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SIMPLE LINEAR REGRESSION
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Scatterplot

A scatterplot shows the relationship between two quantitative variables
measured on the same individuals. The values of one variable appear on
the horizontal axis, and the values of the other variable appear on the
vertical axis. Each individual in the data appears as the point in the plot
fixed by the values of both variables for that individual.
Always plot the explanatory variable, if there is one, on the horizontal axis
(the x axis) of a scatterplot. As a reminder, we usually call the explanatory
variable x and the response variable y . If there is no explanatory-response
distinction, either variable can go on the horizontal axis.
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Examining Scatterplot

In any graph of data, look for the overall pattern and for striking
deviations from that pattern.
You can describe the overall pattern of a scatterplot by the form,
direction, and strength of the relationship.
An important kind of deviation is an outlier, an individual value that falls
outside the overall pattern of the relationship.
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Positive association, negative association

Two variables are positively associated when above-average values of
one tend to accompany above-average values of the other, and
below-average values also tend to occur together.
Two variables are negatively associated when above-average values of
one tend to accompany below-average values of the other, and vice versa.
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Do heavier people burn more energy?

Metabolic rate, the rate at which the body consumes energy, is important
in studies of weight gain, dieting, and exercise. We have data on the lean
body mass and resting metabolic rate for 12 women who are subjects in a
study of dieting. Lean body mass, given in kilograms, is a person’s weight
leaving out all fat. Metabolic rate is measured in calories burned per 24
hours.
The researchers believe that lean body mass is an important influence on
metabolic rate. Make a scatterplot to examine this belief.
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Do heavier people burn more energy?

The study of dieting described earlier collected data on the lean body mass
(in kilograms) and metabolic rate (in calories) for both female and male
subjects.

Mass Rate Sex Mass Rate Sex

36.1 995 F 40.3 1189 F
54.6 1425 F 33.1 913 F
48.5 1396 F 42.4 1124 F
42.0 1418 F 34.5 1052 F
50.6 1502 F 51.1 1347 F
42.0 1256 F 41.2 1204 F
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More data

Mass Rate Sex Mass Rate Sex

51.9 1867 M 47.4 1322 M
46.9 1439 M 48.7 1614 M
62.0 1792 M 51.9 1460 M
62.9 1666 M
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a) Make a scatterplot of metabolic rate versus lean body mass for all 19
subjects. Use separate symbols to distinguish women and men. (This is a
common method to compare two groups of individuals in a scatterplot)
b) Does the same overall pattern hold for both women and men? What is
the most important difference between women and men?
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Reading our data

# Step 1. Entering data;

# url of metabolic rate data;

meta_url = "http://www.math.unm.edu/~alvaro/metabolic2.txt"

# import data in R;

data = read.table(meta_url, header = TRUE);
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Reading our data

# Step 2. Formating data;

x.min=min(data$Mass);

x.max=max(data$Mass);

y.min=min(data$Rate);

y.max=max(data$Rate);

female=data[1:12, ];

male=data[13:19, ];
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Scatterplot

# Step 3. Making scatterplot;

plot(female$Mass,female$Rate,pch=19,col="red",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)",

xlim=c(x.min,x.max),ylim=c(y.min,y.max));
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Scatterplot
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Scatterplot

# Step 3. Making scatterplot;

plot(female$Mass,female$Rate,pch=19,col="red",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)",

xlim=c(x.min,x.max),ylim=c(y.min,y.max));

points(male$Mass,male$Rate,pch=19,col='blue');

# pch=19 tells R that you want solid circles;
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Scatterplot

●

●●●
●

●
●

●

●
●

●

●

35 40 45 50 55 60

10
00

16
00

Lean Body Mass (kg)

M
et

ab
ol

ic
 R

at
e 

(c
al

or
ie

s/
da

y)

●

●

●

●

●

●

●

Al Nosedal and Alison Weir STA258H5 Winter 2017 15 / 132



Scatterplot

# Step 3. Making scatterplot;

plot(female$Mass,female$Rate,pch=19,col="red",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)",

xlim=c(x.min,x.max),ylim=c(y.min,y.max));

points(male$Mass,male$Rate,pch=19,col='blue');

legend("topleft",c("female","male"),pch=c(19,19),

col=c('red','blue'),bty="n");

