) + 2u − 1 1 < u ≤ 2
1 u > 2
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Solution

The density function fU(u) can be obtained by differentiating
FU(u). Thus,

fU(u) =
d FU(u)

du
=


0 u ≤ 0
u 0 ≤ u ≤ 1
2− u 1 < u ≤ 2
0 u > 2
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Graph of pdf
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Example

Consider the case U = h(Y ) = Y 2, where Y is a continuous
random variable with distribution function FY (y) and density
function fY (y). Find the probability density function for U.
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Solution

If u ≤ 0,
FU(u) = P(U ≤ u) = P(Y 2 ≤ u) = 0.
If u > 0,
FU(u) = P(U ≤ u) = P(Y 2 ≤ u) = P(−

√
u ≤ Y ≤

√
u)

=
∫ √u
−
√
u
f (y)dy = FY (

√
u)− FY (−

√
u).
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Solution

On differentiating with respect to u, we see that

fU(u) =

{
1

2
√
u

[fY (
√
u) + fY (−

√
u)] u > 0

0 otherwise
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Exercise 6.7

Suppose that Z has a standard Normal distribution.
a. Find the density function of U = Z 2.
b. Does U have a gamma distribution? What are the values of α
and β?
c. What is another name for the distribution of U?
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Solution

Let FZ (z) and fZ (z) denote the standard Normal distribution and
density functions respectively.
a. FU(u) = P(U ≤ u) = P(Z 2 ≤ u) = P(−

√
u ≤ Z ≤

√
u)

= FZ (
√
u)− FZ (−

√
u).

The density function for U is then
fU(u) = F

′
U(u) = 1

2
√
u
fZ (
√
u) + 1

2
√
u
fZ (−

√
u), u ≥ 0.
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Solution

Recalling that fZ (z) = 1√
2π
e−

z2

2 , we find

fU(u) = 1
2
√
u

1√
2π
e−

u
2 + 1

2
√
u

1√
2π
e−

u
2

fU(u) = 1√
π
√

2
u−1/2e−u/2, u > 0.
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Solution

b. U has a gamma distribution with α = 1/2 and β = 2 (recall
that Γ(1/2) =

√
π).

c. This is the chi-square distribution with one degree of freedom.
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Weibull density function

The Weibull density function is given by

f (y) =

{
1
αmym−1e−y

m/α y > 0,
0, elsewhere,

where α and m are positive constants. This density function is
often used as a model for the lengths of life of physical systems.
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Exercise 6.27

Let Y have an exponential distribution with mean β. Prove that
W =

√
Y has a Weibull density with α = β and m = 2.

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Chapter 6. Function of Random Variables

The Method of Distribution Functions
The Method of Transformations
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix

Solution

Let W =
√
Y . The random variable Y is exponential so

fY (y) = 1
β e
−y/β.

Step 1. Then, Y = W 2.
Step 2. dy

dw = 2w .
Step 3. Then,

fW (w) = fY (w2)|2w | =
(

1
β e
−w2/β

)
(2w) = 2

βwe
−w2/β, w ≥ 0,

which is Weibull with m = 2.
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Exercise 6.28

Let Y have a uniform (0, 1) distribution. Show that W = −2ln(Y )
has an exponential distribution with mean 2.
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Solution

Step 1. Then, Y = e−w/2.
Step 2. dy

dw = −1
2 e−w/2.

Step 3. Then, fW (w) = fY (e−w/2)|−1
2 e−w/2| = 1

2e
−w/2,w > 0.
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Exercise 6.29 a.

The speed of a molecule in a uniform gas at equilibrium is a
random variable V whose density function is given by
f (v) = av2e−bv

2
, v > 0, where b = m/2kT and k ,T , and m

denote Boltzmann’s constant, the absolute temperature, and the
mass of the molecule, respectively.
Derive the distribution of W = mV 2/2, the kinetic energy of the
molecule.
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Solution

Step 1. With W = mV 2

2 , V =
√

2W
m =

(
2W
m

)1/2
.

Step 2. | dvdw | = |( 1
2 )( 2W

m )−1/2)( 2
m )| = | 1√

2mw
|.

Step 3. Then, fW (w) = fV (
√

2W
m )| 1√

2mw
| =

a(2w/m)e−b(2w/m) 1√
2mw

= a
√

2
m3/2w

1/2e−w/kT , w > 0.
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Solution

The above expression looks like a Gamma density with α = 3/2
and β = kT . Thus, the constant a must be chosen so that

a
√

2

m3/2
=

1

Γ(3/2)(KT )3/2
.

