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Suppose we have a coin that either is honest or is a coin that has
been weighted so that when tossed its probability of coming up
heads is 0.6. We wish to test whether the coin is honest or is the
weighted coin by tossing it three times and observing the number
of heads that is obtained. Our sample here is the triple of numbers
(x1, x2, x3), where xi = 1 or 0 corresponding to whether a head or
a tail was obtained on the ith toss.
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We may treat this as a problem of testing the hypothesis
H0 : θ = 0.5 vs Ha : θ = 0.6, where X is a Bernoulli random
variable with parameter θ and from which a random sample of size
3 has been taken. Since there are only two possible actions that
can be taken in a testing problem, namely accept H0 or accept Ha,
a decision function (also known as tests statistic)
W = W (x1, x2, x3) must separate 3 dimensional space into two
parts. Let A0 denote the part that is associated with accepting H0,
and Aa the remaining part associated with accepting Ha (Aa =
Rejection Region or RR). This means that if a random sample of X
yields a point (x1, x2, x3) that lies in A0, we accept the hypothesis
H0 : θ = 0.5 whereas if it lies in RR, we reject H0 and accept the
alternative hypothesis Ha : θ = θa.
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Definition

A type I error is made if H0 is rejected when H0 is true. The
probability of a type I error is denoted by α. The value of α is
called the level of the test.

A type II error is made if H0 is accepted when Ha is true. The
probability of a type II error is denoted by β.
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Problem

Suppose you are testing H0 : p = 1/2 against H1 : p = 2/3 for a
Binomial variable X with n = 3. What values of X would you
assign to the rejection region (RR) if you wish to have α ≤ 1/8 and
you wish to minimize β corresponding to the value of α selected?
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Solution

(We can find the pmf of X in our table).

x 0 1 2 3

f (x |p = 1/2) 1/8 3/8 3/8 1/8

f (x |p = 2/3) 1/27 6/27 12/27 8/27
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Solution

First, recall α’s definition
α = P(test statistic is in RR when H0 is true)
α = P(X ∈ RR|p = 1/2)

Al Nosedal University of Toronto Testing Hypotheses



Solution

Proposal one: RR = {X = 0} (clearly, this rejection region has an
α = 1/8)
β = P(accepting H0 when Ha is true)
β = P(value of the test statistic is not in RR when Ha is true)
β = P(X = 1 or X = 2 or X = 3|p = 2/3) = 26/27
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Solution

Note that
β = P(X = 1 or X = 2 or X = 3|p = 2/3)
1− β = P(X = 0|p = 2/3)
1− β = 1/27
(this quantity, 1− β, will be called the power of the test).
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Solution

Proposal two: RR = {X = 3} (clearly, this rejection region has an
α = 1/8)
β = P(accepting H0 when Ha is true)
β = P(value of the test statistic is not in RR when Ha is true)
β = P(X = 0 or X = 1 or X = 2|p = 2/3) = 19/27
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Solution

Note that
β = P(X = 0 or X = 1 or X = 2|p = 2/3)
1− β = P(X = 3|p = 2/3)
1− β = 8/27
(this quantity, 1− β, will be called the power of the test).

Hence choose second proposal (RR = {X = 3}) because the size
of its type II error is smaller.
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Solution

Also note that
αproposal 1 = αproposal 2.
On the other hand,
1

27 <
8

27
Power of proposal 1 < Power of proposal 2.
Which implies that proposal 2 is ”more powerful” than proposal 1.
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Definition

Suppose that W is the test statistic and RR is the rejection region
for a test of a hypothesis involving the value of a parameter θ.
Then the power of the test, denoted by power(θ), is the probability
that the test will lead to rejection of H0 when the actual parameter
value is θ. That is,
power(θ) = P(W in RR when the parameter value is θ)
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Exercise 10.5

Let Y1 and Y2 be independent and identically distributed with a
uniform distribution over the interval (θ, θ + 1). For testing
H0 : θ = 0 vs Ha : θ > 0, we have two competing tests:
Test 1: Reject H0 if Y1 > 0.95
Test 2: Reject H0 if Y1 + Y2 > C
Find the value of C so that test 2 has the same value for α as test
1.
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Solution

Recall that α = P(rejecting H0 when H0 is true).
Test 1.
α = P(Y1 > 0.95 when θ = 0) = 0.05
(See figure)
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Solution