# legend tells R that you want to add a legend to

# your graph;

# topleft, where you want to position legend;

# bty="n" NO box around legend;
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Scatterplot
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b) Solution

For both men and women, the association is linear and positive. The
women’s points show a stronger association. As a group, males typically
have larger values for both variables (they tend to have more mass, and
tend to burn more calories per day).
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Correlation

The correlation measures the direction and strength of the linear
relationship between two quantitative variables. Correlation is usually
written as r .
Suppose that we have data on variables x and y for n individuals. The
values for the first individual are x1 and y1, the values for the second
individual are x2 and y2, and so on.
The means and standard deviations of the two variables are x̄ and Sx for
the x-values, and ȳ and Sy for the y -values. The correlation r between x
and y is

r =
1

n − 1

n∑
i=1

(
xi − x̄

Sx

)(
yi − ȳ

Sy

)
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Facts about correlation

The correlation r measures the strength and direction of the linear
association between two quantitative variables x and y . Although you
calculate a correlation for any scatterplot, r measures only straight-line
relationships.
Correlation indicates the direction of a linear relationship by its sign: r > 0
for a positive association and r < 0 for a negative association. Correlation
always satisfies −1 ≤ r ≤ 1 and indicates the strength of a relationship by
how close it is to −1 or 1. Perfect correlation, r = ±1, occurs only when
the points on a scatterplot lie exactly on a straight line.

Al Nosedal and Alison Weir STA258H5 Winter 2017 20 / 132



Coral reefs

This example is about a study in which scientists examined data on mean
sea surface temperatures (in degrees Celsius) and mean coral growth (in
millimeters per year) over a several-year period at locations in the Red
Sea. Here are the data:

Sea Surface Temperature Growth

29.68 2.63
29.87 2.58
30.16 2.60
30.22 2.48
30.48 2.26
30.65 2.38
30.90 2.26
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a) Make a scatterplot. Which is the explanatory variable?
b) Find the correlation r step-by-step. Explain how your value for r
matches your graph in a).
c) Enter these data into your calculator and use the correlation function to
find r (or use R to find r).
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Reading our data

# Step 1. Entering data;

# url of coral rate data;

coral_url = "http://www.math.unm.edu/~alvaro/coral.txt"

# import data in R;

data = read.table(coral_url, header = TRUE);
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Scatterplot

Temperature is the explanatory variable.

# Step 2. Making scatterplot;

plot(data,xlab="Sea Surface Temperature",

ylab="Coral Growth (mm)",pch=19,col="blue");
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Scatterplot
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x̄ and ȳ

First, let’s find x̄ and ȳ

x̄ =
29.68 + 29.87 + 30.16 + 30.22 + 30.48 + 30.65 + 30.90

7
= 30.28

ȳ =
2.63 + 2.58 + 2.60 + 2.48 + 2.26 + 2.38 + 2.26

7
= 2.4557
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Sx

Now, let’s find Sx and Sy

S2
x =

(29.68− 30.28)2 + ...+ (30.65− 30.28)2 + (30.90− 30.28)2

6

S2
x = 0.1845

Sx = 0.4296
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Sy

S2
y =

(2.63− 2.4557)2 + ...+ (2.38− 2.4557)2 + (2.26− 2.4557)2

6

S2
y = 0.0249

Sy = 0.1578
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Sample Covariance

Finally, we find the sample covariance and r

7∑
i=1

xiyi = (29.68)(2.63) + ...+ (30.65)(2.38) + (30.90)(2.26)

= 520.1504

Sample covariance =

∑n
i=1 xiyi
n − 1

− nx̄ ȳ

n − 1

=
520.1504

6
− (7)(30.28)(2.4557)

6
= 86.6917− 86.7516 = −0.0599
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Correlation

r =
Sample Covariance

SxSy
=

−0.0599

(0.4296)(0.1578)
= −0.8835

This is consistent with the strong, negative association depicted in the
scatterplot.
c) R will give a value of r = −0.8635908.
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R Code

growth=data[ ,1];