So,

fW (w) =
1

Γ(3/2)(KT )3/2
w1/2e−w/kT .
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Example

Let Z be a Normally distributed random variable with mean 0 and
variance 1. Use the method of moment-generating functions to
find the probability distribution of Z 2.
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Solution

MZ2(t) = E (etZ
2
) =

∫∞
−∞ etz

2 1√
2π
e−z

2/2dz

= 1√
2π

∫∞
−∞ e−z

2( 1−2t
2

)dz

This integral can be evaluated using an ”old trick” (we note that it
looks like a Normally distributed random variable).
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Solution

We realize that e−z
2( (1−2t)

2
) is proportional to a Normal with µ = 0

and σ2 = 1/(1− 2t), then

MZ2(t) =
√

2π
√

1/(1−2t)√
2π

∫∞
−∞

1√
2π
√

1/(1−2t)
e−z

2( 1−2t
2

)dz

MZ2(t) =
√

1
1−2t = (1− 2t)−1/2 (Note. This is valid provided

that t < 1/2).
(1− 2t)−1/2 is the moment-generating function for a
gamma-distributed random variable with α = 1/2 and β = 2.
Hence, Z 2 has a χ2 distribution with ν = 1 degree of freedom.
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Exercise 6.40

Suppose that Y1 and Y2 are independent, standard Normal random
variables. Find the probability distribution of U = Y 2

1 + Y 2
2 .
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Solution

MU(t) = E [eUt ] = E [e(Y 2
1 +Y 2

2 )t ]

= E [eY
2
1 teY

2
2 t ] (by independence)

= E [eY
2
1 t ]E [eY

2
2 t ]

= MY 2
1

(t)MY 2
2

(t)

= [(1− 2t)−1/2][(1− 2t)−1/2] = (1− 2t)−2/2.

Because moment-generating functions are unique, U has a χ2

distribution with 2 degrees of freedom.
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Comment about last example

Note that (1− 2t)−2/2 = (1− 2t)−1 which is the
moment-generating function of an exponential random variable
with parameter β = 2. Which is the right probability distribution?
χ2 with 2 df? Exponential with β = 2? Let us write the pdf for
each of them.
Exponential pdf with β = 2.
f (y) = 1

2e
−y/2, 0 < y <∞.

Chi-square pdf with ν = 2.

f (y) = y2/2−1

22/2Γ(2/2)
e−y/2 = 1

2e
−y/2, 0 < y <∞.

They are the same!
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Example

Let Y1 and Y2 be independent, Normal random variables, each
with mean µ and variance σ2. Let a1 and a2 denote known
constants. Find the density function of the linear combination
U = a1Y1 + a2Y2.
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Solution

The mgf for a Normal distribution with parameters µ and σ is
m(t) = eµt+σ2t2/2.

MU(t) = E [eUt ] = E [e(a1Y1+a2Y2)t ]

= E [e(a1Y1)te(a2Y2)t ] (by independence)

= E [e(a1Y1)t ]E [e(a2Y2)t ]

= MY1(a1t)MY2(a2t)

= [eµa1t+σ2(a1t)2/2][eµa2t+σ2(a2t)2/2]

= eµt(a1+a2)+σ2(a2
1+a2

2)t2/2

This is the mgf for a Normal variable with mean µ(a1 + a2) and
variance σ2(a2

1 + a2
2).
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Example

Let Y1 and Y2 be independent, Normal random variables, each with
mean µ and variance σ2. Find the density function of Ȳ = Y1+Y2

2 .
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Solution

From our previous example and making a1 = a2 = 1
2 , we have that

Ȳ has a Normal distribution with mean µ and variance σ2/2.
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Exercise 6.59

Show that if Y1 has a χ2 distribution with ν1 degrees of freedom
and Y2 has a χ2 distribution with ν2 degrees of freedom, then
U = Y1 + Y2 has a χ2 distribution with ν1 + ν2 degrees of
freedom, provided that Y1 and Y2 are independent.
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Exercise 6.72 a.

Let Y1 and Y2 be independent and uniformly distributed over the
interval (0, 1). Find the probability density function of
U = min(Y1,Y2).
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Solution

Let U = min(Y1,Y2).
FU(u) = P(U ≤ u) = 1− P(U > u). Now, let us find P(U > u).
P(U > u) = P(min(Y1,Y2) > u) = [P(Y1 > u)][P(Y2 > u)]
P(U > u) = [1− P(Y1 ≤ u)][1− P(Y2 ≤ u)]
P(U > u) = [1− u]2

Therefore, FU(u) = P(U ≤ u) = 1− [1− u]2.
Finally, fU(u) = d

duFU(u) = −2(1− u)(−1) = 2(1− u), 0 < u < 1.
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Exercise 6.73 a.