Test 2
α = 0.05 = P(Y1 + Y2 > C when H0 is true)
Recall that when Y1 and Y2 have a uniform distribution over (0, 1)
then the pdf of Y1 + Y2 is given by the function shown below (see
example 6.3, it was one of the first things we did together this
semester).
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Figure
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y1 + y2 > C
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Solution

Area of triangle = bh
2

0.05 = (2−C)(2−C)
2

0.05 = (2−C)2

2
(solving for C )
C ≈ 1.6837
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The Neyman-Pearson Lemma

Suppose that we wish to test the simple null hypothesis H0 : θ = θ0

versus the simple alternative hypothesis Ha : θa, based on a
random sample Y1, Y2, ...,Yn from a distribution with parameter
θ. Let L(θ) denote the likelihood of the sample when the value of
the parameter is θ. Then, for a given α, the test that maximizes
the power at θa has a rejection region, RR, determined by

L(θ0)

L(θa)
< k .

The value of k is chosen so that the test has the desired value for
α. Such a test is a most powerful α-level test for H0 versus Ha.
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Example

Suppose that Y represents a single observation from a population
with probability density function given by

f (y |θ) =

{
θyθ−1, 0 < y < 1,
0, elsewhere.

Find the most powerful test with significance level α = 0.05 to test
H0 : θ = 2 versus Ha : θ = 1.
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Solution

L(θ0)
L(θa) = f (y |θ0)

f (y |θa) = 2y2−1

1 = 2y for 0 < y < 1, and the form of the
rejection region for the most powerful test is

2y < k .

Thus, RR is {y < k/2} or {y < k∗}.
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Solution

Recalling that α = 0.05 and its definition, we have that
0.05 = P(Y in RR when H0 is true) = P(Y in RR when θ = 2)

= P(Y < k∗) when θ = 2)

=
∫ k∗

0 2ydy .
Therefore, (k∗)2 = 0.05, and the rejection region of the most
powerful test is

RR = {y <
√

0.05 = 0.2236}.
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Example

Let Y1,Y2,X3, ...,Yn be a random sample from the Normal
distribution N(µ, σ2 = 36). We shall find the best critical region
(or most powerful test) for testing the simple hypothesis
H0 : µ0 = 50 vs Ha : µ = 55.
(In this example, µ0 = 50 and µa = 55).
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Solution

From our table, we have that

f (y |µ, σ2) =
1

(2πσ2)1/2
e−

1
2σ2 (y−µ)2

.
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Solution

Applying N-P Lemma, we have that

L(µ0)

L(µa)
=

(72π)−n/2exp
(
− 1

72

∑
(yi − 50)2

)
(72π)−n/2exp

(
− 1

72

∑
(yi − 55)2

)
L(µ0)

L(µa)
= exp

{
− 1

72

[∑
(yi − 50)2 −

∑
(yi − 55)2

]}
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Solution

Let us ”play” with the exponent, so we can simplify the last
expression∑

(yi − 50)2 −
∑

(yi − 55)2

=
∑

[y2
i − 100yi + 2500]−

∑
[y2

i − 110yi + 3025]
= 10

∑
yi − 525n.
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Solution

Thus,

L(µ0)

L(µa)
= exp

{
− 1

72

[
10
∑

yi − 525n
]}

< k .

Now, let us find an equivalent RR that is ”easier” to deal with{
− 1

72 [10
∑

yi − 525n]
}
< ln(k)∑

yi >
525n−72ln(k)

10 (dividing by n on both sides)
ȳ > k∗
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Solution

Thus L(µ0)
L(µa) < k is equivalent to RR = {ȳ > k∗}. A best critical

region is, according to Neyman-Pearson lemma, {ȳ > k∗}
where k∗ is selected so that the size of the critical region (or
rejection region) is α.
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Solution

Say n = 16 with α = 0.05
α = 0.05 = P(Ȳ > k∗|µ = 50)

= P
(
Ȳ−50

6/4 > k∗−50
6/4

)
= P(Z > 1.645).

Solving for k∗ (from 4(k∗−50)
6 = 1.645), we have that

k∗ = 52.4675.
Finally!! RR = {ȳ > 52.4675}
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Example

Suppose that Y1,Y2, ...,Yn constitute a random sample from a
Normal distribution with unknown mean µ and known variance
σ2. We wish to test H0 : µ = µ0 against Ha : µ > µ0 for a
specified constant µ0. Find the uniformly most powerful test
with significance level α.
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Let us ”recycle” our work from the previous problem. That is, we
will start by finding the most powerful α-level test of H0 : µ = µ0

against Ha : µ = µa (where µa is a fixed value such that µa > µ0).