# data[ ,1] gives you the first column of data;

temp=data[ ,2];

# data[ ,2] gives you the 2nd column of data;

cov(growth, temp);

## [1] -0.05593333

cor(growth, temp);

## [1] -0.8635908
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Regression Line

A regression line is a straight line that describes how a response variable y
changes as an explanatory variable x changes. We often use a regression
line to predict the value of y for a given value of x .
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Equation of the Least-Squares Regression Line

We have data on an explanatory variable x and a response variable y for n
individuals. From the data, calculate the means x̄ and ȳ and the standard
deviations Sx and Sy of the two variables, and their correlation r . The
least-squares regression line is the line

ŷ = a + bx

with slope

b = r
Sy
Sx

and intercept

a = ȳ − bx̄
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Least-Squares Regression Line

The least-squares regression line of y on x is the line that makes the
sum of the squares of the vertical distances of the data points from the
line as small as possible.
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Do heavier people burn more energy?

We have data on the lean body mass and resting metabolic rate for 12
women who are subjects in a study of dieting. Lean body mass, given in
kilograms, is a person’s weight leaving out all fat. Metabolic rate, in
calories burned per 24 hours, is the rate at which the body consumes
energy.

Mass Rate Mass Rate

36.1 995 40.3 1189
54.6 1425 33.1 913
48.5 1396 42.4 1124
42.0 1418 34.5 1052
50.6 1502 51.1 1347
42.0 1256 41.2 1204
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a) Make a scatterplot that shows how metabolic rate depends on body
mass. There is a quite strong linear relationship, with correlation
r = 0.876.
b) Find the least-squares regression line for predicting metabolic rate from
body mass. Add this line to your scatterplot.
c) Explain in words what the slope of the regression line tells us.
d) Another woman has a lean body mass of 45 kilograms. What is her
predicted metabolic rate?
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Solutions

b) the regression equation is

ŷ = 201.2 + 24.026x

where y= metabolic rate and x= body mass.
c) The slope tells us that on the average, metabolic rate increases by
about 24 calories per day for each additional kilogram of body mass.
d) For x = 45 kg, the predicted metabolic rate is
ŷ = 1282.4 calories per day.
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Reading our data

# Step 1. Entering data;

# url of metabolic rate data;

meta_url = "http://www.math.unm.edu/~alvaro/metabolic2.txt"

# import data in R;

data = read.table(meta_url, header = TRUE);
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Reading our data

# Step 2. Formating data;

female = data[1:12, ];

mass = female$Mass;

rate = female$Rate;
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R code

# Step 2. Making scatterplot;

plot(mass, rate ,pch=19,col="blue",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)");
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Scatterplot
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Regression Equation (R Code)

# Step 3. Finding Regression Equation;

metabolic.reg=lm(rate~mass);
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a and b

metabolic.reg$coef;

## (Intercept) mass

## 201.16160 24.02607
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Scatterplot with least-squares line

plot(mass,rate,

pch=19,col="blue", xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)");

abline(metabolic.reg$coef, col="red");
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Scatterplot with least-squares line
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Prediction

new<-data.frame(mass=45);

predict(metabolic.reg,newdata=new);

## 1

## 1282.335
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Do heavier people burn more energy?

Return to the example about lean body mass and metabolic rate. We will
use these data to illustrate influence.
a) Make a scatterplot of the data that is suitable for predicting metabolic
rate from body mass, with two new points added. Point A: mass 42
kilograms, metabolic rate 1500 calories. Point B: mass 70 kilograms,
metabolic rate 1400 calories. In which direction is each of these points an
outlier?
b) Add three least-squares regression lines to your plot: for the original 12
women, for the original women plus Point A, and for the original women
plus Point B. Which new point is more influential for the regression line?
Explain in simple language why each new point moves the line in the way
your graph shows.
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Reading our data

# Step 1. Entering data;

# url of metabolic rate data;

meta_url = "http://www.math.unm.edu/~alvaro/metabolic.txt"