Let Y1 and Y2 be independent and uniformly distributed over the
interval (0, 1). Find the probability density function of
U2 = max(Y1,Y2).

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Chapter 6. Function of Random Variables

The Method of Distribution Functions
The Method of Transformations
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix

Solution

Let U = max(Y1,Y2).
FU(u) = P(U ≤ u) = P(max(Y1,Y2) ≤ u)
= P(Y1 ≤ u)P(Y2 ≤ u) = (u)(u) = u2.
Therefore, FU(u) = u2.
Finally, fU(u) = d

duFU(u) = 2u, 0 < u < 1.
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Example

Let Y1,Y2, ...,Yn be independent, uniformly distributed random
variables on the interval [0, θ]. Find the pdf of Y(n).
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Solution

Let U = max(Y1,Y2, ...,Yn).
FU(u) = P(U ≤ u) = P(max(Y1,Y2, ...,Yn) ≤ u)
= P(Y1 ≤ u)P(Y2 ≤ u)...P(Yn ≤ u) = (u/θ)(u/θ)...(u/θ).
Therefore, FU(u) = (u/θ)n.

Finally, fU(u) = d
duFU(u) = nun−1

θn , 0 ≤ u ≤ θ.
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Example

The values x1 = 0.62, x2 = 0.98, x3 = 0.31, x4 = 0.81, and
x5 = 0.53 are the n = 5 observed values of five independent trials
of an experiment with pdf f (x) = 2x , 0 < x < 1. The observed
order statistics are
y1 = 0.31 < y2 = 0.53 < y3 = 0.62 < y4 = 0.81 < y5 = 0.98.
Recall that the middle observation in the ordered arrangement,
here y3 = 0.62 is called the sample median and the difference of
the largest and the smallest here
y5 − y1 = 0.98− 0.31 = 0.67,
is called the sample range.
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If X1,X2, ...,Xn are observations of a random sample of size n from
a continuous-type distribution, we let the random variables
Y1 < Y2 < ... < Yn

denote the order statistics of that sample. That is,
Y1 = smallest of X1,X2, ...,Xn,
Y2 = second smallest of X1,X2, ...,Xn,
. . .

Yn = largest of X1,X2, ...,Xn.
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Example

Let Y1 < Y2 < Y3 < Y4 < Y5 be the order statistics of a random
sample X1,X2,X3,X4,X5 of size n = 5 from the distribution with
pdf f (x) = 2x , 0 < x < 1. Consider P(Y4 ≤ 1/2).
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Example (cont.)

For the event Y4 ≤ 1/2 to occur, at least four of the random
variables X1,X2,X3,X4,X5 must be less than 1/2.
Thus if the event Xi ≤ 1/2, i = 1, 2, ..., 5, is called ”success” we
must have at least four successes in the five mutually independent
trials, each of which has probability of success

P
(
Xi ≤ 1

2

)
=
∫ 1/2

0 2xdx =
(

1
2

)2
= 1

4
Thus,
P
(
y4 ≤ 1

2

)
=
(5

4

) (
1
4

)4 (3
4

)
+
(

1
4

)5
= 0.0156
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Example (cont.)

In general, if 0 < y < 1, then the distribution function of Y4 is

G (y) = P(Y4 ≤ y) =

(
5

4

)(
y2
)4 (

1− y2
)

+
(
y2
)5

since this represents the probability of at least four ”successes” in
five independent trials, each of which has probability of success

P(Xi ≤ y) =

∫ y

0
2xdx = y2.
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Example (cont.)

The pdf of Y4 is therefore, for 0 < y < 1,

g(y) = G
′
(y) =

(
5

4

)
4(y2)3(2y)(1−y2)+

(
5

4

)
(y2)4(−2y)+5(y2)4(2y)

g(y) =
5!

3!1!
(y2)3(1− y2)(2y), 0 < y < 1.

Note that in this example, the cumulative distribution function of
each X is FX (x) = x2 when 0 < x < 1. Thus

g(y) =
5!

3!1!
[FX (y)]3(1− FX (y)]f (y), 0 < y < 1.
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Theorem 6.5

Let Y1,Y2, ...,Yn be independent identically distributed continuous
random variables with common distribution function F (y) and
common density function f (y). If Y(k) denotes the kth-order
statistic, then the density function of Y(k) is given by

g(k)(yk) =
n!