Al Nosedal University of Toronto Testing Hypotheses



Solution

Applying N-P Lemma, we have that

L(µ0)

L(µa)
=

(2πσ2)−n/2exp
(
− 1

2σ2

∑
(yi − µ0)2

)
(2πσ2)−n/2exp

(
− 1

2σ2

∑
(yi − µa)2

)
L(µ0)

L(µa)
= exp

{
− 1

2σ2

[∑
(yi − µ0)2 −

∑
(yi − µa)2

]}
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Solution

Let us ”play” with the exponent, so we can simplify the last
expression∑

(yi − µ0)2 −
∑

(yi − µa)2

=
∑

(y2
i − 2µ0yi + µ2

0)−
∑

(y2
i − 2µayi + µ2

a)
= −2µ0

∑
yi + nµ2

0 + 2µa
∑

yi − nµ2
a

= −2nµ0ȳ + nµ2
0 + 2nµaȳ − nµ2

a
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Solution

Thus,

L(µ0)

L(µa)
= exp

{
− 1

2σ2
[(2nµa − 2nµ0)ȳ + n(µ2

0 − µ2
a)]

}
< k .

Now, let us find an equivalent RR that is ”easier” to deal with{
− 1

2σ2 [(2nµa − 2nµ0)ȳ + n(µ2
0 − µ2

a)]
}
< ln(k)

2n(µa − µ0)ȳ + n(µ2
0 − µ2

a) > −2σ2ln(k)
2n(µa − µ0)ȳ > −2σ2ln(k)− n(µ2

0 − µ2
a)

(dividing by 2n(µa − µ0) on both sides and noting that this
quantity is positive, for any µa such that µa > µ0)
ȳ > k∗

Al Nosedal University of Toronto Testing Hypotheses



Solution

Thus L(µ0)
L(µa) < k is equivalent to RR = {ȳ > k∗}. Therefore, the

most powerful test of H0 : µ = µ0 vs Ha : µ = µa has a rejection
region given by {ȳ > k∗} where k∗ is selected so that the size of
the rejection region is α.
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Solution

α = P(Ȳ > k∗|µ = µ0)

= P
(
Ȳ−µ0

σ/
√
n
> k∗−µ0

σ/
√
n

)
= P(Z > zα).

Solving for k∗ (from
√
n(k∗−µ0)

σ = zα), we have that

k∗ = µ0 + zα
(
σ√
n

)
.

Finally!! RR = {ȳ > µ0 + zα
(
σ√
n

)
}
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Solution

We now observe that neither the test statistic (ȳ) nor the rejection
region for this α-level test depends on the particular value assigned
to µa. That is, for any value of µa that satisfies the condition
µa > µ0, we obtain exactly the same RR∗. Thus, the test with
the RR that we found above has the largest possible value for
power(µa) for every µa > µ0. It is the uniformly most powerful
test for H0 : µ0 vs Ha : µ > µ0.
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Exercise 10.95

Suppose that we have a random sample of four observations from
the density function

f (y |θ) =

{
1

2θ3 y
2e−y/θ, y > 0,

0, elsewhere.

a. Find the rejection region for the most powerful test of
H0 : θ = θ0 vs Ha : θ = θa, assuming that θa > θ0.
b. Is the test given in part (a) uniformly most powerful for the
alternative θ > θ0?
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Likelihood Ratio Tests

We let Ω denote the total parameter space, that is, the set of all
possible values of the parameter θ given by either H0 or Ha. These
hypotheses will be stated as follows:
H0 : θ ∈ ω, Ha : θ ∈ ω′ ,
where ω is a subset of Ω and ω

′
is the complement of ω with

respect to Ω.
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Definition

The Likelihood ratio is the quotient

λ =
L(ω̂)

L(Ω̂)
,

where L(ω̂) is the maximum of the likelihood function with respect
to θ when θ ∈ ω and L(Ω̂) is the maximum of the likelihood
function with respect to θ when θ ∈ Ω.