# import data in R;

data = read.table(meta_url, header = TRUE);
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Scatterplot

plot(data,pch=19,col="blue",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)");
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Scatterplot
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Least-Squares Regression Line

# Step 3. Finding L-S Regression Line;

mod=lm(data$Rate~data$Mass);
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Scatterplot + L-S Regression Line

plot(data,pch=19,col="blue",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)");

abline(mod$coeff,col="red",lty=2);

# abline tells R to add a line to your

# scatterplot;

# lty= 2 is used to draw a dashed-line;
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Scatterplot + L-S Regression Line
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Scatterplot + A +B

plot(data,pch=19,col="blue",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)",

xlim=c(30,70),ylim=c(850,1600 ));

points(42,1500,pch="A",col="red");

#point A;

points(70,1400,pch="B",col="green");

#point B;
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Least-Squares Regression Lines

# Step 3. Finding L-S Regression Line;

mod=lm(data$Rate~data$Mass);

# original;

modA=lm(c(data$Rate,1500)~c(data$Mass,42));

# point A;

modB=lm(c(data$Rate,1400)~c(data$Mass,70));

# point B;
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Scatterplot + A +B + L-S Regression Lines

plot(data,pch=19,col="blue",

xlab="Lean Body Mass (kg)",

ylab="Metabolic Rate (calories/day)",

xlim=c(30,70),ylim=c(850,1600 ));

points(42,1500,pch="A",col="red");

points(70,1400,pch="B",col="green");

abline(mod$coeff,col="blue",lty=2);

abline(modA$coeff,col="red",lty=2);

abline(modB$coeff,col="green",lty=2);
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Adding a legend

legend("bottomright",

c("original","original + A","original + B"),

col=c("blue","red","green"),

lty=c(2,2,2),bty="n");
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Solutions

a) Point A lies above the other points; that is, the metabolic rate is higher
than we expect for the given body mass. Point B lies to the right of the
other points; that is, it is an outlier in the x (mass) direction, and the
metabolic rate is lower than we would expect.
b) In the plot, the dashed blue line is the regression line for the original
data. The dashed red line slightly above that includes Point A; it has a
very similar slope to the original line, but a slightly higher intercept,
because Point A pulls the line up. The third line includes Point B, the
more influential point; because Point B is an outlier in the x direction, it
”pulls” the line down so that it is less steep.
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Influential observations

An observation is influential for a statistical calculation if removing it
would markedly change the result of the calculation.
The result of a statistical calculation may be of little practical use if it
depends strongly on a few influential observations.
Points that are outliers in either the x or the y direction of a scatterplot
are often influential for the correlation. Points that are outliers in the x
direction are often influential for the least-squares regression line.
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Another example

There is some evidence that drinking moderate amounts of wine helps
prevent heart attacks. A table shown below gives data on yearly wine
consumption (liters of alcohol from drinking wine, per person) and yearly
deaths from heart disease (deaths per 100,000 people) in 19 developed
nations∗.
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Another example

a) Make a scatterplot that shows how national wine consumption helps
explain heart disease death rates.
b) Describe the form of the relationship. Is there a linear pattern? How
strong is the relationship?
c) Is the direction of the association positive or negative? Explain in
simple language what this says about wine and heart disease. Do you
think these data give good evidence that drinking wine causes a reduction
in heart disease deaths? Why?
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Table

Country Alcohol Heart Country Alcohol Heart
from disease from disease
wine deaths wine deaths

Australia 2.5 211 Netherlands 1.8 167
Austria 3.9 167 New Zealand 1.8 266
Belgium 2.9 131 Norway 0.8 227
Canada 2.4 191 Spain 6.5 86

Denmark 2.9 220 Sweden 1.6 207
Finland 0.8 297 Switzerland 5.8 115
France 9.1 71 United Kingdom 1.3 285
Iceland 0.8 211 United States 1.2 199
Ireland 0.7 300 West Germany 2.7 172

Italy 7.9 107
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Solution (Bar chart)

# Step 1. Entering data;

consumption=c(2.5, 3.9, 2.9, 2.4, 2.9, 0.8, 9.1,

0.8, 0.7, 7.9, 1.8, 1.9, 0.8, 6.5, 1.6, 5.8, 1.3, 1.2, 2.7);

death.rates=c(211, 167, 131, 191, 220, 297, 71,

211, 300, 107,167, 266, 227, 86, 207, 115, 285, 199, 172);
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Scatterplot (R code)

plot(consumption,death.rates);
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Scatterplot (R code)
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Another example (cont.)