(k − 1)!(n − k)
[F (yk)]k−1[1− F (yk)]n−k f (yk),

∞ < yk <∞
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Bivariate Transformation Method

Let X1 and X2 be jointly continuous random variables with joint
probability density function fX1, X2 . It is sometimes necessary to
obtain the joint distribution of the random variables Y1 and Y2,
which arise as functions of X1 and X2. Specifically, suppose that
Y1 = g1(X1,X2) and Y2 = g2(X1,X2) for some functions g1 and
g2. Assume that the functions g1 and g2 satisfy the following
conditions:
1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be
uniquely solved for x1 and x2 in terms of y1 and y2 with solutions
given by, say, x1 = h1(y1, y2), x2 = h2(y1, y2).
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Bivariate Transformation Method

2. The functions g1 and g2 have continuous partial derivatives at
all points (x1, x2) and are such that the following 2× 2 determinant

J(x1, x2) = det

[
∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

]
6= 0

at all points (x1, x2).
Under these two conditions it can be shown that the random
variables Y1 and Y2 are jointly continuous with joint density
function given by
fY1, Y2(y1, y2) = fX1, X2(x1, x2)|J(x1, x2)|−1,
where x1 = h1(y1, y2), x2 = h2(y1, y2) and |J(x1, x2)| is the
absolute value of the Jacobian.

(We will not prove this result, but it follows from Calculus results
used for change of variables in multiple integration.)
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Example

Let (X , Y ) denote a random point in the plane and assume that
the rectangular coordinates X and Y are independent standard
random Normal random variables. We are interested in the joint
distribution of R and Θ, the polar coordinate representation of this
point (see Figure below).
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Figure
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Example

Letting r = g1(x , y) =
√
x2 + y2 and θ = g2(x , y) = tan−1

( y
x

)
,

we see that
∂g1
∂x = x√

x2+y2

∂g1
∂y = y√

x2+y2

∂g2
∂x = 1

1+(y/x)2

(
− y

x2

)
= −y

x2+y2

∂g2
∂y = 1

x[1+(y/x)2]
= x

x2+y2
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Example

Hence
J = x2

(x2+y2)3/2 + y2

(x2+y2)3/2 = 1√
x2+y2

= 1
r .

As the joint density function of X and Y is

fX , Y (x , y) =
1

2π
e−(x2+y2)/2

we see that the joint density function of R =
√

x2 + y2,
Θ = tan−1(y/x), is given by

fR, Θ(r , θ) =
1

2π
re−r

2/2 0 < θ < 2π, 0 < r <∞.
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Example

As this joint density factors into the marginal densities for R and
Θ, we obtain that R and Θ are independent random variables, with
Θ being uniformly distributed over (0, 2π) and R having the
Rayleigh distribution with density

fR(r) = re−r
2/2 0 < r <∞.

Al Nosedal. University of Toronto. STA 260: Statistics and Probability II



Chapter 6. Function of Random Variables

The Method of Distribution Functions
The Method of Transformations
The Method of Moment-Generating Functions
Order Statistics
Bivariate Transformation Method
Appendix

Example

If we wanted the joint distribution of R2 and Θ, then, as the
transformation d = h1(x , y) = x2 + y2 and
θ = h2(x , y) = tan−1(y/x) has a Jacobian

J = det

[
2x 2y
−y

x2+y2
x

x2+y2

]
= 2

we see that

fD, Θ(d , θ) =
1

2
e−d/2 1

2π
0 < d <∞, 0 < θ < 2π.

Therefore, R2 and Θ are independent, with R2 having an
exponential distribution with parameter β = 2.
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We would like to show why Γ(1/2) =
√
π. First, we integrate a

standard Normal random variable over its entire domain.

1√
2π

∫ ∞
−∞

e−z
2/2dz = 1

Notice that the integrand above is symmetric around 0. Thus,∫ ∞
0

e−z
2/2dz =

√
2π

2
=
√
π/2

Now, let w = z2

2 , which implies that dz = (2w)−1/2dw . Then∫ ∞
0

e−z
2/2dz =

∫ ∞
0

(2w)−1/2e−wdw =
√
π/2
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Our last equation is equivalent to∫ ∞
0

(w)−1/2e−wdw =
√
π

Next, we multiply the last integral by a ”one”

Γ(1/2)

∫ ∞
0

1

Γ(1/2)
(w)−1/2e−wdw =

√
π

We notice that the last integral equals one (we are integrating a
Gamma distribution over its entire domain). Therefore

Γ(1/2)(1) =
√
π
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Homework?

Let X1 and X2 be jointly continuous random variables with
probability density function fX1,X2 . Let Y1 = X1 + X2,
Y2 = X1 − X2. Find the joint density function of Y1 and Y2 in
terms of fX1,X2 .
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