Al Nosedal University of Toronto Testing Hypotheses



Definition

To test H0 : θ ∈ ω against Ha : θ ∈ ω′ , the Rejection Region
(RR) (a.k.a. critical region) for the likelihood ratio test is the set
of points in the sample space for which

λ =
L(ω̂)

L(Ω̂)
≤ k

where 0 < k < 1 and k is selected so that the test has a desired
significance level α.
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Example

We shall test the hypothesis
H0 : µ = 162 vs Ha : µ 6= 162
for a Normal variable with known σ2 = 5 based on a random
sample of size n and α = 0.05.
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Step 0

Thus ω = {162} and Ω = {µ : −∞ < µ <∞}.
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Step 1. Finding Likelihood

L(y1, y2, ..., yn|µ) = f (y1|µ)...f (yn|µ)

= 1
(2πσ2)1/2 e

− 1
2σ2 (y1−µ)2

... 1
(2πσ2)1/2 e

− 1
2σ2 (yn−µ)2

=
(

1
2πσ2

)n/2
e−

1
2σ2

∑n
i=1(yi−µ)2

= L(µ)
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Step 2. Finding L(ω̂)

When H0 is true, µ can take on only one value. Thus
L(ω̂) = L(162).

L(ω̂) =

(
1

10π

)n/2

e−
1

10

∑n
i=1(yi−162)2
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Step 3. Finding L(Ω̂)

To find L(Ω̂), we must find the value of µ that maximizes L(µ)
(recall that it is easier to maximize lnL(µ)).
lnL(µ) = n

2 ln
(

1
10π

)
− 1

10

∑n
i=1(yi − µ)2

= −n
2 ln(10π)− 1

10

∑n
i=1(yi − µ)2

dlnL(µ)
dµ = − 1

10

∑n
i=1 2(yi − µ)(−1)

= 1
5

∑n
i=1(yi − µ)

(now, we have to set it equal to zero and solve for µ)
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Step 3 (cont.)

∑n
i=1 yi − nµ = 0∑n
i=1 yi = nµ

µ̂MLE = ȳ
(check that it is a max...)
Thus L(Ω̂) = L(ȳ).
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Step 4. Finding λ

λ = L(162)
L(ȳ) =

( 1
10π )

n/2
e−

1
10

∑n
i=1(yi−162)2

( 1
10π )

n/2
e
− 1

10
∑n

i=1
(yi−ȳ)2
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(Now, let us try and simplify λ)∑n
i=1(yi − 162)2 =

∑n
i=1[(yi − ȳ) + (ȳ − 162)]2

=
∑n

i=1(yi − ȳ)2 + 2(ȳ −162)
∑n

i=1(yi − ȳ) +n(ȳ −162)2

(note that
∑n

i=1(yi − ȳ) = 0 )
=
∑n

i=1(yi − ȳ)2 + n(ȳ − 162)2
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Step 4 (cont.)

λ =
exp

[
− 1

10

∑n
i=1(yi − ȳ)2 − n

10 (ȳ − 162)2
]

exp
[
− 1

10

∑n
i=1(yi − ȳ)2

]
λ = e−

n
10

(ȳ−162)2
.
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Step 5. Finding RR

The Rejection Region (RR) is given by

exp{− n

10
(ȳ − 162)2} ≤ k

(which is equivalent to)

(ȳ − 162)2 ≥ −10

n
ln(k)
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Step 5 (cont.)

Note that when H0 : µ = 162 is true

ȳ − 162
σ√
n

=
ȳ − 162
√

5√
n

= Z i .e. a N(0, 1).
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Step 5 (cont.)

Therefore,  ȳ − 162
√

5√
n

2

= χ2(1) ≥ k∗
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Step 5 (cont.)

From Table 6 and using α = 0.05, k∗ ≈ 3.84146. Thus the
Rejection Region is:

RR = {ȳ :

 ȳ − 162
√

5√
n

2

≥ 3.84146}

or

RR = {ȳ :
n(ȳ − 162)2

5
≥ 3.84146}
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Theorem 10.2

Let Y1,Y2, ...,Yn have joint likelihood function L(Θ). Let r0
denote the number of free parameters that are specified by
H0 : Θ ∈ Ω0 and let r denote the number of free parameters
specified by the statement Ω ∈ Ω. Then, for large n, −2ln(λ) has
approximately a χ2 distribution with r − r0 df.
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Example

As an illustration of how the asymptotic distribution performs on a
familiar problem, let us apply it to testing
H0 : µ = µ0 vs Ha : µ 6= µ0

for a Normal variable with known σ2 based on a random sample of
size n and α = 0.05.
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Example (cont.)

Hence the likelihood functions are

L(µ0) =

(
1

2πσ2

)n/2

e−
1

2σ2

∑n
i=1(yi−µ0)2

and

L(ȳ) =

(
1

2πσ2

)n/2

e−
1

2σ2

∑n
i=1(yi−ȳ)2
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Example (cont.)