Our table gives data on wine consumption and heart disease death rates in
19 countries. A scatterplot shows a moderately strong relationship.
a) The correlation for these variables is r = −0.843. What does a negative
correlation say about wine consumption and heart disease deaths?
b) The least-squares regression line for predicting heart disease death rate
from wine consumption is

ŷ = 260.56− 22.969x

Verify this using R. Then use this equation to predict the heart disease
death rate in another country where adults average 4 liters of alcohol from
wine each year.
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a) Finding correlation

cor(consumption,death.rates);

## [1] -0.8428127

Al Nosedal and Alison Weir STA258H5 Winter 2017 70 / 132



Least-squares Regression Line

explanatory<-consumption;

response<-death.rates;

wine.reg<-lm(response~explanatory);
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R code

names(wine.reg);

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"
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a and b

wine.reg$coef;

## (Intercept) explanatory

## 260.56338 -22.96877
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Prediction

wine.reg$coef[1]+wine.reg$coef[2]*4;

## (Intercept)

## 168.6883
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Prediction (again...)

new=data.frame(explanatory=4);

predict(wine.reg,newdata=new);

## 1

## 168.6883
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c) The association is negative: Countries with high wine consumption have
fewer heart disease deaths, while low wine consumption tends to go with
more deaths from heart disease. This does not prove causation; there may
be some other reason for the link.
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Our main example

One effect of global warming is to increase the flow of water into the
Arctic Ocean from rivers. Such an increase might have major effects on
the world’s climate. Six rivers (Yenisey, Lena, Ob, Pechora, Kolyma, and
Severnaya Dvina) drain two-thirds of the Arctic in Europe and Asia.
Several of these are among the largest rivers on earth. File arctic-rivers.txt
contains the total discharge from these rivers each year from 1936 to
19992. Discharge is measured in cubic kilometers of water.
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Reading our data

# url of arctic rivers data;

riv_url = "http://www.math.unm.edu/~alvaro/arctic-rivers.txt"

# import data in R;

arctic_rivers = read.table(riv_url, header = TRUE);
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Scatterplot (R code)

plot(arctic_rivers$Year,arctic_rivers$Discharge);
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Scatterplot (R code)
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Scatterplot (R code)

plot(arctic_rivers$Year,arctic_rivers$Discharge,

pch=19,col="blue");
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Scatterplot (R code)
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Scatterplot (R code)

plot(arctic_rivers$Year,arctic_rivers$Discharge,

pch=19,col="blue", xlab="Year",

ylab="Discharge");
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Scatterplot (R code)
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The scatterplot shows a weak positive, linear relationship.
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Our main example

r<-cor(arctic_rivers$Year,arctic_rivers$Discharge);

r;

## [1] 0.3343926
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The scatterplot shows a weak positive, linear relationship, which is
confirmed by r (0.3343926).
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R code

explanatory<-arctic_rivers$Year;

response<-arctic_rivers$Discharge

rivers.reg<-lm(response~explanatory);
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R code

names(rivers.reg);

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"
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a and b

rivers.reg$coef;

## (Intercept) explanatory

## -2056.769460 1.966163
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Scatterplot with least-squares line

plot(explanatory,response,

pch=19,col="blue", xlab="Year",

ylab="Discharge");

abline(rivers.reg$coef, col="red");
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Scatterplot with least-squares line
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Residuals

A residual is the difference between an observed value of the response
variable and the value predicted by the regression line. That is,

residual = observed y − predicted y = y − ŷ .
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Scatterplot with residual line segments

plot(explanatory,response,

pch=19,col="blue", xlab="Year",

ylab="Discharge");

abline(rivers.reg$coef, col="red");

segments(explanatory, fitted(rivers.reg),

explanatory,response, lty=2, col="black");
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Scatterplot with residual line segments
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Residual Plots

A residual plot is a scatterplot of the regression residuals against the
explanatory variable. Residual plots help us assess the fit of a regression
line.
A residual plot magnifies the deviations of the points from the line and
makes it easier to see unusual observations and patterns.
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Residual plot

plot(explanatory,resid(rivers.reg),

pch=19,col="blue", xlab="Year",

ylab="Residual");

abline(h=0, col="red",lty=2);
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Residual plot
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INFERENCE FOR REGRESSION.
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The Regression Model

We have n observations on an explanatory variable x and a response
variable y . Our goal is to study or predict the behavior of y for given
values of x .

For any fixed value of x , the response y varies according to a Normal
distribution. Repeated measures y are independent of each other.

The mean response µy has a straight-line relationship with x :
µy = α+βx . The slope β and intercept α are unknown parameters.

The standard deviation of y (call it σ) is the same for all values of x .
The value of σ is unknown.
The regression model has three parameters, α, β, and σ.
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Regression Standard Error

The regression standard error is

s =

√
1

n − 2

∑
residual2 =

√√√√ 1

n − 2

n∑
i=1

(yi − ŷ)2.

Use s to estimate the unknown σ in the regression model.
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Regression Standard Error

residuals<-resid(rivers.reg);

n<-length(residuals);

s<-sqrt(sum(residuals^2)/(n-2));

s;

## [1] 104.0026
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Regression Standard Error (another way)

summary(rivers.reg)$sigma

## [1] 104.0026
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Confidence intervals for the regression slope

A level C confidence interval for the slope β of the true regression line is

b ± t∗SEb.

In this formula, the standard error of the least-squares slope b is

SEb =
s√∑

(xi − x̄)2

and t∗ is the critical value for the t(n − 2) density curve with area C
between −t∗ and t∗.
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Example

We will use the data in arctic-rivers.txt to give a 90% confidence interval
for the slope of the true regression of Arctic river discharge on year.
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Confidence interval for slope

summary(rivers.reg)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2056.769460 1384.6873683 -1.485367 0.14251371

## explanatory 1.966163 0.7037491 2.793841 0.00692068
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Confidence interval for slope

b<-summary(rivers.reg)$coef[2,1];

SEb<-summary(rivers.reg)$coef[2,2];

# lower bound;

b-qt(0.95,df=n-2)*SEb;

## [1] 0.7910398

# upper bound;

b+qt(0.95,df=n-2)*SEb;

## [1] 3.141286
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R output gives b = 1.966163 and SEb = 0.7037491. There were n = 64
observations, so df = 62. Our 90% Confidence Interval for β is given by
(0.7910398, 3.1412862). Because this interval does not contain 0, we have
evidence that β (the rate at which discharge is increasing) is positive.
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Testing the hypothesis of no linear relationship

We can also test hypotheses about the slope β. The most common
hypothesis is

H0 : β = 0.

A regression line with slope 0 is horizontal. That is, the mean of y does
not change at all when x changes. So this H0 says that there is no true
linear relationship between x and y .
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Significance test for regression slope

To test the hypothesis H0 : β = 0, compute the t statistic

t =
b

SEb
.

In terms of a random variable T having the t(n − 2) distribution, the
P-value for a test of H0 against Ha : β 6= 0 is 2P(T ≥ |t|).

Al Nosedal and Alison Weir STA258H5 Winter 2017 110 / 132



Our main example

The most important question we ask of the data in arctic-rivers.txt is this:
Is the increasing trend visible in your plot statistically significant? If so,
changes in the Arctic may already be affecting earth’s climate. Use R to
answer this question.
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t.statistic<-b/SEb;

t.statistic;

## [1] 2.793841

p.value<-2*(1-pt(t.statistic,n-2));

p.value;

## [1] 0.00692068
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summary(rivers.reg)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2056.769460 1384.6873683 -1.485367 0.14251371