Performing some algebraic simplifications on the likelihood ratio
will produce the value

λ = exp

[
−n(ȳ − µ0)2

2σ2

]
.

Hence,

−2ln(λ) =
n(ȳ − µ0)2

σ2
=

(
ȳ − µ0

σ√
n

)2
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Example (cont.)

Since

(
ȳ−µ0
σ√
n

)2

is a Standard Normal variable when H0 is true, we

know that

(
ȳ−µ0
σ√
n

)2

possesses an exact chi-square distribution

with one degree of freedom. Thus, the approximation here for
large n happens to be exact!
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Another example

Suppose now that the random sample Y1,Y2, ...,Yn arises from the
Normal population N(µ, σ2) where both µ and σ2 are unknown.
Let us consider the likelihood ratio test of the null hypothesis
H0 : µ = µ0 vs Ha : µ 6= µ0.
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Step 0

For this test
ω = {(µ, σ2) : µ = µ0, 0 < σ2 <∞} and
Ω = {(µ, σ2) : −∞ < µ <∞, 0 < σ2 <∞}
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Step 1. Finding Likelihood

L(µ, σ2) =

(
1

2πσ2

)n/2

e−
1

2σ2

∑n
i=1(yi−µ)2
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Step 2. Finding L(ω̂)

If (µ, σ2) ∈ ω, the maximum likelihood estimates are µ̂ = µ0 and

σ̂2 = 1
n

∑n
i=1(yi − µ0)2 (Remember?)

L(ω̂) =

(
1

2π
n

∑
(yi − µ0)2

)n/2

exp

(
−
∑

(yi − µ0)2

2
n

∑
(yi − µ0)2

)

L(ω̂) =

(
ne−1

2π
∑

(yi − µ0)2

)n/2
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Step 3. Finding L(Ω̂)

If (µ, σ2) ∈ Ω, the maximum likelihood estimates are µ̂ = ȳ and

σ̂2 =
∑

(yi−ȳ)2

n

L(Ω̂) =

(
1

2π
n

∑
(yi − ȳ)2

)n/2

exp

(
−
∑

(yi − ȳ)2

2
n

∑
(yi − ȳ)2

)

L(Ω̂) =

(
ne−1

2π
∑

(yi − ȳ)2

)n/2
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Step 4. Finding λ

λ =

(
ne−1

2π
∑

(yi−µ0)2

)n/2

(
ne−1

2π
∑

(yi−ȳ)2

)n/2
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Note that ∑
(yi − µ0)2 =

∑
(yi − ȳ)2 + n(ȳ − µ0)2
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Step 4. Finding λ

λ =

( ∑
(yi − ȳ)2∑

(yi − ȳ)2 + n(ȳ − µ0)2

)n/2

≤ k
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Step 5. Finding RR

We know that the Rejection Region (RR) is given by

λ =
L(ω̂)

L(Ω̂)
≤ k

which is equivalent to

1

k
≤ L(Ω̂)

L(ω̂)
=

1

λ
.
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Step 5. Finding RR

1

λ
=

∑
(yi − ȳ)2 + n(ȳ − µ0)2∑

(yi − ȳ)2

1

λ
= 1 +

n(ȳ − µ0)2∑
(yi − ȳ)2

≥ 1

k
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Step 5. Finding RR

n(ȳ − µ0)2∑
(yi − ȳ)2

≥ 1

k
− 1

n(n − 1)(ȳ − µ0)2∑
(yi − ȳ)2

≥
(

1

k
− 1

)
(n − 1)

nσ2

σ2 (n − 1)(ȳ − µ0)2∑
(yi − ȳ)2

≥ C
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Step 5. Finding RR

n(ȳ−µ0)2

σ2∑
(yi−ȳ)2

σ2(n−1)

≥ C
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Step 5. Finding RR

When H0 is true,
√
n (ȳ−µ0)

σ is N(0,1) and∑
(yi−ȳ)2

σ2 =
(n−1)

∑
(yi−ȳ)2

n−1

σ2 = (n−1)S2

σ2

has an independent chi-square distribution χ2(n − 1).
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Step 5. Finding RR

Hence, under H0

T =

√
n (ȳ−µ0)

σ√
1
σ2

∑
(yi−ȳ)2

n−1

T has a t distribution with n − 1 df.
In accordance with the likelihood ratio test criterion, H0 is rejected
if T 2 ≥ C . That is, we reject H0 : µ = µ0 if the observed
|T | ≥ tα/2(n − 1).
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