## explanatory 1.966163 0.7037491 2.793841 0.00692068
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The t statistic for testing H0 : β = 0 is therefore t = 2.7938409. This has
df = 62; R gives a P-value of 0.0069207. There is significant evidence (at
α = 0.01 significance level) that β is nonzero.
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APPENDIX
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Simple Linear Regression (SLR) Model

Y = β0 + β1X + ε

Y : Response or dependent variable
X : Predictor or independent variable, treat as fixed.
β0 and β1: Regression coefficients.
ε: Random error.
Goal: To be able to predict y for a given value of x .
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Assumptions about ε

Error terms

Are uncorrelated

Have mean zero

Have constant variance

Don’t require Normal distribution

E (ε) = 0→ E (Y ) = E (β0 + β1X + ε) = β0 + β1X ”true line”
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The least-squares procedure for fitting a line through a set of n data
points is similar to the method that we might use if we fit a line by eye;
that is, we want the differences between the observed values and
corresponding points on the fitted line to be ”small” according to some
criterion. A convenient way to accomplish this is to minimize the sum of
squares of the vertical deviations from the fitted line.
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Thus, if

ŷi = β̂0 + β̂1xi

is the predicted value of the ith y value, then the deviation of the
observed value yi from ŷi is the difference yi − ŷi and the sum of squares
of deviations to be minimized is

SSE =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

[yi − (β̂0 + β̂1xi )]2.

The quantity SSE is also called the sum of squares for error.
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If SSE possesses a minimum, it will occur for values of β0 and β1 that
satisfy the equations, ∂SSE

∂β̂0
= 0 and ∂SSE

∂β̂1
= 0. These equations are called

the least-squares equations for estimating the parameters of a line.
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You can verify that the solutions are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄ .

(Further, it can be shown that the simultaneous solution for the two
least-squares equations yields values of β̂0 and β̂1 that minimize SSE . I
leave this for you to prove).

Al Nosedal and Alison Weir STA258H5 Winter 2017 121 / 132



Least-Squares Estimators for Simple Linear Regression
Model

β̂1 =
Sxy
Sxx

,

where Sxy =
∑n

i=1(xi − x̄)(yi − ȳ) and Sxy =
∑n

i=1(xi − x̄)2.

β̂0 = ȳ − β̂1x̄ .
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Fitted Values and Residuals

Fitted Value:
ŷi = β̂0 + β̂1xi

Residual:

ε̂ = yi − ŷi
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Estimating E (Y )

Point estimate ˆE (Y ) = ŷ = β̂0 + β̂1x

Applies for any x , even ones we didn’t observe

Fitted values ŷi estimate means E (Yi )
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Estimating σ2

Residuals ε̂i = ei estimate errors εi

Estimate of the common variance σ̂2 =
∑n

i=1 e
2
i

n−2

The denominator is n − 2 to make it an un unbiased estimator

Often called MSE, Mean Square Error

Square root of MSE called residual standard error, or standard error
of regression
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Distribution of β̂1

β̂1 has a N

(
β1,

σ2

Sxx

)
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Sums of Squares

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

(Yi − Ŷi )
2

SSTO = SSR + SSE

Sum of Squares (Total) = Sum of Squares (Regression) + Sum of Squares
(Error)
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ANOVA Table

Analysis of Variance (ANOVA) Table.

Source df SS MS F

Regression 1 SSR MSR F∗ = MSR/MSE
Error/Residual n-2 SSE MSE

Total n-1 SSTO
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ANOVA Table

Analysis of Variance (ANOVA) Table.

H0 : β1 = 0 vs Ha : β1 6= 0

Test Statistic: F ∗ = MSR/MSE

Reference distribution: F1,n−2

Note. F ∗ = t2∗
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Coefficient of Determination

The statistic r2 is called the coefficient of determination and has an
interesting and useful interpretation.
r2 can be interpreted as the proportion of the total variation in the yi ’s
that is explained by the variable x in a simple linear regression model (for
more details, see page 601).
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summary(rivers.reg)$fstatistic;

## value numdf dendf

## 7.805547 1.000000 62.000000

summary(rivers.reg)$r.squared;

## [1] 0.1118184
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Another way would be typing in

summary(rivers.reg)

(that would show you everything but I don’t have enough room here...)
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